Skip to main content

Grapes and Vision

  • Chapter
  • First Online:
Grapes and Health

Abstract

Cataract, glaucoma, and age-related macular degeneration are frequent causes of blindness worldwide particularly in the elderly population. Continuous exposure to deleterious chemical agents in addition to an inadequate diet enhances oxidative stress in several tissues of the human eye and contributes to these and other ocular dysfunctions. Grapes contain a wide variety of phytochemicals that can function as cellular antioxidants and anti-inflammatory agents. Increased dietary intake of grapes or grape compounds may thus be effective in preventing or delaying the progression of these eye diseases. In this review, we focus on recent experimental, clinical, and epidemiological studies that support such beneficial properties of grape components on vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Age-Related Eye Disease Study 2 (AREDS2) Research Group, Chew EY, SanGiovanni J et al (2013) Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report no. 4. JAMA Ophthalmol 131:843–850

    Article  CAS  Google Scholar 

  • Amirul Islam FM, Chong EW, Hodge AM, Guymer RH, Aung KZ, Makeyeva GA, Baird PN, Hopper JL, English DR, Giles GG, Robman LD (2014) Dietary patterns and their associations with age-related macular degeneration: the Melbourne Collaborative Cohort Study. Ophthalmology 121:1428–1434

    Article  Google Scholar 

  • Arden GB, Sivaprasad S (2011) Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev 7:291–304

    Article  CAS  Google Scholar 

  • Arnal E, Miranda M, Almansa I, Muriach M, Barcia JM, Romero FJ, Diaz-Llopis M, Bosch-Morell F (2009) Lutein prevents cataract development and progression in diabetic rats. Graefes Arch Clin Exp Ophthalmol 247:115–120

    Article  Google Scholar 

  • Beatty S, Koh H-H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  Google Scholar 

  • Berendschot TT, Broekmans WM, Klopping-Ketelaars IA, Kardinaal AF, Van Poppel G, Van Norren D (2002) Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Arch Ophthalmol 120:1732–1737

    Article  Google Scholar 

  • Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellermann W (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109:1780–1787

    Article  Google Scholar 

  • Bhosale P, Li B, Sharifzadeh M, Gellermann W, Frederick JM, Tsuchida K, Bernstein PS (2009) Purification and partial characterization of a lutein-binding protein from human retina. Biochemistry 48:4798–4807

    Article  CAS  Google Scholar 

  • Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ, Tang G, Sparrow JR, Gierhart D, Shang F (2012) Lutein and zeaxanthin supplementation reduces photo-oxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 53:1298–1307

    Article  CAS  Google Scholar 

  • Bibb C, Young RW (1974) Renewal of fatty acids in the membranes of visual cell outer segments. J Cell Biol 61:327–343

    Article  CAS  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19

    Article  CAS  Google Scholar 

  • Bok D (1993) The retinal pigment epithelium: a versatile partner in vision. J Cell Sci 17:189–195

    Article  CAS  Google Scholar 

  • Bone RA, Landrum JT (1984) Macular pigment in Henle fiber membranes: a model for Haidinger’s brushes. Vision Res 24:103–108

    Article  CAS  Google Scholar 

  • Bone RA, Landrum JT, Tarsis SL (1985) Preliminary identification of the human macular pigment. Vision Res 25:1531–1535

    Article  CAS  Google Scholar 

  • Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337

    Article  CAS  Google Scholar 

  • Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond) 15:384–389

    Article  CAS  Google Scholar 

  • Boulton M, Moriarty P, Jarvis-Evans J, Marcyniuk B (1994) Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 78:125–129

    Article  CAS  Google Scholar 

  • BrÃ¥kenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 15:1798–1800

    Google Scholar 

  • Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88:195–203

    Article  CAS  Google Scholar 

  • Cai J, Nelson KC, Wu M, Sternberg P Jr, Jones DP (2000) Oxidative damage and protection of the RPE. Prog Retin Eye Res 19:205–221

    Article  CAS  Google Scholar 

  • Cao X, Liu M, Tuo J, Shen D, Chan CC (2010) The effects of quercetin in cultured human RPE cells under oxidative stress and in Ccl2/Cx3cr1 double deficient mice. Exp Eye Res 91:15–25

    Article  CAS  Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  Google Scholar 

  • Cejkova J, Cejka C (2015) The role of oxidative stress in corneal diseases and injuries. Histol Histopathol 30(8):893–900

    CAS  Google Scholar 

  • Chen E, Soderberg PG, Lindstrom B (1992) Cytochrome oxidase activity in rat retina after exposure to 404 nm blue light. Curr Eye Res 11:825–831

    Article  CAS  Google Scholar 

  • Chen Y, Li X-X, Xing N-Z, Cao X-G (2008) Quercetin inhibits choroidal and retinal angiogenesis in vitro. Graefe’s Arch Clin Exp Ophthalmol 246:373–378

    Article  CAS  Google Scholar 

  • Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  Google Scholar 

  • Chiu C-J, Chang M-L, Zhang FF, Li T, Gensler G, Schleicher M, Taylor A (2014) The relationship of major american dietary patterns to age-related macular degeneration. Am J Ophthalmol 158:118–127.e111

    Article  Google Scholar 

  • Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL 3rd (2005) Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no. 19. Ophthalmology 112:533–539

    Article  Google Scholar 

  • Congdon N, O’Colmain B, Klaver CC, Klein R, Munoz B, Friedman DS, Kempen J, Taylor HR, Mitchell P (2004) Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 122:477–485

    Article  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  CAS  Google Scholar 

  • Decanini A, Nordgaard CL, Feng X, Ferrington DA, Olsen TW (2007) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143:607–615

    Article  CAS  Google Scholar 

  • Del Priore LV, Kuo Y-H, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43:3312–3318

    Google Scholar 

  • Doganay S, Borazan M, Iraz M, Cigremis Y (2006) The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res 31:147–153

    Article  CAS  Google Scholar 

  • Doly M, Droy-Lefaix MT, Braquet P (1992) Oxidative stress in diabetic retina. EXS 62:299–307

    CAS  Google Scholar 

  • Dunaief JL, Dentchev T, Ying GS, Milam AH (2002) The role of apoptosis in age-related macular degeneration. Arch Ophthalmol 120:1435–1442

    Article  Google Scholar 

  • Eye Disease Case-control Study Group (1992) Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 110:1701–1708

    Article  Google Scholar 

  • Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17:583–600

    CAS  Google Scholar 

  • Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25:195–200

    CAS  Google Scholar 

  • Feher J, Kovacs I, Artico M, Cavallotti C, Papale A, Balacco GC (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 27:983–993

    Article  CAS  Google Scholar 

  • Friedrichson T, Kalbach HL, Buck P, van Kuijk FJ (1995) Vitamin E in macular and peripheral tissues of the human eye. Curr Eye Res 14:693–701

    Article  CAS  Google Scholar 

  • Gehrs KM, Anderson DH, Johnson LV, Hageman GS (2006) Age-related macular degeneration-emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Article  Google Scholar 

  • Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066

    Article  CAS  Google Scholar 

  • Ha JH, Shil PK, Zhu P, Gu L, Li Q, Chung S (2014) Ocular inflammation and endoplasmic reticulum stress are attenuated by supplementation with grape polyphenols in human retinal pigmented epithelium cells and in C57BL/6 mice. J Nutr 144(6):799–806

    Article  CAS  Google Scholar 

  • Hanneken A, Lin F-F, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest Ophthalmol Vis Sci 47:3164–3177

    Article  Google Scholar 

  • He RR, Tsoi B, Lan F, Yao N, Yao XS, Kurihara H (2011) Antioxidant properties of lutein contribute to the protection against lipopolysaccharide-induced uveitis in mice. Chin Med 6:38

    Article  CAS  Google Scholar 

  • Heiba IM, Elston RC, Klein BE, Klein R (1994) Sibling correlations and segregation analysis of age-related maculopathy: the Beaver Dam Eye Study. Genet Epidemiol 11:51–67

    Article  CAS  Google Scholar 

  • Heijnen CG, Haenen GR, van Acker FA, van der Vijgh WJ, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol In Vitro 15:3–6

    Article  CAS  Google Scholar 

  • Hightower KR, Duncan G, Dawson A, Wormstone IM, Reddan J, Dziedizc D (1999) Ultraviolet irradiation (UVB) interrupts calcium cell signaling in lens epithelial cells. Photochem Photobiol 69:595–598

    CAS  Google Scholar 

  • Higuchi A, Takahashi K, Hirashima M, Kawakita T, Tsubota K (2010) Selenoprotein P controls oxidative stress in cornea. PLoS One 5:e9911

    Article  CAS  Google Scholar 

  • Hosoya K, Tachikawa M (2012) The inner blood-retinal barrier: molecular structure and transport biology. Adv Exp Med Biol 763:85–104

    CAS  Google Scholar 

  • Hu BJ, Hu YN, Lin S, Ma WJ, Li XR (2011) Application of lutein and zeaxanthin in nonproliferative diabetic retinopathy. Int J Ophthalmol 4:303–306

    Google Scholar 

  • Hua J, Guerin KI, Chen J, Michán S, Stahl A, Krah NM, Seaward MR, Dennison RJ, Juan AM, Hatton CJ, Sapieha P, Sinclair DA, Smith LEH (2011) Resveratrol inhibits pathologic retinal neovascularization in vldlr−/− mice. Invest Ophthalmol Vis Sci 52:2809–2816

    Article  CAS  Google Scholar 

  • Izumi-Nagai K, Nagai N, Ohgami K, Satofuka S, Ozawa Y, Tsubota K, Umezawa K, Ohno S, Oike Y, Ishida S (2007) Macular pigment lutein is antiinflammatory in preventing choroidal neovascularization. Arterioscler Thromb Vasc Biol 27:2555–2562

    Article  CAS  Google Scholar 

  • Jin X-H, Ohgami K, Shiratori K, Suzuki Y, Hirano T, Koyama Y, Yoshida K, Ilieva I, Iseki K, Ohno S (2006) Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci 47:2562–2568

    Article  Google Scholar 

  • Jones MM, Manwaring N, Wang JJ, Rochtchina E, Mitchell P, Sue CM (2007) Mitochondrial DNA haplogroups and age-related maculopathy. Arch Ophthalmol 125:1235–1240

    Article  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Lipofuscin. Ann NY Acad Sci 1119:97–111

    Article  CAS  Google Scholar 

  • Kanavi MR, Darjatmoko S, Wang S, Azari AA, Farnoodian M, Kenealey JD, van Ginkel PR, Albert DM, Sheibani N, Polans AS (2014) The sustained delivery of resveratrol or a defined grape powder inhibits new blood vessel formation in a mouse model of choroidal neovascularization. Molecules 19:17578–17603

    Article  CAS  Google Scholar 

  • Kanwar M, Chan P-S, Kern TS, Kowluru RA (2007) Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Invest Ophthalmol Vis Sci 48:3805–3811

    Article  Google Scholar 

  • Kim YH, Kim YS, Roh GS, Choi WS, Cho GJ (2012) Resveratrol blocks diabetes-induced early vascular lesions and vascular endothelial growth factor induction in mouse retinas. Acta Ophthalmol 90:e31–e37

    Article  CAS  Google Scholar 

  • Kong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100

    Article  Google Scholar 

  • Kook D, Wolf AH, Yu AL, Neubauer AS, Priglinger SG, Kampik A, Welge-Lüssen UC (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci 49:1712–1720

    Article  Google Scholar 

  • Kowluru RA, Chan PS (2007) Oxidative stress and diabetic retinopathy. Exp Diabetes Res 2007:43603

    Google Scholar 

  • Kubota S, Kurihara T, Mochimaru H, Satofuka S, Noda K, Ozawa Y, Oike Y, Ishida S, Tsubota K (2009) Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-κB activation. Invest Ophthalmol Vis Sci 50:3512–3519

    Article  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    CAS  Google Scholar 

  • Landrum J, Bone R, Mendez V, Valenciaga A, Babino D (2012) Comparison of dietary supplementation with lutein diacetate and lutein: a pilot study of the effects on serum and macular pigment. Acta Biochim Pol 59:167–169

    CAS  Google Scholar 

  • Li C, Wang L, Huang K, Zheng L (2012) Endoplasmic reticulum stress in retinal vascular degeneration: protective role of resveratrol. Invest Ophthalmol Vis Sci 53:3241–3249

    Article  CAS  Google Scholar 

  • Liang FQ, Godley BF (2003) Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res 76:397–403

    Article  CAS  Google Scholar 

  • Lou MF (2003) Redox regulation in the lens. Prog Retin Eye Res 22:657–682

    Article  CAS  Google Scholar 

  • Ma L, Dou HL, Huang YM, Lu XR, Xu XR, Qian F, Zou ZY, Pang HL, Dong PC, Xiao X, Wang X, Sun TT, Lin XM (2012a) Improvement of retinal function in early age-related macular degeneration after lutein and zeaxanthin supplementation: a randomized, double-masked, placebo-controlled trial. Am J Ophthalmol 154:625–634.e621

    Article  CAS  Google Scholar 

  • Ma L, Yan SF, Huang YM, Lu XR, Qian F, Pang HL, Xu XR, Zou ZY, Dong PC, Xiao X, Wang X, Sun TT, Dou HL, Lin XM (2012b) Effect of lutein and zeaxanthin on macular pigment and visual function in patients with early age-related macular degeneration. Ophthalmology 119:2290–2297

    Article  Google Scholar 

  • Ma JH, Wang JJ, Zhang SX (2014) The unfolded protein response and diabetic retinopathy. J Diabetes Res 2014:14

    Google Scholar 

  • Miceli MV, Liles MR, Newsome DA (1994) Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 214:242–249

    Article  CAS  Google Scholar 

  • Moeller SM, Voland R, Tinker L et al (2008) Associations between age-related nuclear cataract and lutein and zeaxanthin in the diet and serum in the carotenoids in the age-related eye disease study (CAREDS), an ancillary study of the women’s health initiative. Arch Ophthalmol 126:354–364

    Article  Google Scholar 

  • Moss SE, Klein R, Klein BE (2008) Long-term incidence of dry eye in an older population. Optom Vis Sci 85:668–674

    Article  Google Scholar 

  • Munoz B, West SK, Rubin GS, Schein OD, Quigley HA, Bressler SB, Bandeen-Roche K (2000) Causes of blindness and visual impairment in a population of older Americans: the Salisbury Eye Evaluation Study. Arch Ophthalmol 118:819–825

    Article  CAS  Google Scholar 

  • Nandrot EF, Finnemann SC (2008) Lack of αvβ5 integrin receptor or its ligand MFG-E8: distinct effects on retinal function. Ophthalmic Res 40:120–123

    Article  CAS  Google Scholar 

  • Nandrot EF, Kim Y, Brodie SE, Huang X, Sheppard D, Finnemann SC (2004) Loss of synchronized retinal phagocytosis and age-related blindness in mice lacking αvβ5 integrin. J Exp Med 200:1539–1545

    Article  CAS  Google Scholar 

  • Newsholme P, Haber EP, Hirabara SM, Rebelato ELO, Procopio J, Morgan D, Oliveira-Emilio HC, Carpinelli AR, Curi R (2007) Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583:9–24

    Article  CAS  Google Scholar 

  • Ng K-P, Gugiu B, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Różanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7:1397–1405

    Article  CAS  Google Scholar 

  • Nilsson SE, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106:13–16

    Article  Google Scholar 

  • Nordgaard CL, Berg KM, Kapphahn RJ, Reilly C, Feng X, Olsen TW, Ferrington DA (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47:815–822

    Article  Google Scholar 

  • Nordgaard CL, Karunadharma PP, Feng X, Olsen TW, Ferrington DA (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2848–2855

    Article  Google Scholar 

  • O’Brien DF (1982) The chemistry of vision. Science 218:961–966

    Article  Google Scholar 

  • Oak AS, Messinger JD, Curcio CA (2014) Subretinal drusenoid deposits: further characterization by lipid histochemistry. Retina 34:825–826

    Article  Google Scholar 

  • Ohia SE, Opere CA, LeDay AM (2005) Pharmacological consequences of oxidative stress in ocular tissues. Mutat Res 579:22–36

    Article  CAS  Google Scholar 

  • Owsley C, Huisingh C, Clark ME, Jackson GR, McGwin G (2016) Comparison of visual function in older eyes in the earliest stages of age-related macular degeneration to those in normal macular health. Curr Eye Res 41:266–272

    Article  Google Scholar 

  • Perry HD (2008) Dry eye disease: pathophysiology, classification, and diagnosis. Am J Manag Care 14:S79–S87

    Google Scholar 

  • Pintea A, Rugina D, Pop R, Bunea A, Socaciu C, Diehl HA (2011) Antioxidant effect of trans-resveratrol in cultured human retinal pigment epithelial cells. J Ocul Pharmacol Ther 27:315–321

    Article  CAS  Google Scholar 

  • Qin L, Bartlett H, Griffiths HR, Eperjesi F, Armstrong RA, Gherghel D (2011) Macular pigment optical density is related to blood glutathione levels in healthy individuals. Invest Ophthalmol Vis Sci 52:5029–5033

    Article  CAS  Google Scholar 

  • Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236

    CAS  Google Scholar 

  • Ramana KV, Friedrich B, Srivastava S, Bhatnagar A, Srivastava SK (2004) Activation of nuclear factor-κB by hyperglycemia in vascular smooth muscle cells is regulated by aldose reductase. Diabetes 53:2910–2920

    Article  CAS  Google Scholar 

  • Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41:1200–1209

    CAS  Google Scholar 

  • Read MA (1995) Flavonoids: naturally occurring anti-inflammatory agents. Am J Pathol 147:235–237

    CAS  Google Scholar 

  • Reddan JR, Giblin FJ, Kadry R, Leverenz VR, Pena JT, Dziedzic DC (1999) Protection from oxidative insult in glutathione depleted lens epithelial cells. Exp Eye Res 68:117–127

    Article  CAS  Google Scholar 

  • Romeo G, Liu W-H, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  CAS  Google Scholar 

  • Ruggiero L, Finnemann SC (2014) Photoreceptor-RPE interactions: diurnal phagocytosis. In: Werner JS, Chalupa LM (eds) The new visual neurosciences. MIT Press, Cambridge, MA

    Google Scholar 

  • Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC (2012) Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina. Proc Natl Acad Sci USA 109:8145–8148

    Article  CAS  Google Scholar 

  • Sacca SC, Izzotti A (2008) Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res 173:385–407

    Article  CAS  Google Scholar 

  • SanGiovanni JP, Arking DE, Iyengar SK, Elashoff M, Clemons TE, Reed GF, Henning AK, Sivakumaran TA, Xu X, DeWan A, Agron E, Rochtchina E, Sue CM, Wang JJ, Mitchell P, Hoh J, Francis PJ, Klein ML, Chew EY, Chakravarti A (2009) Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration. PLoS One 4:e5508

    Article  CAS  Google Scholar 

  • Sasaki M, Ozawa Y, Kurihara T, Noda K, Imamura Y, Kobayashi S, Ishida S, Tsubota K (2009) Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Invest Ophthalmol Vis Sci 50:1433–1439

    Article  Google Scholar 

  • Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S, Tsubota K (2010) Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53:971–979

    Article  CAS  Google Scholar 

  • Schaumberg DA, Sullivan DA, Buring JE, Dana MR (2003) Prevalence of dry eye syndrome among US women. Am J Ophthalmol 136:318–326

    Article  Google Scholar 

  • Schmidt SY, Peisch RD (1986) Melanin concentration in normal human retinal pigment epithelium. Regional variation and age-related reduction. Invest Ophthalmol Vis Sci 27:1063–1067

    CAS  Google Scholar 

  • Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-control Study Group. JAMA 272:1413–1420

    Article  CAS  Google Scholar 

  • Simpkins JW, Wang J, Wang X, Perez E, Prokai L, Dykens JA (2005) Mitochondria play a central role in estrogen-induced neuroprotection. Curr Drug Targets CNS Neurol Disord 4:69–83

    Article  CAS  Google Scholar 

  • Soufi FG, Mohammad-Nejad D, Ahmadieh H (2012) Resveratrol improves diabetic retinopathy possibly through oxidative stress—nuclear factor kappaB—apoptosis pathway. Pharmacol Rep 64:1505–1514

    Article  CAS  Google Scholar 

  • Sparrow JR, Yamamoto K (2012) The bisretinoids of RPE lipofuscin: a complex mixture. Adv Exp Med Biol 723:761–767

    Article  CAS  Google Scholar 

  • Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K, Zhou J (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31:121–135

    Article  CAS  Google Scholar 

  • Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9:1173–1182

    CAS  Google Scholar 

  • Sundelin SP, Nilsson SEG (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31:217–225

    Article  CAS  Google Scholar 

  • Surguchev A, Surguchov A (2010) Conformational diseases: looking into the eyes. Brain Res Bull 81:12–24

    Article  CAS  Google Scholar 

  • Tate DJ, Miceli MV, Newsome DA (1995) Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 36:1271–1279

    Google Scholar 

  • Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25:490–513

    Article  CAS  Google Scholar 

  • Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, Zhang K, Chan C-C (2007) Murine Ccl2/Cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci 48:3827–3836

    Article  Google Scholar 

  • Uchino Y, Kawakita T, Ishii T, Ishii N, Tsubota K (2012) A new mouse model of dry eye disease: oxidative stress affects functional decline in the lacrimal gland. Cornea 31:S63–S67

    Article  Google Scholar 

  • Udar N, Atilano SR, Memarzadeh M, Boyer DS, Chwa M, Lu S, Maguen B, Langberg J, Coskun P, Wallace DC, Nesburn AB, Khatibi N, Hertzog D, Le K, Hwang D, Kenney MC (2009) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50:2966–2974

    Article  Google Scholar 

  • van Acker SA, Tromp MN, Haenen GR, van der Vijgh WJ, Bast A (1995) Flavonoids as scavengers of nitric oxide radical. Biochem Biophys Res Commun 214:755–759

    Article  Google Scholar 

  • Vingerling JR, Klaver CC, Hofman A, de Jong PT (1995) Epidemiology of age-related maculopathy. Epidemiol Rev 17:347–360

    CAS  Google Scholar 

  • Wade NJ (2007) Image, eye, and retina. J Opt Soc Am A 24:1229–1249

    Article  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Neufeld AH (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651

    Google Scholar 

  • Weigert G, Kaya S, Pemp B, Sacu S, Lasta M, Werkmeister RM, Dragostinoff N, Simader C, Garhöfer G, Schmidt-Erfurth U, Schmetterer L (2011) Effects of lutein supplementation on macular pigment optical density and visual acuity in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 52:8174–8178

    Article  CAS  Google Scholar 

  • Weiter JJ, Delori FC, Wing GL, Fitch KA (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27:145–152

    CAS  Google Scholar 

  • Whiteside CI (2005) Cellular mechanisms and treatment of diabetes vascular complications converge on reactive oxygen species. Curr Hypertens Rep 7:148–154

    Article  CAS  Google Scholar 

  • Wink DA, Wink CB, Nims RW, Ford PC (1994) Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical. Environ Health Perspect 102:11–15

    Article  CAS  Google Scholar 

  • Yao K, Zhang L, Ye PP, Tang XJ, Zhang YD (2009) Protective effect of magnolol against hydrogen peroxide-induced oxidative stress in human lens epithelial cells. Am J Chin Med 37:785–796

    Article  CAS  Google Scholar 

  • Yeum KJ, Taylor A, Tang G, Russell RM (1995) Measurement of carotenoids, retinoids, and tocopherols in human lenses. Invest Ophthalmol Vis Sci 36:2756–2761

    CAS  Google Scholar 

  • Yu C-C, Nandrot EF, Dun Y, Finnemann SC (2012) Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin. Free Radic Biol Med 52:660–670

    Article  CAS  Google Scholar 

  • Zerbib J, Seddon JM, Richard F, Reynolds R, Leveziel N, Benlian P, Borel P, Feingold J, Munnich A, Soubrane G, Kaplan J, Rozet JM, Souied EH (2009) rs5888 variant of SCARB1 gene is a possible susceptibility factor for age-related macular degeneration. PLoS One 4(10):e7341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Institutes of Health (R01-EY13295) and the Beckman Initiative for Macular Research by the Arnold and Mabel Beckman Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia C. Finnemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bulloj, A., Finnemann, S.C. (2016). Grapes and Vision. In: Pezzuto, J. (eds) Grapes and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-28995-3_11

Download citation

Publish with us

Policies and ethics