Skip to main content

Intraocular Drug Delivery Technologies: Advancing Treatment of Posterior Segment Disorders of the Eye

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

Posterior segment ocular (vitreoretinal) disorders are the foremost contributors to visual impairment and, ultimately, blindness. This is placing an increasing demand on the pharmaceutical scientist to formulate effective ophthalmic drug delivery systems. Biophysiological blood–ocular barriers present a major challenge in achieving adequate bioactive bioavailability to the posterior segment, necessitating the search for pathways that can achieve access to the posterior ocular tissues for successful management of these disorders. Despite drug advances, the pharmacological management of these severe ocular pathologies is still a major hurdle, but a surmountable one. Research has been implicit in conveying that innovative polymeric drug delivery systems are essential for realizing a superlative pharmaceutical intervention, where effective bioactives are available for intraocular disease treatment. Increasingly innovative approaches are being investigated to address intraocular drug delivery challenges, each striving to achieve enhanced targeted bioactive delivery to the posterior ocular tissues. This chapter provides an overview of pertinent developments in the design of intraocular delivery systems; all of which are attempts at improving the treatment and/or management of posterior segment/vitreoretinal pathologies of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson JC (1993) Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 29–58

    Google Scholar 

  2. Henderer JD, Rapuano CJ (2011) Chapter 64. Ocular pharmacology. In: Chabner BA, Brunton LL, Knollman BC (eds). Goodman & Gilman’s the pharmacological basis of therapeutics, 12th edn. McGraw-Hill, New York. Retrieved from URL: http://www.accesspharmacy.com/content.aspx?aID = 16681771.

  3. du Toit LC, Govender T, Carmichael T et al (2013) Design of an anti-inflammatory composite nanosystem and evaluation of its potential for ocular drug delivery. J Pharm Sci 102:2780–2805

    Article  PubMed  CAS  Google Scholar 

  4. Nanjawade BK, Manvi FV, Manjappa AS (2007) In situ-forming hydrogels for sustained ophthalmic drug delivery. J Control Release 122:119–134

    Article  CAS  PubMed  Google Scholar 

  5. Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today 13:135–143

    Article  PubMed  CAS  Google Scholar 

  6. Herrero-Vanrell R, Refojo MF (2001) Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 52:5–16

    Article  CAS  PubMed  Google Scholar 

  7. Janoria KG, Gunda S, Boddu SH et al (2007) Novel approaches to retinal drug delivery. Expert Opin Drug Deliv 4:371–388

    Article  CAS  PubMed  Google Scholar 

  8. Yasukawa T, Ogura Y, Sakurai E et al (2005) Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Deliv Rev 57:2033–2046

    Article  CAS  PubMed  Google Scholar 

  9. Haesslein A, Ueda H, Hacker MC et al (2006) Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. J Control Release 114:251–260

    Article  CAS  PubMed  Google Scholar 

  10. de la Fuente M, Raviña M, Paolicelli P et al (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    Article  PubMed  CAS  Google Scholar 

  11. Roth DB, Chieh J, Spirn MJ et al (2003) Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol 121:1279–1282

    Article  PubMed  Google Scholar 

  12. Moshfeghi DM, Kaiser PK, Scott IU et al (2003) Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am J Ophthalmol 136:791–796

    Article  CAS  PubMed  Google Scholar 

  13. Jonas JB, Kreissig I, Degenring RF (2003) Intravitreal triamcinolone acetonide for pseudophakic cystoid macular edema. Am J Ophthalmol 136:384–386

    Article  CAS  PubMed  Google Scholar 

  14. Gillies MC, Simpson JM, Billson FA et al (2004) Safety of an intravitreal injection of triamcinolone. Arch Ophthalmol 122:336–340

    Article  CAS  PubMed  Google Scholar 

  15. Jonas JB, Hayler J, Sofker A et al (2001) Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative diabetic retinopathy. Am J Ophthalmol 131:468–471

    Article  CAS  PubMed  Google Scholar 

  16. Ashton P (2000) Sustained-release inserts help deliver intraocular drugs. (Brief article) (Column) Ophthalmol Times, May.

    Google Scholar 

  17. Allen HF, Mangiaracine AB (1964) Bacterial endophthalmitis after cataract extraction: a study of 22 infections in 20.000 operations. Arch Ophthalmol 72:454–462

    Article  CAS  PubMed  Google Scholar 

  18. Okada AA, Johnson RP, Liles CW et al (1994) Endogenous bacterial endophthalmitis: report of a ten-year retrospective study. Ophthalmology 101:832–838

    Article  CAS  PubMed  Google Scholar 

  19. Peyman GA, Ganiban GJ (1995) Delivery systems for intraocular routes. Adv Drug Deliv Rev 16:107–123

    Article  CAS  Google Scholar 

  20. Gaudana R, Krishna Ananthula H, Parenky A et al (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  CAS  PubMed  Google Scholar 

  22. Espana E, Chipont E, Sanchez S et al (1993) Collagen shields enhanced penetration of topical cyclosporine. Invest Ophthalmol Vis Sci 34(Suppl):1488

    Google Scholar 

  23. Kim JH, Kim KW, Kim MH et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20:505101

    Article  PubMed  CAS  Google Scholar 

  24. Singh SR, Grossniklaus HE, Kang SJ et al (2009) Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther 16:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki T, Uno T, Chen G et al (2008) Ocular distribution of intravenously administered micafungin in rabbits. J Infect Chemother 14:204–207

    Article  CAS  PubMed  Google Scholar 

  26. Regnier A, Schneider M, Concordet D et al (2008) Intraocular pharmacokinetics of intravenously administered marbofloxacin in rabbits with experimentally induced acute endophthalmitis. Am J Vet Res 69:410–515

    Article  CAS  PubMed  Google Scholar 

  27. Goldblum D, Rohrer K, Frueh BE et al (2002) Ocular distribution of intravenously administered lipid formulations of amphotericin B in a rabbit model. Antimicrob Agents Chemother 46:3719–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ananthula HK, Vaishya RD, Barot M et al (2009) Duane’s ophthalmology. In: Tasman W, Jaeger EA (eds) Bioavailability. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  29. Gipson IK, Argueso P (2003) Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol 231:1–49

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed I (2003) The noncorneal route in ocular drug delivery. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 335–363

    Chapter  Google Scholar 

  31. Barar J, Javadzadeh AR, Omidi Y (2008) Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 5:567–581

    Article  CAS  PubMed  Google Scholar 

  32. Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52(1):37–48

    Article  CAS  PubMed  Google Scholar 

  33. Kim SH, Lutz RJ, Wang NS et al (2007) Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 39:244–254

    Article  CAS  PubMed  Google Scholar 

  34. Kampougeris G, Antoniadou A, Kavouklis E et al (2005) Penetration of moxifloxacin into the human aqueous humour after oral administration. Br J Ophthalmol 89:628–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santulli RJ, Kinney WA, Ghosh S et al (2008) Studies with an orally bioavailable alpha V integrin antagonist in animal models of ocular vasculopathy: retinal neovascularization in mice and retinal vascular permeability in diabetic rats. J Pharmacol Exp Ther 324:894–901

    Article  CAS  PubMed  Google Scholar 

  36. Shirasaki Y, Miyashita H, Yamaguchi M (2006) Exploration of orally available calpain inhibitors. Part 3: Dipeptidyl alpha-ketoamide derivatives containing pyridine moiety. Bioorg Med Chem 14:5691–5698

    Article  CAS  PubMed  Google Scholar 

  37. Sakamoto H, Sakamoto M, Hata Y et al (2007) Aqueous and vitreous penetration of levofloxacin after topical and/or oral administration. Eur J Ophthalmol 17:372–376

    CAS  PubMed  Google Scholar 

  38. Coppens M, Versichelen L, Mortier E (2002) Treatment of postoperative pain after ophthalmic surgery. Bull Soc Belge Ophtalmol 285:27–32

    Google Scholar 

  39. Rajpal T, Srinivas A, Azad RV et al (2009) Evaluation of vitreous levels of gatifloxacin after systemic administration in inflamed and non-inflamed eyes. Acta Ophthalmol 87:648–652

    Article  CAS  PubMed  Google Scholar 

  40. Samtani S, Amaral J, Campos MM et al (2009) Doxycycline-mediated inhibition of choroidal neovascularization. Invest Ophthalmol Vis Sci 50:5098–5106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chong DY, Johnson MW, Huynh TH et al (2009) Vitreous penetration of orally administered famciclovir. Am J Ophthalmol 148:38–42

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi K, Saishin Y, King AG et al (2009) Suppression and regression of choroidal neovascularization by the multitargeted kinase inhibitor pazopanib. Arch Ophthalmol 127:494–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kokke KH, Morris JA, Lawrenson JG (2008) Oral omega-6 essential fatty acid treatment in contact lens associated dry eye. Cont Lens Anterior Eye 31:141–146

    Article  PubMed  Google Scholar 

  44. Clement DB, Tailor V (1987) A study of aqueous and serum levels of ceftazidime following subconjunctival administration. Br J Ophthalmol 71:433–435

    Article  Google Scholar 

  45. Axelrod J-L, Newton JC, Klein RM et al (1987) Penetration of imipenem into human aqueous and vitreous humor. Am J Ophthalmol 104:649–653

    Article  CAS  PubMed  Google Scholar 

  46. Sharir M, Triester G, Kneer J et al (1989) The intravitreal penetration of ceftriaxone in man following systemic administration. Invest Ophthalmol Vis Sci 30:2179–2183

    CAS  PubMed  Google Scholar 

  47. Hosseini K, Matsushima D, Johnson J et al (2008) Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther 24:301–308

    Article  CAS  PubMed  Google Scholar 

  48. Kim SH, Csaky KG, Wang NS et al (2008) Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm Res 25:512–520

    Article  CAS  PubMed  Google Scholar 

  49. Mitra AK, Anand BS, Duvvuri S (2006) Drug delivery to the eye. In: Fischbarg J (ed) The biology of the eye. Academic, New York, pp 307–351

    Google Scholar 

  50. Peeters L, Sanders NN, Braeckmans K et al (2005) Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 46:3553–3561

    Article  PubMed  Google Scholar 

  51. Pitkanen L, Ruponen M, Nieminen J et al (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20:576–583

    Article  PubMed  Google Scholar 

  52. Kim H, Robinson SB, Csaky KG (2009) Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 26:329–337

    Article  CAS  PubMed  Google Scholar 

  53. Von Sallmann L (1948) Controversial points in penicillin therapy for ocular diseases. Arch Ophthalmol 39:752–804

    Article  Google Scholar 

  54. Von Sallmann L, Meyer K, Di Grandi J (1944) Experimental study on penicillin treatment of ectogenous infection of vitreous. Arch Ophthalmol 32:179–189

    Article  Google Scholar 

  55. Lewis DH (1990) Controlled release of bioactive agents from lactide/glycolide polymers. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 1–41

    Google Scholar 

  56. Wood DA (1980) Biodegradable drug delivery systems. Int J Pharm 7:1–18

    Article  CAS  Google Scholar 

  57. Chowhan M, Weiner AL, Bhagat H (2002) Drug delivery-ophthalmic route. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York, pp 863–870

    Google Scholar 

  58. Davis JL, Gilger BC, Robinson MR (2004) Novel approaches to ocular drug delivery. Curr Opin Mol Ther 6:195–205

    CAS  PubMed  Google Scholar 

  59. Duvvuri S, Majumdar S, Mitra AK (2003) Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 3:45–56

    Article  CAS  PubMed  Google Scholar 

  60. Edlund U, Albertsson AC (2002) Degradable polymer microspheres for controlled drug delivery. In: Albertsson AC (ed) Advances in polymer science, vol 157. Springer, Berlin, pp 68–112

    Google Scholar 

  61. Ghate D, Edelhauser HF (2006) Ocular drug delivery. Expert Opin Drug Deliv 3:275–287

    Article  CAS  PubMed  Google Scholar 

  62. Heller J (2005) Ocular delivery using poly(orto esters). Adv Drug Deliv Rev 57:2053–2062

    Article  CAS  PubMed  Google Scholar 

  63. Hughes PM, Olejnik O, Chang TS et al (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032

    Article  CAS  PubMed  Google Scholar 

  64. Kumar MNVR (2000) Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3:234–258

    Google Scholar 

  65. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57:1595–1639

    Article  CAS  PubMed  Google Scholar 

  66. Stuart A (2010) The promise of implantable drug delivery systems. Eyenet 3:33–37

    Google Scholar 

  67. Thrimawithana TR, Young SA, Bunt CR et al (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–277

    Article  CAS  PubMed  Google Scholar 

  68. Weiner AL (1994) Polymeric drug delivery systems for the eye. In: Domb AJ (ed) Polymeric site specific pharmacotherapy. Wiley, New York, pp 316–346

    Google Scholar 

  69. Park H, Park K (1996) Biocompatibility issues of implantable drug delivery systems. Pharm Res 13:1770–1776

    Article  CAS  PubMed  Google Scholar 

  70. Zaheer S, Lehman J, Stevenson G (1982) Capsular contracture around silicone implants: the role of intraluminal antibiotics. Plast Reconstr Surg 69:809–812

    Article  Google Scholar 

  71. ClinicalTrials.gov(a). A study of MK0140 in diabetic patients with macular edema. Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT00692614?term=I-vation&rank=1. ClinicalTrials.gov updated this record on 29 January 2013.

  72. Ashton P (President and CEO of pSivida) (2014) http://www.theflyonthewall.com/permalinks/entry.php/PSDVid2010764/PSDV-pSivida-plans-to-seek-US-approval-for-Medidur-for-posterior-uveitis

  73. Kauper K, Ling V, Elliot S et al (2012) Long-term, sustained intraocular delivery of escalating doses of VEGF antagonist using encapsulated cell technology implant for the treatment of choroidal neovascular diseases. Presented at the Association for Research in Vision and Ophthalmology Annual Meeting, May 2012, Fort Lauderdaule, FL

    Google Scholar 

  74. ClinicalTrials.gov(b). Safety and efficacy of brimonidine intravitreal implant in patients with geographic atrophy due to age-related macular degeneration (AMD). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT00658619. ClinicalTrials.gov processed this record on 13 March 2013. Accessed 14 Feb 2013.

  75. pSivida.com. Products/Thethadur. Available at: http://psivida.com/products-biosilicon.html

  76. ClinicalTrials.gov(c). Efficacy and safety of betamethasone micropsheres in patients with diabetic macular edema (Tsubasa). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01411254?term=DE-102&rank=1. ClinicalTrials.gov processed this record on 13 March 2013.

  77. ClinicalTrials.gov(d). Efficacy and safety of betamethasone microspheres in patients with macular edema following branch retinal vein occlusion (HIKARI). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01512901?term=DE-102&rank=2. ClinicalTrials.gov processed this record on 29 July 2012.

  78. Lim JI, Fung AE, Wieland M, Hung D, Wong V (2011) Sustained-release intravitreal liquid drug delivery using triamcinolone acetonide for cystoid macular edema in retinal vein occlusion. Ophthalmology 118:1416–1422

    PubMed  PubMed Central  Google Scholar 

  79. Wong V, Wood, L (2006) Conveniently Implantable Sustained Release Drug Compositions. US Patent WO2006/039336, 6 April.

    Google Scholar 

  80. ClinicalTrials.gov(e). IBI 20089 + Lucentis combo intravitreal injections for treatment of neovascular age-related macular degeneration (AMD) (Icon Combo). Retrieved from URL: http://clinicaltrials.gov/ct2/show/NCT01175395?term=IBI20089&rank=1. ClinicalTrials.gov processed this record on 28 June 2012.

  81. ClinicalTrials.gov(f). Safety and tolerability of NOVA63035 “Corticosteroid” in patients with diabetic macular edema secondary to diabetic retinopathy. Available at: http://clinicaltrials.gov/ct2/show/NCT00665106?term=NOVA63035&rank=1. ClinicalTrials.gov processed this record on 15 July 2010.

  82. Kuppermann B (2009) Cortiject dexamethasone lipid emulsion for the treatment of diabetic macular edema: a pilot study. The 8th international symposium on ocular pharmacology and therapeutics: 33–31.

    Google Scholar 

  83. Novagali.com. Novagli Pharma. Eyeject. Retrieved from URL: http://www.novagali.com/en/our-research/eyeject/

  84. Kuno N, Fujii S (2012) Ocular drug delivery systems for the posterior segment: a review. Retina Today May/June:54–59.

    Google Scholar 

  85. Sultana Y, Jain R, Aqil M et al (2006) Review of ocular drug delivery. Curr Drug Deliv 3:207–217

    Article  CAS  PubMed  Google Scholar 

  86. Danckwerts MP, Fassihi A (1991) Implantable controlled release drug delivery systems: a review. Drug Dev Ind Pharm 17:1465–1502

    Article  CAS  Google Scholar 

  87. Corcoran S (2006) Drug delivery to the eye. Highlights in Chem Sci 9. Retrieved from URL: http://www.rsc.org/Publishing/ChemScience/Volume/2006/09/nanoparticles_in_the_eye.asp. Accessed 12 Mar 2008.

  88. Barbu E, Verestiuc L, Nevell TG et al (2006) Polymeric materials for ophthalmic drug delivery: trends and perspectives. J Mater Chem 16:3439–3443

    Article  CAS  Google Scholar 

  89. Choonara YE, Pillay V, Danckwerts MP et al (2010) A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 99:2219–2239

    Article  CAS  PubMed  Google Scholar 

  90. du Toit LC, Carmichael T, Govender T et al (2014) In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant. Pharm Res 31:607–634

    Article  PubMed  CAS  Google Scholar 

  91. du Toit LC, Pillay V, Choonara YE et al (2011) Ocular drug delivery – a look towards nanobioadhesives. Expert Opin Drug Deliv 8:71–94

    Article  PubMed  CAS  Google Scholar 

  92. Gilger BC, Malok GE, Stewart T et al (2000) Effect of an intravitreal cyclosporine implant on experimental uveitis in horses. Vet Immunol Immunopathol 76:239–255

    Article  CAS  PubMed  Google Scholar 

  93. Li PY, Shih J, Lo R et al (2008) An electrochemical intraocular drug delivery device. Sens Actuat A: Phys 143:41–48 (based on contributions revised from the Technical Digest of the IEEE 20th international conference on Micro Electro Mechanical Systems (MEMS 2007) — MEMS 2007)

    Google Scholar 

  94. Saait S, Lo R, Li P-Y et al (2009) Mini drug pump for ophthalmic use. Trans Am Ophthalmol Soc 107:60–70

    Google Scholar 

  95. Michelson JB, Nozik RA (1979) Experimental endophthalmitis treated with an implantable osmotic minipump. Arch Ophthalmol 97:1345–1346

    Article  CAS  PubMed  Google Scholar 

  96. Eliason JA, Maurice DM (1980) An ocular perfusion system. Invest Ophthalmol Vis Sci 19:102–105

    CAS  PubMed  Google Scholar 

  97. Miki K, Ohkuma H, Ryan SJ (1984) A method for chronic drug infusion into the eye. Jpn J Ophthalmol 28:140–146

    CAS  PubMed  Google Scholar 

  98. Avitabile T, Marano F, Castiglione F et al (2001) Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22:195–200

    Article  CAS  PubMed  Google Scholar 

  99. Kuppermann BD (2006) Implant delivery of corticosteroids and other pharmacologic agents. Presented at Retina 2006: Emerging new concepts. Held in conjunction with the American Academy of Ophthalmology 2006 Annual Meeting, 10–11 November, Las Vegas

    Google Scholar 

  100. Choonara YE, Pillay V, Carmichael T et al (2006) An in vitro study of the design and development of a novel doughnut-shaped minitablet for intraocular implantation. Int J Pharm 310:15–24

    Article  CAS  PubMed  Google Scholar 

  101. Choonara YE, Pillay V, Carmichael T et al (2007) Studies on a novel doughnut-shaped Minitablet for intraocular drug delivery. AAPS PharmSciTech 8, Article 118. DOI: 10.1208/pt0804118

    Google Scholar 

  102. Okabe K, Kimura H, Okabe J et al (2003) Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. Invest Ophthalmol Vis Sci 44:2702–2707

    Article  PubMed  Google Scholar 

  103. Kato A, Kimura H, Okabe K et al (2004) Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. Invest Ophthalm Vis Sci 45:238–244

    Article  Google Scholar 

  104. Pontes de Carvalho RA, Krausse ML, Murphree AL et al (2006) Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci 47:4532–4539

    Article  PubMed  Google Scholar 

  105. Kawashima T, Nagal N, Kaji H et al (2011) A scalable controlled-release device for transscleral drug delivery to the retina. Biomaterials 32:1950–1956

    Article  CAS  PubMed  Google Scholar 

  106. Thrimawithana TR, Young SA, Bunt CR et al (2011) In-vitro and in-vivo evaluation of carrageenan/methylcellulose polymeric systems for transscleral delivery of macromolecules. Eur J Pharm Sci 44:399–409

    Article  CAS  PubMed  Google Scholar 

  107. Molokhia SA, Sant H, Simonis J et al (2010) The capsule drug device: novel approach for drug delivery to the eye. Vis Res 50:680–685

    Article  CAS  PubMed  Google Scholar 

  108. Csaky KG (2007) New developments In the transscleral delivery of ophthalmic agents. The profile of the drug being delivered is as important as the delivery method. Retina Today 3:32–33

    Google Scholar 

  109. Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110:479–489

    Article  CAS  PubMed  Google Scholar 

  110. Karla PK, Ako-Adounvo A-M (2012) Advances in ocular iontophoresis research. Recent Pat Nanomed 2:126–132

    Article  CAS  Google Scholar 

  111. Hastings MS, Li SK, Miller DJ et al (2004) Visulex: advancing iontophoresis for effective non-invasive back-to-the-eye therapeutics. J Drug Deliv Technol 4:53–57

    CAS  Google Scholar 

  112. Haesslein A, Hacker MC, Ueda H et al (2009) Matrix modifications modulate ophthalmic drug delivery from photo-cross-linked poly(propylene fumarate)-based networks. J Biomat Sci 20:49–69

    Article  CAS  Google Scholar 

  113. Saliba JB, Gomes Faraco AA, Yoshida MI et al (2008) Development and characterization of an intraocular biodegradable polymer system containing cyclosporine A for the treatment of posterior uveitis. Mater Res 11:207–211

    Article  CAS  Google Scholar 

  114. Allergan Inc. EP1750688 (2007) Steroid intraocular implants having an extended sustained release for a period of greater than 2 months (patent filed). Retrieved from URL: https://register.epo.org/espacenet/application?number=EP05744945. Accessed 5 Mar 2008.

  115. Hilt JZ, Peppas NA (2005) Microfabricated drug delivery devices. Int J Pharm 306:15–23

    Article  CAS  PubMed  Google Scholar 

  116. Bawa R (2004) Nanotechnology patents and challenges, ipFrontline.com.

    Google Scholar 

  117. Bucolo C, Maltese A, Drago F (2008) When nanotechnology meets the ocular surface. Expert Rev Ophthalmol 3:325–332

    Article  CAS  Google Scholar 

  118. Badawi AA, El-Laithy HM, El Qidra RK et al (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31:1040–1049

    Article  CAS  PubMed  Google Scholar 

  119. Bourges J-L, Gautier SE, Delie F et al (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  PubMed  Google Scholar 

  120. De Campos AM, Diebold Y, Carvalho EL et al (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21:803–810

    Article  PubMed  Google Scholar 

  121. De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224:159–168

    Article  PubMed  Google Scholar 

  122. de la Fuente M, Csaba N, Garcia-Fuentes M et al (2008) Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine 3:845–857

    Article  PubMed  CAS  Google Scholar 

  123. Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6:3–5

    Article  CAS  PubMed  Google Scholar 

  124. Sanchez A, Alonso MJ (2006) Nanoparticular carriers for ocular drug delivery. In: Torchilin VP (ed) Nanoparticulates as drug carriers. Imperial College Press, London, pp 649–673

    Chapter  Google Scholar 

  125. Mainardes RM, Urban MC, Cinto PO et al (2005) Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets 6:363–371

    Article  CAS  PubMed  Google Scholar 

  126. Nagarwal RC, Kant S, Singh PN et al (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13

    Article  CAS  PubMed  Google Scholar 

  127. Araújo J, Vega E, Lopes C et al (2009) Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces 72:48–56

    Article  PubMed  CAS  Google Scholar 

  128. Bloquel C, Bourges JL, Touchard E et al (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Deliv Rev 58:1224–1242

    Article  CAS  PubMed  Google Scholar 

  129. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649

    Article  CAS  PubMed  Google Scholar 

  130. Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    Article  CAS  PubMed  Google Scholar 

  131. Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  132. Vasir JK, Reddy MK, Labhasetwar V (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64

    Article  CAS  Google Scholar 

  133. Carafa M, Santucci E, Alhaique F et al (1998) Preparation and properties of new unilamellar non-ionic surfactant vesicles. Int J Pharm 160:51–59

    Article  CAS  Google Scholar 

  134. Svenson S, Tomalia D (2005) Dendrimers in biomedical applications – reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  CAS  PubMed  Google Scholar 

  135. Gaudana R, Jwala J, Boddu SHS et al (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    Article  CAS  PubMed  Google Scholar 

  136. Diebold Y, Calonge M (2010) Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 29:596–609

    Article  CAS  PubMed  Google Scholar 

  137. Kaur IP, Aggarwal D, Singh H et al (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472

    Article  CAS  PubMed  Google Scholar 

  138. Amrite AC, Edelhauser HF, Singh SR et al (2008) Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 14:150–160

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cheruvu NP, Amrite AC, Kompella UB (2008) Effect of eye pigmentation on transscleral drug delivery. Invest Ophthalmol Vis Sci 49:333–341

    Article  PubMed  PubMed Central  Google Scholar 

  140. Cheruvu NP, Amrite AC, Kompella UB (2009) Effect of diabetes on transscleral delivery of celecoxib. Pharm Res 26:404–414

    Article  CAS  PubMed  Google Scholar 

  141. Peeters L, Lentacker I, Vandenbroucke RE et al (2008) Can ultrasound solve the transport barrier of the neural retina? Pharm Res 25:2657–2665

    Article  CAS  PubMed  Google Scholar 

  142. Calvo P, Remuñán-López C, Vila-Jato JL et al (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  143. Calvo P, Vila-Jato JL, Alonso MJ (1997) Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm 153:41–50

    Article  CAS  Google Scholar 

  144. Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1(8):328–335

    Article  CAS  Google Scholar 

  145. Lang JC (1995) Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 16:39–43

    Article  CAS  Google Scholar 

  146. Meadows DL, Paugh JR, Joshi A et al (2002) A novel method to evaluate residence time in humans using a nonpenetrating fluorescent tracer. Invest Ophthalmol Vis Sci 43:1032–1039

    PubMed  Google Scholar 

  147. Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 16:61–73

    Article  CAS  Google Scholar 

  148. Dobrovolskaia MA, Aggarwal P, Hall JB et al (2008) Preclinical studies to understand nanoparticles interaction with the immune system and its potential effects on nanoparticles biodistribution. Mol Pharmacol 5:487–495

    Article  CAS  Google Scholar 

  149. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    Article  CAS  PubMed  Google Scholar 

  150. Aggarwal P, Hall JB, McLeland CB et al (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  152. Couvreur P, Tulkenst P, Roland M et al (1977) Nanocapsules: a new type of lysosomotropic carrier. FEBS Lett 84:323–326

    Article  CAS  PubMed  Google Scholar 

  153. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Frenkel V (2008) Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 30:1193–1208

    Article  CAS  Google Scholar 

  155. Hillaireau H, Couvreur C (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    Article  CAS  PubMed  Google Scholar 

  156. Harush-Frenkel O, Altschuler Y, Benita S (2008) Nanoparticle-cell interactions: drug delivery implications. Crit Rev Ther Drug Carrier Syst 25:485–544

    Article  CAS  PubMed  Google Scholar 

  157. Soppimath KS, Aminabhavi TM, Kulkarni AR et al (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  158. Saishin Y, Silva RL, Saishin Y et al (2003) Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci 44:4989–4993

    Article  PubMed  Google Scholar 

  159. Barcia E, Herrero-Vanrell R, Díez A et al (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89:238–245

    Article  CAS  PubMed  Google Scholar 

  160. Merodio M, Arnedo A, Renedo MJ et al (2001) Ganciclovir-loaded nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12:251–259

    Article  CAS  PubMed  Google Scholar 

  161. Merodio M, Espuelas MS, Mirshahi M et al (2002) Efficacy of ganciclovir-loaded nanoparticles in human cytomegalovirus (HCMV)-infected cells. J Drug Target 10:231–238

    Article  CAS  PubMed  Google Scholar 

  162. Merodio M, Irache JM, Valamanesh F et al (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594

    Article  CAS  PubMed  Google Scholar 

  163. Irache JM, Merodio M, Arnedo A et al (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5:293–305

    Article  CAS  PubMed  Google Scholar 

  164. Bejjani RA, BenEzra D, Cohen H et al (2005) Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis 11:124–132

    CAS  PubMed  Google Scholar 

  165. Normand N, Valamanesh F, Savoldelli M et al (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11:184–191

    CAS  PubMed  Google Scholar 

  166. Conley SM, Naash MI (2010) Nanoparticles for retinal gene therapy. Prog Retin Eye Res 29(5):376–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. de Kozak Y, Andrieux K, Villarroya H et al (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712

    Article  PubMed  CAS  Google Scholar 

  168. El-Samaligy MS, Rojanasakul Y, Charlton JF et al (1996) Ocular disposition of nanoencapsulated acyclovir and ganciclovir via intravitreal injection in rabbit’s eye. Drug Deliv 3:93–97

    Article  CAS  Google Scholar 

  169. Christoforidis JB, Chang S, Jiang A et al (2012) Intravitreal devices for the treatment of vitreous inflammation. Mediators of Inflammation 2012 (ID 126463):8 pages.

    Google Scholar 

  170. Kadam RS, Tyagi P, Edelhauser HF et al (2012) Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide. Int J Pharm 434:140–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Panda JJ, Yandrapu S, Kadam RS et al (2013) Self-assembled phenylalanine-α, β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor. J Control Release 172:1151–1160

    Article  CAS  PubMed  Google Scholar 

  172. Gan L, Wang J, Liu J et al (2013) HA-modified core–shell liponanoparticles for efficient intravitreal drug delivery. J Control Release 172:e48

    Article  CAS  Google Scholar 

  173. Camelo S, Lajavardi L, Bochot A et al (2009) Protective effect of intravitreal injection of vasoactive intestinal peptide-loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther 25:9–21

    Article  CAS  PubMed  Google Scholar 

  174. Lajavardi L, Bochot A, Camelo S et al (2007) Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal peptide encapsulated in liposomes. Invest Ophthalmol Vis Sci 48:3230–3238

    Article  PubMed  Google Scholar 

  175. Ulbrich W, Lamprecht A (2010) Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface 7(Suppl 1):S55–S66

    Article  CAS  PubMed  Google Scholar 

  176. Lajavardi L, Camelo S, Agnely F et al (2009) New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 139:22–30

    Article  CAS  PubMed  Google Scholar 

  177. Haghjou N, Soheilian M, Abdekhodaie MJ (2011) Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalm Vis Res 6:317–329

    CAS  Google Scholar 

  178. Ryu M, Nakazawa T, Akagi T et al (2011) Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. J Control Release 151:65–73

    Article  CAS  PubMed  Google Scholar 

  179. Sakai T, Kohno H, Ishihara T et al (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res 82:657–663

    Article  CAS  PubMed  Google Scholar 

  180. Hashida N, Ohguro N, Yamazaki N et al (2008) High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp Eye Res 86:138–149

    Article  CAS  PubMed  Google Scholar 

  181. McEver RP (1992) Leukocyte-endothelial cell interactions. Curr Opin Cell Biol 4:840–849

    Article  CAS  PubMed  Google Scholar 

  182. Foxall C, Watson SR, Dowbenko D et al (1992) The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis (x) oligosaccharide. J Cell Biol 117:895–902

    Article  CAS  PubMed  Google Scholar 

  183. Polley MJ, Phillips ML, Wayner E et al (1991) CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis X. Proc Natl Acad Sci U S A 88:6224–6228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Zeimer R, Goldberg MF (2001) Novel ophthalmic therapeutic modalities based on noninvasive light-targeted drug delivery to the posterior pole of the eye. Adv Drug Deliv Rev 52:49–61

    Article  CAS  PubMed  Google Scholar 

  185. Ideta R, Tasaka F, Jang W-D et al (2005) Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett 5:2426–2431

    Article  CAS  PubMed  Google Scholar 

  186. Paasonen L, Laaksonen T, Johans C et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release 11:86–93

    Article  CAS  Google Scholar 

  187. Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient nonviral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1(1):e38.

    Google Scholar 

  188. Edelhauser HF, Rowe-Rendleman CL, Robinson MR et al (2010) Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci 51(11):5403–5420

    Article  PubMed  PubMed Central  Google Scholar 

  189. Jiang J, Moore JS, Edelhauser HF (2009) Intrascleral drug delivery to the eye using hollow microneedles. Pharm Res 26:395–403

    Article  CAS  PubMed  Google Scholar 

  190. Sustained release ocular drug delivery systems market, 2014–2024. Press Release, 15 May 2014. http://www.prnewswire.com/news-releases/sustained-release-ocular-drug-delivery-systems-market-2014-2024-259368521.html

  191. Pasadhika S, Suhler EB, Cunningham ET (2010) Use of biologic agents in the treatment of uveitis: these potent new agents may help some patients who are refractory to more traditional immunosuppressive therapies. Rev Ophthalmol 10(1). http://www.reviewofophthalmology.com/content/d/retinal_insider/i/1208/c/22770/

  192. Kraus CL, Culican SM (2012) Use of biologic agents in ocular manifestations of rheumatic disease. Int J Rheumatol 2012(Article ID 203819):6 pages.

    Google Scholar 

  193. Bushell-Embling (2014) pSivida implant provides sustained antibody release. Medical devices, 08 May 2014. http://lifescientist.com.au/content/biotechnology/news/psivida-implant-provides-sustained-antibody-release-28600494#sthash.Rv8YjuQq.dpuf

  194. Ullrich F, Bergeles C, Pokki J et al (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54:2853–2863

    Article  PubMed  Google Scholar 

  195. Helzner J (ed) (2010) Sustained-release drugs: heralds of the future. 3 January 2010. http://www.ophthalmologymanagement.com/articleviewer.aspx?articleid=104070

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pillay, V., Choonara, Y.E., du Toit, L.C. (2016). Intraocular Drug Delivery Technologies: Advancing Treatment of Posterior Segment Disorders of the Eye. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_18

Download citation

Publish with us

Policies and ethics