Skip to main content

5 Fungi and Industrial Pollutants

  • Chapter
  • First Online:
Environmental and Microbial Relationships

Part of the book series: The Mycota ((MYCOTA,volume IV))

Abstract

Fungi are capable of the degradation, utilisation and/or transformation of a wide variety of organic and inorganic substances, including xenobiotics, metals, radionuclides, and minerals. Fungal populations are therefore intimately involved in element cycling at local and global scales, and such processes have major implications for living organisms, notably plant productivity and human health. It also follows that impairment of fungal activity could have serious consequences for ecosystem function in view of their importance in terrestrial habitats and as plant symbionts. Their activities are part of natural biogeochemical cycles for major elements such as C, N, O, P and S but also metals and radionuclides, as well as having application in the natural attenuation or bioremediation of polluted sites. Despite the toxicity of organic and inorganic pollutants, fungi are ubiquitous inhabitants of polluted locations and exhibit a variety of mechanisms underpinning tolerance and survival. Some fungal transformations of pollutants have applications in environmental biotechnology, e.g. metal bioleaching, biorecovery and detoxification and xenobiotic and organic pollutant degradation and bioremediation. This chapter outlines some important interactions of fungi with organic and inorganic pollutants and highlights the interdisciplinary approach that is necessary to further understand the important roles that fungi play in pollutant transformations, the chemical and biological mechanisms that are involved, and their environmental and applied significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281

    CAS  PubMed  Google Scholar 

  • Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    CAS  Google Scholar 

  • Anders JPE, Domsch KH (1975) Measurement of bacterial and fungal contribution to respiration of selected agricultural and forest soils. Can J Microbiol 21:314–322

    Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnürer Y, Öberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22:1238–1243

    CAS  PubMed  Google Scholar 

  • April TM, Foght JM, Currah RS (2000) Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can J Microbiol 46:38–49

    CAS  PubMed  Google Scholar 

  • Arnebrant K, Baath E, Nordgren A (1987) Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79:890–895

    CAS  Google Scholar 

  • Arnott HJ (1995) Calcium oxalate in fungi. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, FL, pp 73–111

    Google Scholar 

  • Asgher M, Bhatti H, Ashraf M, Legge R (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    CAS  PubMed  Google Scholar 

  • Baaken LR, Olson RA (1990) Accumulation of radiocaesium in fungi. Can J Microbiol 36:704–710

    Google Scholar 

  • Baath E (1989) Effects of heavy metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47:335–379

    CAS  Google Scholar 

  • Baath E (1991) Tolerance of copper by entomogenous fungi and the use of copper-amended media for isolation of entomogenous fungi from soil. Mycol Res 95:1140–1152

    Google Scholar 

  • Baath E, Lundgren B, Soderstrom B (1984) Fungal populations in podzolic soil experimentally acidified to simulate acid rain. Microb Ecol 10:197–203

    CAS  PubMed  Google Scholar 

  • Babich H, Stotzky G (1985) Heavy metal toxicity to microbe-mediated ecological processes: a review and potential application to regulatory policies. Environ Res 36:11–137

    Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic Basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Google Scholar 

  • Baldrian P, Gabriel J (1997) Effect of heavy metals on the growth of selected wood-rotting Basidiomycetes. Folia Microbiol 42:521–523

    CAS  Google Scholar 

  • Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadražil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Banitz T, Fetzer I, Johst K, Wick LY, Frank K (2011) Assessing biodegradation benefits from dispersal networks. Ecol Model 222:2552–2560

    Google Scholar 

  • Barclay M, Knowles CJ (2001) Cyanide biodegradation by fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 335–358

    Google Scholar 

  • Bewley RJF (1979) The effects of zinc, lead and cadmium pollution on the leaf surface microflora of Lolium perenne L. J Gen Microbiol 110:247–254

    CAS  Google Scholar 

  • Bewley RJF (1980) Effects of heavy metal pollution of oak leaf microorganisms. Appl Environ Microbiol 40:1053–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley RJF, Campbell R (1980) Influence of zinc, lead and cadmium pollutants on microflora of hawthorn leaves. Microb Ecol 6:227–240

    CAS  PubMed  Google Scholar 

  • Bewley RFJ, Parkinson D (1985) Bacterial and fungal activity in sulphur dioxide polluted soils. Can J Microbiol 31:13–15

    CAS  Google Scholar 

  • Bewley RJF, Stotzky G (1983) Effects of cadmium and zinc on microbial activity in soils: influence of clay minerals, Part 1: Metals added individually. Sci Total Environ 31:41–45

    CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:2547–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337

    CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209

    CAS  Google Scholar 

  • Brandl H (2001) Heterotrophic leaching. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 383–423

    Google Scholar 

  • Brandl H, Faramarzi MA (2006) Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Partic 4:93–97

    CAS  Google Scholar 

  • Bressa G, Cima L, Costa P (1988) Bioaccumulation of Hg in the mushroom Pleurotus ostreatus. Ecotoxicol Environ Saf 16:85–89

    CAS  PubMed  Google Scholar 

  • Brodkorb TS, Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol 58:3117–3121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MT, Wilkins DA (1985a) Zinc tolerance of mycorrhizal Betula. New Phytol 99:101–106

    CAS  Google Scholar 

  • Brown MT, Wilkins DA (1985b) Zinc tolerance of Amanita and Paxillus. Trans Br Mycol Soc 84:367–369

    Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003a) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    CAS  Google Scholar 

  • Burford EP, Kierans M, Gadd GM (2003b) Geomycology: fungal growth in mineral substrata. Mycologist 17:98–107

    Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    CAS  Google Scholar 

  • Byrne AR (1988) Radioactivity in fungi in Slovenia, Yugoslavia, following the Chernobyl accident. J Environ Radioact 6:177–183

    CAS  Google Scholar 

  • Byrne AR, Tusek-Znidaric M (1990) Studies of the uptake and binding of trace metals in fungi, Part I: Accumulation and characterisation of mercury and silver in the cultivated mushroom, Agaricus bisporus. Appl Organometal Chem 4:43–48

    CAS  Google Scholar 

  • Byrne AR, Ravnik V, Kosta L (1976) Trace element concentrations in higher fungi. Sci Total Environ 6:65–78

    CAS  PubMed  Google Scholar 

  • Byrne AR, Tusek-Znidaric M, Puri BK, Irgolic KJ (1991) Studies of the uptake and binding of trace metals in fungi, Part II: Arsenic compounds in Laccaria amethystine. Appl Organometal Chem 5:25–32

    CAS  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740

    Google Scholar 

  • Cajthaml T, Möder M, Kačer P, Šašek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatog A974:213–222

    Google Scholar 

  • Callot G, Guyon A, Mousain D (1985a) Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie 5:209–216

    Google Scholar 

  • Callot G, Mousain D, Plassard C (1985b) Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5:143–150

    Google Scholar 

  • Cameotra SS, Bollag J-M (2003) Biosurfactant-enhanced bioremediation of polycyclic aromatic hydrocarbons. Crit Rev Environ Sci Technol 30:111–126

    Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76:113–117

    CAS  PubMed  Google Scholar 

  • Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Indus Microbiol 16:205–215

    CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 136–187

    Google Scholar 

  • Cerniglia CE, Sutherland JB (2006) Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 182–211

    Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Google Scholar 

  • Cevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Zerjav lead smelter (Slovenia). Phyton – Annales Rei Botanicae 40:61–64

    Google Scholar 

  • Chander K, Dyckmans J, Hoeper H, Joergensen RG, Raubuch M (2001a) Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164:657–663

    CAS  Google Scholar 

  • Chander K, Dyckmans J, Joergensen RG, Meyer B, Raubuch M (2001b) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soil 34:241–247

    CAS  Google Scholar 

  • Chang YS (2008) Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microbiol Biotechnol 15:152–171

    CAS  PubMed  Google Scholar 

  • Chen BD, Jakobsen I, Roos P, Zhu YG (2005a) Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359

    CAS  Google Scholar 

  • Chen BD, Zhu YG, Zhang XH, Jakobsen I (2005b) The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res 12:325–331

    Google Scholar 

  • Christie P, Li XL, Chen BD (2004) Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217

    CAS  Google Scholar 

  • Clausen CA, Green F III, Woodward BM, Evans JW, DeGroot RC (2000) Correlation between oxalic acid production and copper tolerance in Wolfiporia cocos. Int Biodeter Biodegrad 46:69–76

    CAS  Google Scholar 

  • Clint GM, Dighton J, Rees S (1991) Influx of 137Cs into hyphae of Basidiomycete fungi. Mycol Res 95:1047–1051

    CAS  Google Scholar 

  • Cohen R, Hadar Y (2001) The roles of fungi in agricultural waste conversion. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 305–334

    Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolytic fungi. Environ Pollut 94:355–362

    CAS  PubMed  Google Scholar 

  • Colpaert JV, Van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1:415–421

    Google Scholar 

  • Colpaert JV, Van Assche JA (1993) The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333

    CAS  Google Scholar 

  • da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19:399–405

    Google Scholar 

  • Daghino S, Turci F, Tomatis M, Favier A, Perotto S, Douki T, Fubini B (2006) Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40:5793–5798

    CAS  PubMed  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    CAS  Google Scholar 

  • Darlington AB, Rauser WE (1988) Cadmium alters the growth of the mycorrhizal fungus Paxillus involutus: a new growth model accounts for changes in branching. Can J Bot 66:225–229

    CAS  Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denny HJ, Wilkins DA (1987) Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol 106:545–553

    CAS  Google Scholar 

  • Dighton J, Ad H (1988) Radiocaesium accumulation I the mycorrhizal fungi Lactarius rufus and Inocybe longicystis in upland Britain following the Chernobyl accident. Trans Br Mycol Soc 91:335–337

    CAS  Google Scholar 

  • Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056

    CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksia and Picea glauca to heavy metals in soil. Plant Soil 105:265–271

    CAS  Google Scholar 

  • Doelman P (1985) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjoller A, Sorensen LH (eds) Microbial communities in soil. Elsevier, London, pp 369–384

    Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    CAS  Google Scholar 

  • Elstener EF, Fink R, Holl W, Lengfelder E, Ziegler H (1987) Natural and Chernobyl-caused radioactivity in mushrooms, mosses and soil samples of defined biotopes in S.W. Bavaria. Oecologia 73:553–558

    Google Scholar 

  • Finlay R, Wallander H, Smits M, Holmstrom S, Van Hees P, Lian B, Rosling A (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106

    Google Scholar 

  • Fomina M, Gadd GM (2002) Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34

    Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211

    CAS  PubMed  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871

    CAS  PubMed  Google Scholar 

  • Fomina MA, Alexander IJ, Hillier S, Gadd GM (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366

    CAS  Google Scholar 

  • Fomina M, Hillier S, Charnock JM, Melville K, Alexander IJ, Gadd GM (2005a) Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71:371–381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005b) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alexander IJ, Gadd GM (2006) Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333

    CAS  PubMed  Google Scholar 

  • Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM (2007a) Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653

    CAS  Google Scholar 

  • Fomina M, Charnock J, Bowen AD, Gadd GM (2007b) X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321

    CAS  PubMed  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007c) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710

    CAS  PubMed  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Livens F, Gadd GM (2008) Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:375–377

    Google Scholar 

  • Francis AJ (1986) Acid rain effects on soil and aquatic processes. Experientia 42:455–465

    CAS  Google Scholar 

  • Freedman B, Hutchinson TC (1980) Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Can J Bot 58:1722–1736

    CAS  Google Scholar 

  • Fritze H (1987) The influence of urban air pollution on soil respiration and fungal hyphal length. Ann Bot Finn 24:251–256

    Google Scholar 

  • Fritze H (1991) Forest soil microbial responses to emissions from an iron and steel smelter. Soil Biol Biochem 23:151–155

    CAS  Google Scholar 

  • Fritze H, Baath E (1993) Microfungal species composition and fungal biomass in a coniferous forest soil polluted by alkaline deposition. Microb Ecol 25:83–92

    CAS  PubMed  Google Scholar 

  • Frostegard A, Tunlid A, Baath E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel J, Kofronova O, Rychlovsky P, Krenzelok M (1996) Accumulation and effect of cadmium in the wood-rotting Basidiomycete Daedalea quercina. Bull Environ Contamin Toxicol 57:383–390

    CAS  Google Scholar 

  • Gadd GM (1984) Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Trans Br Mycol Soc 82:546–549

    CAS  Google Scholar 

  • Gadd GM (1986) The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology. In: Eccles H, Hunt S (eds) Immobilisation of ions by biosorption. Ellis Horwood, Chichester, pp 135–147

    Google Scholar 

  • Gadd GM (1990) Fungi and yeasts for metal accumulation. In: Ehrlich HL, Brierley C (eds) Microbial mineral recovery. McGraw-Hill, New York, NY, pp 249–275

    Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    CAS  PubMed  Google Scholar 

  • Gadd GM (1993a) Interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gadd GM (1993b) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    CAS  PubMed  Google Scholar 

  • Gadd GM (ed) (2001a) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Gadd GM (2001b) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise, vol 10, Special processes. Wiley-VCH Verlag GmbH, Weinheim, pp 225–264

    Google Scholar 

  • Gadd GM (2002) Interactions between microorganisms and metals/radionuclides: the basis of bioremediation. In: Keith-Roach MJ, Livens FR (eds) Interactions of microorganisms with radionuclides. Elsevier, Amsterdam, pp 179–203

    Google Scholar 

  • Gadd GM (2004a) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70

    Google Scholar 

  • Gadd GM (2004b) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    CAS  Google Scholar 

  • Gadd GM (2005) Microorganisms in toxic metal polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 325–356

    Google Scholar 

  • Gadd GM (ed) (2006) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    CAS  PubMed  Google Scholar 

  • Gadd GM (2008a) Fungi and their role in the biosphere. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 1709–1717

    Google Scholar 

  • Gadd GM (2008b) Bacterial and fungal geomicrobiology: a problem with communities? Geobiology 6:278–284

    CAS  PubMed  Google Scholar 

  • Gadd GM (2008c) Transformation and mobilization of metals by microorganisms. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, Chichester, pp 53–96

    Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28

    CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    CAS  PubMed  Google Scholar 

  • Gadd GM (2011) Geomycology. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology, Part 7. Springer, Heidelberg, pp 416–432

    Google Scholar 

  • Gadd GM, De Rome L (1988) Biosorption of copper by fungal melanin. Appl Microbiol Biotechnol 29:610–617

    CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1980) Effect of copper on morphology of Aureobasidium pullulans. Trans Br Mycol Soc 74:387–392

    CAS  Google Scholar 

  • Gadd GM, Mowll JL (1985) Copper uptake by yeast-like cells, hyphae and chlamydospores of Aureobasidium pullulans. Exp Mycol 9:230–240

    CAS  Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 237–256

    Google Scholar 

  • Gadd GM, White C (1990) Biosorption of radionuclides by yeast and fungal biomass. J Chem Technol Biotechnol 49:331–343

    PubMed  Google Scholar 

  • Gadd GM, White C (1992) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol 55:39–44

    CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol 11:353–359

    CAS  PubMed  Google Scholar 

  • Gadd GM, White C, Mowll JL (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol Ecol 45:261–267

    CAS  Google Scholar 

  • Gadd GM, Ramsay L, Crawford JW, Ritz K (2001) Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol Lett 204:311–316

    CAS  PubMed  Google Scholar 

  • Gadd GM, Fomina M, Burford EP (2005) Fungal roles and function in rock, mineral and soil transformations. In: Gadd GM, Semple KT, Lappin-Scott HM (eds) Microorganisms in earth systems – advances in geomicrobiology. Cambridge University Press, Cambridge, pp 201–231

    Google Scholar 

  • Gadd GM, Burford EP, Fomina M, Melville K (2007) Mineral transformations and biogeochemical cycles: a geomycological perspective. In: Gadd GM, Dyer P, Watkinson S (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 78–111

    Google Scholar 

  • Gardea-Torresdey JL, Cano-Aguielera I, Webb R, Gutierrez-Corona F (1997) Enhanced copper adsorption and morphological alterations of cells of copper-stressed Mucor rouxii. Environ Toxicol Chem 16:435–441

    CAS  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770

    CAS  Google Scholar 

  • Gast CH, Jansen E, Bierling J, Haanstra L (1988) Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17:789–799

    CAS  Google Scholar 

  • Gharieb MM, Gadd GM (1999) Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol Res 103:473–481

    CAS  Google Scholar 

  • Gharieb MM, Wilkinson SC, Gadd GM (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Indus Microbiol 14:300–311

    CAS  Google Scholar 

  • Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305

    CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    CAS  PubMed  Google Scholar 

  • Green F III, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeter Biodegrad 51:145–149

    CAS  Google Scholar 

  • Griffioen WAJ (1994) Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200

    CAS  Google Scholar 

  • Grote G, Krumbein WE (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57

    CAS  Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903

    CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    CAS  PubMed  Google Scholar 

  • Hartley J, Cairney JWG, Freestone P, Woods C, Meharg AA (1999) The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Pollut 106:413–424

    CAS  PubMed  Google Scholar 

  • Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley, Hoboken, NJ

    Google Scholar 

  • Haselwandter K (1978) Accumulation of the radioactive nuclide 137Cs in fruitbodies of basidiomycetes. Health Phys 34:713–715

    CAS  PubMed  Google Scholar 

  • Haselwandter K, Berreck M, Brunner P (1988) Fungi as bioindicators of radiocaesium contamination: pre- and post-Chernobyl activities. Trans Br Mycol Soc 90:171–174

    CAS  Google Scholar 

  • Heinrich G (1992) Uptake and transfer factors of 137Cs by mushrooms. Radiat Environ Phys 31:39–49

    CAS  Google Scholar 

  • Helander ML, Ranta H, Neuvonen S (1993) Responses of phyllosphere microfungi to simulated sulphuric and nitric acid deposition. Mycol Res 97:533–537

    CAS  Google Scholar 

  • Hennebel T, Gusseme BD, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98

    CAS  PubMed  Google Scholar 

  • Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698

    CAS  PubMed  Google Scholar 

  • Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut 86:171–179

    CAS  PubMed  Google Scholar 

  • Hiroki M (1992) Effects of heavy metal contamination on soil microbial populations. Soil Sci Plant Nutr 38:141–147

    CAS  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ (2003) Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environ Toxicol Chem 22:2853–2860

    CAS  PubMed  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth – the hard (and soft) facts. J Gen Microbiol 137:725–734

    CAS  Google Scholar 

  • Jarosz-Wilkołazka A, Gadd GM (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547

    PubMed  Google Scholar 

  • Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of microorganisms to phenanthrene metabolism in soil by analysis of 13C-labeled cell lipids. Appl Environ Microbiol 68:6106–6113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effects of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988a) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytol 108:451–459

    CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988b) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. II. Uptake of nickel, calcium, magnesium, phosphorous and iron. New Phytol 108:461–470

    CAS  Google Scholar 

  • Jones D, Muehlchen A (1994) Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J Environ Sci Health A- Environ Sci Eng 29:949–966

    Google Scholar 

  • Jordan MJ, Lechevalier MP (1975) Effects of zinc-smelter emissions on forest soil microflora. Can J Microbiol 21:1855–1865

    CAS  PubMed  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeter Biodegrad 45:57–88

    CAS  Google Scholar 

  • Kanaly RA, Bartha R, Watanabe K, Harayama S (2000) Rapid mineralization of benzo[a]pyrene by a microbial consortium growing on diesel fuel. Appl Environ Microbiol 66:4205–4211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JJ, Haggblom M, Tate RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465

    CAS  Google Scholar 

  • Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewage-sludge on soil micro-organisms and their activities. Appl Soil Ecol 20:145–155

    Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular-arbuscular mycorrhizal mediation of grass responses to acidic and heavy metal depositions. Plant Soil 72:39–48

    CAS  Google Scholar 

  • Killham K, Wainwright M (1981) Deciduous leaf litter and cellulose decomposition in soil exposed to heavy atmospheric pollution. Environ Pollut A26:69–78

    Google Scholar 

  • Killham K, Wainwright M (1982) Microbial release of sulphur ions from atmospheric pollution deposits. J Appl Ecol 18:889–896

    Google Scholar 

  • Killham K, Wainwright M (1984) Chemical and microbiological changes in soil following exposure to heavy atmospheric pollution. Environ Pollut A33:122–131

    Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granquist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials sciences. Trends Biotechnol 19:15–20

    CAS  PubMed  Google Scholar 

  • Knapp JS, Vantoch-Wood EJ, Zhang F (2001) Use of wood-rotting fungi for the decolorization of dyes and industrial effluents. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 242–304

    Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    CAS  PubMed  Google Scholar 

  • Kolo K, Claeys P (2005) In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2:277–293

    CAS  Google Scholar 

  • Kolo K, Keppens E, Préat A, Claeys P (2007) Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res 112, G01007

    Google Scholar 

  • Kostov O, Van Cleemput O (2001) Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Sci Utilization 9:336–351

    Google Scholar 

  • Krupa P, Kozdroj J (2004) Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20:427–430

    CAS  Google Scholar 

  • Kubatova A, Prasil K, Vanova M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Crypto Mycol 23:205–219

    Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abielovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43:388–396

    CAS  PubMed  Google Scholar 

  • Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166

    Google Scholar 

  • Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346

    CAS  Google Scholar 

  • Lehto K-M, Puhakka JA, Lemmetyinen H (2003) Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs). Biodegradation 14:249–263

    CAS  PubMed  Google Scholar 

  • Lepsova A, Mejstrik V (1989) Trace elements in fruit bodies of fungi under different pollution stress. Agric Ecosyst Environ 28:305–312

    Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC Press, Boca Raton, FL, pp 165–185

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Liang X, Hillier S, Pendlowski H, Gray N, Ceci A, Gadd GM (2015) Uranium phosphate biomineralization by fungi. Environ Microbiol 17(6):2064–2075

    CAS  PubMed  Google Scholar 

  • Lilly WW, Wallweber GJ, Lukefahr TA (1992) Cadmium absorption and its effect on growth and mycelial morphology of the basidiomycete fungus, Schizophyllum commune. Microbios 72:227–237

    CAS  Google Scholar 

  • Majcherczyk A, Johannes C (2000) Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochim Biophys Acta 1474:157–162

    CAS  PubMed  Google Scholar 

  • Majeau J-A, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    CAS  PubMed  Google Scholar 

  • Manoli F, Koutsopoulos E, Dalas E (1997) Crystallization of calcite on chitin. J Cryst Growth 182:116–124

    CAS  Google Scholar 

  • Markkola AM, Ahonen-Jonnarth U, Roitto M, Strommer R, Hyvarinen M (2002) Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 120:797–803

    CAS  PubMed  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    CAS  Google Scholar 

  • Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820

    CAS  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    CAS  PubMed  Google Scholar 

  • Meharg AA, Cairney JWG (2000a) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    CAS  Google Scholar 

  • Meharg AW, Cairney JWG (2000b) Ectomycorrhizas — extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their related expression. J Cell Biochem 45:30–40

    CAS  PubMed  Google Scholar 

  • Mejstrik V, Lepsova A (1993) Applicability of fungi to the monitoring of environmental pollution by heavy metals. In: Market B (ed) Plants as biomonitors. VCH Verlagsgesellschaft, Weinheim, pp 365–378

    Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    CAS  PubMed  Google Scholar 

  • Mineev VG, Gomonova NF, Zenova GM, Skvortsova IN (1999) Changes in the properties of soddy-podzolic soil and its microbocenosis under intensive anthropogenic impact. Eurasian Soil Sci 32:413–417

    Google Scholar 

  • Miyata N, Tani Y, Iwahori K, Soma M (2004) Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47:101–109

    CAS  PubMed  Google Scholar 

  • Miyata M, Tani Y, Sakata M, Iwahori K (2007) Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8

    CAS  PubMed  Google Scholar 

  • Morley GF, Sayer JA, Wilkinson SC, Gharieb MM, Gadd GM (1996) Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, pp 235–256

    Google Scholar 

  • Mowll JL, Gadd GM (1985) The effect of vehicular lead pollution on phylloplane mycoflora. Trans Br Mycol Soc 84:685–689

    CAS  Google Scholar 

  • Moynahan OS, Zabinski CA, Gannon JE (2002) Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restoration Ecol 10:77–87

    Google Scholar 

  • Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monitoring Assess 79:177–191

    CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Google Scholar 

  • Muramatsu Y, Yoshida S, Sumiya M (1991) Concentrations of radiocaesium and potassium in basidiomycetes collected in Japan. Sci Total Environ 105:29–39

    CAS  PubMed  Google Scholar 

  • Newby PJ, Gadd GM (1987) Synnema induction in Penicillium funiculosum by tributyltin compounds. Trans Br Mycol Soc 89:381–384

    CAS  Google Scholar 

  • Nordgren A, Baath E, Soderstrom B (1983) Microfungi and microbial activity along a heavy metal gradient. Appl Environ Microbiol 45:1837–1839

    Google Scholar 

  • Nordgren A, Baath E, Soderstrom B (1985) Soil microfungi in an area polluted by heavy metals. Can J Bot 63:448–455

    CAS  Google Scholar 

  • Novotný Č, Erbanová P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    PubMed  Google Scholar 

  • Olayinka A, Babalola GO (2001) Effects of copper sulphate application on microbial numbers and respiration, nitrifier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol Agric Hort 19:1–8

    Google Scholar 

  • Pennanen T, Frostegard A, Fritze H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil 244:41–53

    CAS  Google Scholar 

  • Persson T, Lundkvist H, Wiren A, Hyvonen R, Wessen B (1989) Effect of acidification and liming on carbon and nitrogen mineralization and soil organisms in mor humus. Water Air Soil Pollut 45:77–96

    CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vázquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65:3805–3809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Google Scholar 

  • Pinto LJ, Moore MM (2000) Release of polycyclic aromatic hydrocarbons from contaminated soils by surfactant and remediation of this effluent by Penicillium spp. Environ Toxicol Chem 19:1741–1748

    CAS  Google Scholar 

  • Plaza G, Lukasik W, Ulfig K (1998) Effect of cadmium on growth of potentially pathogenic soil fungi. Mycopathology 141:93–100

    CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  PubMed  Google Scholar 

  • Pozzoli L, Gilardoni S, Perrone MG, de Gennaro G, de Rienzo M, Vione D (2004) Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: Monitoring and sources. Annali di Chimica 94:17–32

    CAS  PubMed  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    PubMed  Google Scholar 

  • Prescott CE, Parkinson D (1985) Effects of sulphur pollution on rates of litter decomposition in a pine forest. Can J Bot 63:1436–1443

    CAS  Google Scholar 

  • Pumpel T, Paknikar KM (2001) Bioremediation technologies for metal-containing wastewaters using metabolically active microorganisms. Adv Appl Microbiol 48:135–169

    CAS  PubMed  Google Scholar 

  • Purvis OW (1996) Interactions of lichens with metals. Sci Prog 79:283–309

    CAS  Google Scholar 

  • Ramsay LM, Sayer JA, Gadd GM (1999) Stress responses of fungal colonies towards metals. In: Gow NAR, Robson GD, Gadd GM (eds) The fungal colony. Cambridge University Press, Cambridge, pp 178–200

    Google Scholar 

  • Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327

    CAS  Google Scholar 

  • Ravelet C, Grosset C, Krivobok S, Montuelle B, Alary J (2001) Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content. Appl Microbiol Biotechnol 56:803–808

    CAS  PubMed  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 52–78

    Google Scholar 

  • Rhee YJ, Hillier S, Gadd GM (2012) Lead transformation to pyromorphite by fungi. Curr Biol 22:237–241

    CAS  PubMed  Google Scholar 

  • Rhee YJ, Hillier S, Pendlowski H, Gadd GM (2014a) Pyromorphite formation in a fungal biofilm growing on lead metal. Environ Microbiol 16:1441–1451

    CAS  PubMed  Google Scholar 

  • Rhee YJ, Hillier S, Pendlowski H, Gadd GM (2014b) Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere 113:17–21

    CAS  PubMed  Google Scholar 

  • Rizzo DM, Blancchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70:1515–1520

    CAS  Google Scholar 

  • Roberts TM, Clarke TA, Ineson P, Gray TRG (1980) Effects of sulphur deposition on litter decomposition and nutrient leaching in coniferous forest soils. In: Hutchinson TC, Hava M (eds) Effects of acid precipitation on terrestrial ecosystems. Dekker, New York, NY, pp 381–393

    Google Scholar 

  • Romero MC, Salvioli ML, Cazau MC, Arambarri AM (2002) Pyrene degradation by yeasts and filamentous fungi. Environ Pollut 117:159–163

    CAS  PubMed  Google Scholar 

  • Rosen K, Zhong WL, Martensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of Cs-137 in leek and ryegrass. Sci Total Environ 338:283–290

    CAS  PubMed  Google Scholar 

  • Rufyikiri G, Huysmans L, Wannijn J, Van Hees M, Leyval C, Jakobsen I (2004) Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436

    CAS  PubMed  Google Scholar 

  • Ruhling A, Baath E, Nordgren A, Soderstrom B (1984) Fungi in metal contaminated soil near the Gusum brass mill, Sweden. Ambio 13:34–36

    Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    CAS  PubMed  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210:227–232

    CAS  PubMed  Google Scholar 

  • Sastad SM, Jensenn HB (1993) Interpretation of regional differences. I. The fungal biota as effects of atmospheric pollution. Mycol Res 12:1451–1458

    Google Scholar 

  • Sayer JA, Gadd GM (1997) Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661

    CAS  Google Scholar 

  • Sayer JA, Kierans M, Gadd GM (1997) Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate by Aspergillus niger. FEMS Microbiol Lett 154:29–35

    CAS  PubMed  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Shaw PJA, Dighton J, Poskitt J, McCleod AR (1992) The effects of sulphur dioxide and ozone on the mycorrhizas of Scots pine and Norway spruce in a field fumigation system. Mycol Res 96:785–791

    CAS  Google Scholar 

  • Singleton I (2001) Fungal remediation of soils contaminated with persistent organic pollutants. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 79–96

    Google Scholar 

  • Smith WH (1977) Influence of heavy metal leaf contaminants on the in vitro growth of urban-tree phylloplane fungi. Microb Ecol 3:231–239

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Smith ML, Taylor HW, Sharma HD (1993) Comparison of the post-Chernobyl 137Cs contamination of mushrooms from Eastern Europe, Sweden, and North America. Appl Environ Microbiol 59:134–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • States JS (1981) Useful criteria in the description of fungal communities. In: Wicklow DT, Carroll GC (eds) The fungal community. Dekker, New York, NY, pp 185–199

    Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69:3957–3964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    CAS  Google Scholar 

  • Stijve T, Porette M (1990) Radiocaesium levels in wild-growing mushrooms from various locations. Mushroom J (Summer 1990):5–9

    Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    CAS  PubMed  Google Scholar 

  • Straube WL, Jones-Meehan J, Pritchard PH, Jones WR (1999) Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Resour Conserv Recycling 27:27–37

    Google Scholar 

  • Sutherland JB (2004) Degradation of hydrocarbons by yeasts and filamentous fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, NY, pp 443–455

    Google Scholar 

  • Tabatabai M (1985) Effect of acid rain on soils. CRC Crit Rev Environ Control 15:65–109

    CAS  Google Scholar 

  • Tatsuyama K, Egawa H, Senmaru H, Yamamoto H, Ishioka S, Tamatsukuri T, Saito K (1975) Penicillium lilacinum: its tolerance to cadmium. Experientia 31:1037–1038

    CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. Springer, New York, NY, pp 261–309

    Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai S-L, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:1–9

    Google Scholar 

  • Tullio M, Pierandrei F, Salerno A, Rea E (2003) Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214

    CAS  Google Scholar 

  • Turnau K (1991) The influence of cadmium dust on fungi on a Pino-Quercetum forest. Ekol Polska 39:39–57

    CAS  Google Scholar 

  • Tyler G (1980) Metals in sporophores of basidiomycetes. Trans Br Mycol Soc 74:41–49

    CAS  Google Scholar 

  • Valls M, Atrian S, de Lorenzo V, Fernandez LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    CAS  PubMed  Google Scholar 

  • Veignie E, Rafin C, Woisel P, Cazier F (2004) Preliminary evidence of the role of hydrogen peroxide in the degradation of benzo[a]pyrene by a non-white rot fungus Fusarium solani. Environ Pollut 129:1–4

    CAS  PubMed  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Durand R (2004) Degradation of benzo[a]pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeter Biodegrad 53:65–70

    CAS  Google Scholar 

  • Verrecchia EP (2000) Fungi and sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 69–75

    Google Scholar 

  • Volante A, Lingua G, Cesaro P, Cresta A, Puppo M, Ariati L, Berta G (2005) Influence of three species of arbuscular mycorrhizal fungi on the persistence of aromatic hydrocarbons in contaminated substrates. Mycorrhiza 16:43–50

    CAS  PubMed  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wainwright M (1988a) Metabolic diversity of fungi in relation to growth and mineral cycling in soil – a review. Trans Br Mycol Soc 23:85–90

    Google Scholar 

  • Wainwright M (1988b) Effect of point source atmospheric pollution on fungal communities. Proc R Soc Edinb 94B:97–104

    Google Scholar 

  • Wainwright M (1992) Oligotrophic growth of fungi-stress or natural state? In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, NY, pp 127–144

    Google Scholar 

  • Wainwright M, Supharungsun S, Killham K (1982) Effects of acid rain on the solubility of heavy metal oxides and fluorspar added to soil. Sci Total Environ 23:85–90

    Google Scholar 

  • Wang HL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    CAS  PubMed  Google Scholar 

  • Wang HL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    PubMed  Google Scholar 

  • Wei Z, Hillier S, Gadd GM (2012) Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14:1744–1752

    CAS  PubMed  Google Scholar 

  • Wei Z, Liang X, Pendlowski H, Hillier S, Suntornvongsagul K, Sihanonth P, Gadd GM (2013) Fungal biotransformation of zinc silicate and sulfide mineral ores. Environ Microbiol 15:2173–2186

    CAS  PubMed  Google Scholar 

  • Wick LY, Remer R, Würz B, Reichenbach J, Braun S, Schäfer F, Harms H (2007) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41:500–505

    CAS  PubMed  Google Scholar 

  • Wick LY, Furuno S, Harms H (2010) Fungi as transport vectors for contaminants and contaminant-degrading bacteria. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1556–1561

    Google Scholar 

  • Wilkins DA (1991) The influence of sheathing (ecto-) mycorrhizas of trees on the uptake and toxicity of metals. Agric Ecosyst Environ 35:245–260

    CAS  Google Scholar 

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees – the role of mycorrhizae. Oikos 72:298–300

    Google Scholar 

  • Williams JI, Pugh GJF (1975) Resistance of Chrysosporium pannorum to an organomercury fungicide. Trans Br Mycol Soc 64:255–263

    Google Scholar 

  • Wondratschek I, Roder U (1993) Monitoring of heavy metals in soils by higher fungi. In: Markert B (ed) Plants as biomonitors. VCH Verlagsgesellschaft, Weinheim, pp 345–363

    Google Scholar 

  • Yamamoto H, Tatsuyama K, Uchiwa T (1985) Fungal flora of soil polluted with copper. Soil Biol Biochem 17:785–790

    CAS  Google Scholar 

  • Zhdanova NN, Redchitz TI, Vasilevskaya AI (1986) Species composition and sorption properties of Deuteromycetes in soils polluted by industrial wastewater. Mikrobiol Zhu (in Russian) 48:44–50

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges research support from the Biotechnology and Biological Sciences Research Council, the Natural Environment Research Council and the British Nuclear Fuels plc. G. M. Gadd also gratefully acknowledges an award under the 1000 Talents Plan with the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Gadd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gadd, G.M. (2016). 5 Fungi and Industrial Pollutants. In: Druzhinina, I., Kubicek, C. (eds) Environmental and Microbial Relationships. The Mycota, vol IV. Springer, Cham. https://doi.org/10.1007/978-3-319-29532-9_5

Download citation

Publish with us

Policies and ethics