Skip to main content

Grapes and Cancer

  • Chapter
  • First Online:
Grapes and Health

Abstract

Grape consumption has been linked to beneficial effects in the prevention or treatment of various different cancers in laboratory animals and humans. Several phytochemicals in the skin and seeds of grapes have been implicated in having anticancer activity including resveratrol, quercetin, and proanthocyanidins, among others. These components promote tumor cell apoptosis, have antiproliferative effects through cell cycle arrest, disrupt intracellular signaling including Wnt and PI3K/AKT pathways, suppress inflammatory responses, and display anti-angiogenic activity. The best studied individual component of grapes with anticancer properties is resveratrol which can inhibit intestinal tumorigenesis, hepatocellular cancer, and skin cancer in rodent models. Only a handful of human studies have been performed with resveratrol, but these have demonstrated activity on key proliferative pathways in target organs despite questions about bioavailability and attainable serum concentrations of specific grape-derived phytochemicals. Overall, based on epidemiologic evidence, laboratory studies in vitro and in model organisms, and direct human studies, grapes or specific components of grapes hold promise for both cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhami VM, Afaq F, Ahmad N (2003) Suppression of ultraviolet B exposure-mediated activation of NF-kappaB in normal human keratinocytes by resveratrol. Neoplasia 5:74–82

    Article  CAS  Google Scholar 

  • Afaq F, Adhami VM, Ahmad N (2003) Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol Appl Pharmacol 186:28–37

    Article  CAS  Google Scholar 

  • Agarwal C, Singh RP, Agarwal R (2002) Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis 23:1869–1876

    Article  CAS  Google Scholar 

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    Article  CAS  Google Scholar 

  • Aggarwal BB et al (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    CAS  Google Scholar 

  • Aghbali A et al (2013) Induction of apoptosis by grape seed extract (Vitis vinifera) in oral squamous cell carcinoma. Bosn J Basic Med Sci 13:186–191

    Google Scholar 

  • Ahmad N et al (2001) Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 7:1466–1473

    CAS  Google Scholar 

  • Alfaras I, Juan ME, Planas JM (2010) trans-Resveratrol reduces precancerous colonic lesions in dimethylhydrazine-treated rats. J Agric Food Chem 58:8104–8110

    Article  CAS  Google Scholar 

  • Alkhalaf M (2007) Resveratrol-induced growth inhibition in MDA-MB-231 breast cancer cells is associated with mitogen-activated protein kinase signaling and protein translation. Eur J Cancer Prev 16:334–341

    Article  CAS  Google Scholar 

  • Alosi JA et al (2010) Pterostilbene inhibits breast cancer in vitro through mitochondrial depolarization and induction of caspase-dependent apoptosis. J Surg Res 161:195–201

    Article  CAS  Google Scholar 

  • Aluyen JK et al (2012) Resveratrol: potential as anticancer agent. J Diet Suppl 9:45–56

    Article  CAS  Google Scholar 

  • Arimoto-Kobayashi S et al (2013) Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis. Nutr Cancer 65:440–450

    Article  CAS  Google Scholar 

  • Asgari MM et al (2011) Supplement use and risk of cutaneous squamous cell carcinoma. J Am Acad Dermatol 65:1145–1151

    Article  Google Scholar 

  • Asou H et al (2002) Resveratrol, a natural product derived from grapes, is a new inducer of differentiation in human myeloid leukemias. Int J Hematol 75:528–533

    Article  CAS  Google Scholar 

  • Atten MJ et al (2001) Resveratrol-induced inactivation of human gastric adenocarcinoma cells through a protein kinase C-mediated mechanism. Biochem Pharmacol 62:1423–1432

    Article  CAS  Google Scholar 

  • Aziz MH, Afaq F, Ahmad N (2005) Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem Photobiol 81:25–31

    Article  CAS  Google Scholar 

  • Bak MJ, Jun M, Jeong WS (2012) Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells. Int J Mol Sci 13:801–818

    Article  CAS  Google Scholar 

  • Banerjee S, Bueso-Ramos C, Aggarwal BB (2002) Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62:4945–4954

    CAS  Google Scholar 

  • Baron-Menguy C et al (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21:3511–3521

    Article  CAS  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  Google Scholar 

  • Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  Google Scholar 

  • Bhardwaj A et al (2007) Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 109:2293–2302

    Article  CAS  Google Scholar 

  • Bhat KP et al (2001) Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 61:7456–7463

    CAS  Google Scholar 

  • Bishayee A (2009) Cancer prevention and treatment with resveratrol: from rodent studies to clinical trials. Cancer Prev Res (Phila) 2:409–418

    Article  CAS  Google Scholar 

  • Boocock DJ et al (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev 16:1246–1252

    Article  CAS  Google Scholar 

  • Borriello A et al (2014) Resveratrol: from basic studies to bedside. Cancer Treat Res 159:167–184

    Article  CAS  Google Scholar 

  • Bowers JL et al (2000) Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta. Endocrinology 141:3657–3667

    CAS  Google Scholar 

  • Brito PM et al (2009) Resveratrol inhibits the mTOR mitogenic signaling evoked by oxidized LDL in smooth muscle cells. Atherosclerosis 205:126–134

    Article  CAS  Google Scholar 

  • Brown VA et al (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70:9003–9011

    Article  CAS  Google Scholar 

  • Burton-Freeman B, Sesso HD (2014) Whole food versus supplement: comparing the clinical evidence of tomato intake and lycopene supplementation on cardiovascular risk factors. Adv Nutr 5:457–485

    Article  CAS  Google Scholar 

  • Cao Y et al (2005) Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. J Asian Nat Prod Res 7:205–213

    Article  CAS  Google Scholar 

  • Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21:R209–R225

    Article  CAS  Google Scholar 

  • Castello L, Tessitore L (2005) Resveratrol inhibits cell cycle progression in U937 cells. Oncol Rep 13:133–137

    CAS  Google Scholar 

  • Castillo-Pichardo L, Dharmawardhane SF (2012) Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 64:1058–1069

    Article  CAS  Google Scholar 

  • Castillo-Pichardo L, Cubano LA, Dharmawardhane S (2013) Dietary grape polyphenol resveratrol increases mammary tumor growth and metastasis in immunocompromised mice. BMC Complement Altern Med 13:6

    Article  CAS  Google Scholar 

  • Cedo L et al (2014) Gallic acid is an active component for the anticarcinogenic action of grape seed procyanidins in pancreatic cancer cells. Nutr Cancer 66:88–96

    Article  CAS  Google Scholar 

  • Chatterjee M et al (2011) Role of 5-lipoxygenase in resveratrol mediated suppression of 7,12-dimethylbenz(alpha)anthracene-induced mammary carcinogenesis in rats. Eur J Pharmacol 668:99–106

    Article  CAS  Google Scholar 

  • Chen JC et al (2006) Resveratrol suppresses angiogenesis in gliomas: evaluation by color Doppler ultrasound. Anticancer Res 26:1237–1245

    CAS  Google Scholar 

  • Chen HJ et al (2012) The beta-catenin/TCF complex as a novel target of resveratrol in the Wnt/beta-catenin signaling pathway. Biochem Pharmacol 84:1143–1153

    Article  CAS  Google Scholar 

  • Chen Y et al (2014) Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis 5:e1047

    Article  CAS  Google Scholar 

  • Choi HY, Chong SA, Nam MJ (2009) Resveratrol induces apoptosis in human SK-HEP-1 hepatic cancer cells. Cancer Genomics Proteomics 6:263–268

    CAS  Google Scholar 

  • Chow HH et al (2010) Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila) 3:1168–1175

    Article  CAS  Google Scholar 

  • Clement MV et al (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92:996–1002

    CAS  Google Scholar 

  • Delmas D et al (2002) Resveratrol, a chemopreventive agent, disrupts the cell cycle control of human SW480 colorectal tumor cells. Int J Mol Med 10:193–199

    CAS  Google Scholar 

  • Dhanalakshmi S, Agarwal R, Agarwal C (2003) Inhibition of NF-kappaB pathway in grape seed extract-induced apoptotic death of human prostate carcinoma DU145 cells. Int J Oncol 23:721–727

    CAS  Google Scholar 

  • Dhar S et al (2015) Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer. Biochim Biophys Acta 1853:265–275

    Article  CAS  Google Scholar 

  • Dinicola S et al (2010) Apoptosis-inducing factor and caspase-dependent apoptotic pathways triggered by different grape seed extracts on human colon cancer cell line Caco-2. Br J Nutr 104:824–832

    Article  CAS  Google Scholar 

  • Dinicola S et al (2012) Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines. Int J Mol Sci 13:651–664

    Article  CAS  Google Scholar 

  • Engelbrecht AM et al (2007) Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett 258:144–153

    Article  CAS  Google Scholar 

  • Feng LL et al (2014) Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models. Asian Pac J Cancer Prev 15:737–741

    Article  Google Scholar 

  • Garvin S, Ollinger K, Dabrosin C (2006) Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer Lett 231:113–122

    Article  CAS  Google Scholar 

  • Gescher AJ (2008) Resveratrol from red grapes—pedestrian polyphenol or useful anticancer agent? Planta Med 74:1651–1655

    Article  CAS  Google Scholar 

  • Gescher AJ, Steward WP (2003) Relationship between mechanisms, bioavailability, and preclinical chemopreventive efficacy of resveratrol: a conundrum. Cancer Epidemiol Biomarkers Prev 12:953–957

    CAS  Google Scholar 

  • Gescher A, Steward WP, Brown K (2013) Resveratrol in the management of human cancer: how strong is the clinical evidence? Ann NY Acad Sci 1290:12–20

    Article  CAS  Google Scholar 

  • Gignac EA, Bourquin LD (2001) Influence of resveratrol and sulindac on intestinal tumor numbers in min mice. FASEB J 15:A630

    Google Scholar 

  • Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653:1–24

    CAS  Google Scholar 

  • Glade MJ (1999) Food, nutrition, and the prevention of cancer: a global perspective. American Institute for Cancer Research/World Cancer Research Fund, American Institute for Cancer Research, 1997. Nutrition 15:523–526

    Article  CAS  Google Scholar 

  • Goldberg DM et al (1995) The assay of resveratrol and its distribution in human blood. Clin Chem 41:S115

    Google Scholar 

  • Gullett NP et al (2010) Cancer prevention with natural compounds. Semin Oncol 37:258–281

    Article  CAS  Google Scholar 

  • Ha do T et al (2009) Antioxidant and lipoxygenase inhibitory activity of oligostilbenes from the leaf and stem of Vitis amurensis. J Ethnopharmacol 125:304–309

    Article  CAS  Google Scholar 

  • Harikumar KB et al (2010) Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 127:257–268

    CAS  Google Scholar 

  • Harper CE et al (2007) Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis 28:1946–1953

    Article  CAS  Google Scholar 

  • Hayashibara T et al (2002) Resveratrol induces downregulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer 44:193–201

    Article  Google Scholar 

  • Holcombe RF et al (2014) Expression of proliferation markers in colonic mucosa in normal volunteers with a high arginine-containing diet and effect of dietary grape ingestion. J Clin Oncol 32

    Google Scholar 

  • Holcombe RF, Martinez M, Planutis K, Planutiene M (2015) Effects of grape-supplemented diet on markers of proliferation and Wnt signaling in colonic mucosa: Implications for colon cancer prevention are greatest for individuals over age 50 and individuals with high consumption of dietary arginine. Nutr J 14:62. doi:10.1186/s12937-015-0050-z

    Article  CAS  Google Scholar 

  • Holmes-McNary M, Baldwin AS Jr (2000) Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res 60:3477–3483

    CAS  Google Scholar 

  • Hope C et al (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 52:S52–S61

    Google Scholar 

  • Howells LM et al (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases–safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila) 4:1419–1425

    Article  CAS  Google Scholar 

  • Hu H, Qin YM (2006) Grape seed proanthocyanidin extract induced mitochondria-associated apoptosis in human acute myeloid leukaemia 14.3D10 cells. Chin Med J (Engl) 119:417–421

    CAS  Google Scholar 

  • Huang C et al (1999) Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20:237–242

    Article  CAS  Google Scholar 

  • Jing Y et al (2011) Identification of components of grape powder with anti-apoptotic effects. Toxicol Ind Health 27:19–28

    Article  CAS  Google Scholar 

  • Juan ME et al (2008) Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J Agric Food Chem 56:4813–4818

    Article  CAS  Google Scholar 

  • Kapadia GJ et al (2002) Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 45:499–505

    Article  CAS  Google Scholar 

  • Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759

    Article  CAS  Google Scholar 

  • Katiyar SK (2006) Matrix metalloproteinases in cancer metastasis: molecular targets for prostate cancer prevention by green tea polyphenols and grape seed proanthocyanidins. Endocr Metab Immune Disord Drug Targets 6:17–24

    Article  CAS  Google Scholar 

  • Kaur M et al (2008) Grape seed extract induces cell cycle arrest and apoptosis in human colon carcinoma cells. Nutr Cancer 60:2–11

    Article  Google Scholar 

  • Kelly G (2010a) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 15:245–263

    Google Scholar 

  • Kelly GS (2010b) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2. Altern Med Rev 15:313–328

    Google Scholar 

  • Kijima I et al (2006) Grape seed extract is an aromatase inhibitor and a suppressor of aromatase expression. Cancer Res 66:5960–5967

    Article  CAS  Google Scholar 

  • Kim AL et al (2006) Resveratrol inhibits proliferation of human epidermoid carcinoma A431 cells by modulating MEK1 and AP-1 signalling pathways. Exp Dermatol 15:538–546

    Article  CAS  Google Scholar 

  • Kim EJ et al (2009) The grape component piceatannol induces apoptosis in DU145 human prostate cancer cells via the activation of extrinsic and intrinsic pathways. J Med Food 12:943–951

    Article  CAS  Google Scholar 

  • Kimura Y, Okuda H (2001) Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J Nutr 131:1844–1849

    CAS  Google Scholar 

  • Kimura Y, Okuda H, Arichi S (1985) Effects of stilbenes on arachidonate metabolism in leukocytes. Biochim Biophys Acta 834:275–278

    Article  CAS  Google Scholar 

  • Kita Y, Miura Y, Yagasaki K (2012) Antiproliferative and anti-invasive effect of piceatannol, a polyphenol present in grapes and wine, against hepatoma AH109A cells. J Biomed Biotechnol 2012:672416

    Article  CAS  Google Scholar 

  • Kundu JK, Shin YK, Surh YJ (2006a) Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets. Biochem Pharmacol 72:1506–1515

    Article  CAS  Google Scholar 

  • Kundu JK et al (2006b) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 27:1465–1474

    Article  CAS  Google Scholar 

  • Larrosa M, Tomas-Barberan FA, Espin JC (2003) Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J Agric Food Chem 51:4576–4584

    Article  CAS  Google Scholar 

  • Lee MH et al (2014) Resveratrol inhibits IL-6-induced transcriptional activity of AR and STAT3 in human prostate cancer LNCaP-FGC cells. Biomol Ther (Seoul) 22:426–430

    Article  CAS  Google Scholar 

  • Leone S et al (2010) Resveratrol induces DNA double-strand breaks through human topoisomerase II interaction. Cancer Lett 295:167–172

    Article  CAS  Google Scholar 

  • Levi F et al (2005) Resveratrol and breast cancer risk. Eur J Cancer Prev 14:139–142

    Article  CAS  Google Scholar 

  • Li W et al (2013) Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-kappaB pathway. Curr Med Chem 20:4185–4194

    Article  CAS  Google Scholar 

  • Lin HC et al (2012) Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model. Cancer Prev Res (Phila) 5:952–962

    Article  CAS  Google Scholar 

  • Liu M et al (2010) Antiangiogenetic effects of 4 varieties of grapes in vitro. J Food Sci 75:T99–T104

    Article  CAS  Google Scholar 

  • Lu J et al (2009) Grape seed extract inhibits VEGF expression via reducing HIF-1alpha protein expression. Carcinogenesis 30:636–644

    Article  CAS  Google Scholar 

  • Luther DJ et al (2011) Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Invest New Drugs 29:380–391

    Article  CAS  Google Scholar 

  • Mahyar-Roemer M, Kohler H, Roemer K (2002) Role of Bax in resveratrol-induced apoptosis of colorectal carcinoma cells. BMC Cancer 2:27

    Article  Google Scholar 

  • Majumdar AP et al (2009) Curcumin synergizes with resveratrol to inhibit colon cancer. Nutr Cancer 61:544–553

    Article  CAS  Google Scholar 

  • Mannal PW et al (2010) Pterostilbene inhibits pancreatic cancer in vitro. J Gastrointest Surg 14:873–879

    Article  Google Scholar 

  • Mantena SK, Baliga MS, Katiyar SK (2006) Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis 27:1682–1691

    Article  CAS  Google Scholar 

  • Martinez M et al (2010) Dietary grape-derived resveratrol for colon cancer prevention. J Clin Oncol 28:614–620

    Google Scholar 

  • Mertens-Talcott SU et al (2006) Induction of cell death in Caco-2 human colon carcinoma cells by ellagic acid rich fractions from muscadine grapes (Vitis rotundifolia). J Agric Food Chem 54:5336–5343

    Article  CAS  Google Scholar 

  • Miksits M et al (2009) Antitumor activity of resveratrol and its sulfated metabolites against human breast cancer cells. Planta Med 75:1227–1230

    Article  CAS  Google Scholar 

  • Mohan J et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611

    Article  CAS  Google Scholar 

  • Morre DM, Morre DJ (2006) Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions. Cancer Lett 238:202–209

    Article  CAS  Google Scholar 

  • Mousa SS, Mousa SA (2005) Effect of resveratrol on angiogenesis and platelet/fibrin-accelerated tumor growth in the chick chorioallantoic membrane model. Nutr Cancer 52:59–65

    Article  CAS  Google Scholar 

  • Nguyen AV et al (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    CAS  Google Scholar 

  • Nomoto H et al (2004) Chemoprevention of colorectal cancer by grape seed proanthocyanidin is accompanied by a decrease in proliferation and increase in apoptosis. Nutr Cancer 49:81–88

    Article  CAS  Google Scholar 

  • Oi N et al (2010) Resveratrol, a red wine polyphenol, suppresses pancreatic cancer by inhibiting leukotriene A(4)hydrolase. Cancer Res 70:9755–9764

    Article  CAS  Google Scholar 

  • Panaro MA et al (2012) Anti-inflammatory effects of resveratrol occur via inhibition of lipopolysaccharide-induced NF-kappaB activation in Caco-2 and SW480 human colon cancer cells. Br J Nutr 108:1623–1632

    Article  CAS  Google Scholar 

  • Paredes S, Villanova L, Chua KF (2014) Molecular pathways: emerging roles of mammalian sirtuin SIRT7 in cancer. Clin Cancer Res 20:1741–1746

    Article  CAS  Google Scholar 

  • Park JW et al (2001) Chemopreventive agent resveratrol, a natural product derived from grapes, reversibly inhibits progression through S and G2 phases of the cell cycle in U937 cells. Cancer Lett 163:43–49

    Article  CAS  Google Scholar 

  • Patel KR et al (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70:7392–7399

    Article  CAS  Google Scholar 

  • Patel KR et al (2011) Clinical trials of resveratrol. Ann NY Acad Sci 1215:161–169

    Article  CAS  Google Scholar 

  • Pezzuto JM (2008) Grapes and human health: a perspective. J Agric Food Chem 56:6777–6784

    Article  CAS  Google Scholar 

  • Pirola L, Frojdo S (2008) Resveratrol: one molecule, many targets. IUBMB Life 60:323–332

    Article  CAS  Google Scholar 

  • Popat R et al (2013) A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 160:714–717

    Article  CAS  Google Scholar 

  • Prasad R, Vaid M, Katiyar SK (2012) Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One 7:e43064

    Article  CAS  Google Scholar 

  • Prior RL et al (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26:170–181

    Article  CAS  Google Scholar 

  • Rajasekaran D et al (2011) Resveratrol interferes with N-nitrosodiethylamine-induced hepatocellular carcinoma at early and advanced stages in male Wistar rats. Mol Med Rep 4:1211–1217

    CAS  Google Scholar 

  • Reagan-Shaw S et al (2004) Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene 23:5151–5160

    Article  CAS  Google Scholar 

  • Richard N et al (2005) Effects of resveratrol, piceatannol, tri-acetoxystilbene, and genistein on the inflammatory response of human peripheral blood leukocytes. Mol Nutr Food Res 49:431–442

    Article  CAS  Google Scholar 

  • Roy P et al (2009) Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways. Pharm Res 26:211–217

    Article  CAS  Google Scholar 

  • Roy SK et al (2011) Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors. PLoS One 6:e25166

    Article  CAS  Google Scholar 

  • Russo MA et al (2014) Sirtuins and resveratrol-derived compounds: a model for understanding the beneficial effects of the Mediterranean diet. Endocr Metab Immune Disord Drug Targets 14:300–308

    Article  CAS  Google Scholar 

  • Sahpazidou D et al (2014) Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol Lett 230:218–224

    Article  CAS  Google Scholar 

  • Sale S et al (2005) Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3,4,5,4′-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int J Cancer 115:194–201

    Article  CAS  Google Scholar 

  • Sato M et al (2003) Prepubertal resveratrol exposure accelerates N-methyl-N-nitrosourea-induced mammary carcinoma in female Sprague-Dawley rats. Cancer Lett 202:137–145

    Article  CAS  Google Scholar 

  • Schneider Y et al (2001) Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr Cancer 39:102–107

    Article  CAS  Google Scholar 

  • Scott E et al (2012) Resveratrol in human cancer chemoprevention–choosing the ‘right’ dose. Mol Nutr Food Res 56:7–13

    Article  CAS  Google Scholar 

  • Seeni A et al (2008) Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac J Cancer Prev 9:7–14

    Google Scholar 

  • Sengottuvelan M, Nalini N (2006) Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1,2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development. Br J Nutr 96:145–153

    Article  CAS  Google Scholar 

  • Sengottuvelan M, Viswanathan P, Nalini N (2006) Chemopreventive effect of trans-resveratrol–a phytoalexin against colonic aberrant crypt foci and cell proliferation in 1,2-dimethylhydrazine induced colon carcinogenesis. Carcinogenesis 27:1038–1046

    Article  CAS  Google Scholar 

  • Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839–4854

    Article  CAS  Google Scholar 

  • Shin DY et al (2009) Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK. Int J Oncol 35:1499–1504

    CAS  Google Scholar 

  • Shin DY et al (2011) Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells. Oncol Rep 25:567–572

    CAS  Google Scholar 

  • Signorelli P et al (2015) Natural grape extracts regulate colon cancer cells malignancy. Nutr Cancer 67:494–503

    Article  CAS  Google Scholar 

  • Singletary KW, Meline B (2001) Effect of grape seed proanthocyanidins on colon aberrant crypts and breast tumors in a rat dual-organ tumor model. Nutr Cancer 39:252–258

    Article  CAS  Google Scholar 

  • Soleas GJ, Yan J, Goldberg DM (2001) Measurement of trans-resveratrol, (+)-catechin, and quercetin in rat and human blood and urine by gas chromatography with mass selective detection. Methods Enzymol 335:130–145

    Article  CAS  Google Scholar 

  • Subbaramaiah K et al (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273:21875–21882

    Article  CAS  Google Scholar 

  • Sun T et al (2012) Antitumor and antimetastatic activities of grape skin polyphenols in a murine model of breast cancer. Food Chem Toxicol 50:3462–3467

    Article  CAS  Google Scholar 

  • Surh YJ et al (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res 480–481:243–268

    Article  Google Scholar 

  • Tessitore L et al (2000) Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. Carcinogenesis 21:1619–1622

    Article  CAS  Google Scholar 

  • Timmers S et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  CAS  Google Scholar 

  • Vanamala J et al (2010) Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10:238

    Article  CAS  Google Scholar 

  • Voskuil DW et al (2005) The insulin-like growth factor system in cancer prevention: potential of dietary intervention strategies. Cancer Epidemiol Biomarkers Prev 14:195–203

    Google Scholar 

  • Walle T (2011) Bioavailability of resveratrol. Ann NY Acad Sci 1215:9–15

    Article  CAS  Google Scholar 

  • Walle T et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  Google Scholar 

  • Wang TT et al (2008) Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis 29:2001–2010

    Article  CAS  Google Scholar 

  • Wang H et al (2013) Resveratrol inhibits TGF-beta1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology 303:139–146

    Article  CAS  Google Scholar 

  • Whitsett T, Carpenter M, Lamartiniere CA (2006) Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J Carcinog 5:15

    Article  CAS  Google Scholar 

  • Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 67:253–256

    Article  Google Scholar 

  • Wolter F, Ulrich S, Stein J (2004) Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in colorectal cancer: key role of polyamines? J Nutr 134:3219–3222

    CAS  Google Scholar 

  • Yang J, Xiao YY (2013) Grape phytochemicals and associated health benefits. Crit Rev Food Sci Nutr 53:1202–1225

    Article  CAS  Google Scholar 

  • You XJ et al (2007) Expression of Wnt pathway components frizzled and disheveled in colon cancer arising in patients with inflammatory bowel disease. Oncol Rep 18:691–694

    Google Scholar 

  • You J et al (2008) Wnt pathway-related gene expression in inflammatory bowel disease. Dig Dis Sci 53:1013–1019

    Article  CAS  Google Scholar 

  • Yu HB et al (2010) Resveratrol inhibits VEGF expression of human hepatocellular carcinoma cells through a NF-kappa B-mediated mechanism. Hepatogastroenterology 57:1241–1246

    CAS  Google Scholar 

  • Yuan L et al (2011) Impact of apple and grape juice consumption on the antioxidant status in healthy subjects. Int J Food Sci Nutr 62:844–850

    Article  CAS  Google Scholar 

  • Zell JA et al (2007) Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. Int J Cancer 120:459–468

    Article  CAS  Google Scholar 

  • Zhao Y et al (2013) Sirtuin-3 (SIRT3) expression is associated with overall survival in esophageal cancer. Ann Diagn Pathol 17:483–485

    Article  Google Scholar 

  • Zheng T et al (1993) A case-control study of oral cancer in Beijing, People’s Republic of China. Associations with nutrient intakes, foods and food groups. Eur J Cancer B Oral Oncol 29B:45–55

    Article  CAS  Google Scholar 

  • Zheng M et al (2012) Side-effects of resveratrol in HepG2 cells: reduced pten and increased bcl-xl mRNA expression. Mol Med Rep 6:1367–1370

    CAS  Google Scholar 

  • Ziegler CC et al (2004) Dietary resveratrol does not affect intestinal tumorigenesis in Apc(Min/+) mice. J Nutr 134:5–10

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall F. Holcombe M.D, MBA. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holcombe, R.F. (2016). Grapes and Cancer. In: Pezzuto, J. (eds) Grapes and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-28995-3_6

Download citation

Publish with us

Policies and ethics