Skip to main content

Interplay Among Glutathione, Salicylic Acid, and Ethylene to Combat Environmental Stress

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Plants withstand a variety of environmental stresses on a regular basis. In addition to its substantial function as a master antioxidant in living systems, the involvement of glutathione (GSH) in plant stress tolerance and management has long been known. However, how GSH interacts with other stress-related phytohormones such as salicylic acid (SA), jasmonic acid, ethylene (ET), and abscisic acid is still unknown. In this chapter we investigated the interaction of GSH with SA and ET to combat environmental stress conditions. In so doing, we developed transgenic tobacco lines, that is, NtGp lines, exhibiting enhanced GSH content. The significant abiotic stress tolerance potential (i.e., drought and salt) of these lines has been documented. Furthermore, transcriptomic and proteomic profiling of these transgenic lines identified the genes and proteins altered in enhanced GSH conditions and probably regulated by GSH as well. Several SA-related genes (i.e., PR1, GLS, MAPKK, NPR1, and others) and proteins (i.e., HSP 70, ADC, NBS-LRR, CA, PR10) were identified. Quantitative reverse-transcriptase polymerase chain reaction analysis further confirmed the expression level of SA-related genes in the NtGB line. Interestingly, in addition to SA, other major phytohormones such as ET have also been noted to be interactive with GSH. Together, a comprehensive analysis at the transcript and protein levels has demonstrated the interplay of GSH with SA and ET to combat environmental stress conditions in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander D, Stinson J, Pear J, Glascock C, Ward E, Goodman RM, Ryals J. A new multigene family inducible by tobacco mosaic virus or salicylic acid in tobacco. Mol Plant Microbe Interact. 1992;5:513–5.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JV, Chevone BI, Hess JL. Seasonal variation in the antioxidant system of eastern white pine needles. Plant Physiol. 1992;98:501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai XG, Chen JH, Kong XX, Todd CD, Yang YP, Hu XY, et al. Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis. Free Radic Biol Med. 2012;15:710–20.

    Article  Google Scholar 

  • Boston RS, Vittanen PV, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996;32:191–222.

    Article  CAS  PubMed  Google Scholar 

  • Chan C, Lam H-M. A putative lambda class glutathione-S-transferase enhances plant survival under salinity stress. Plant Cell Physiol. 2014;55(3):570–9.

    Article  CAS  PubMed  Google Scholar 

  • Chao YY, Hsu YT, Kao CH. Involvement of glutathione in heat shock—and hydrogen peroxide—induced cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant and Soil. 2009;318:37–45.

    Article  CAS  Google Scholar 

  • Chen JH, Jiang HW, Hsieh EJ, Chen HY, Chien CT, Hsieh HL, Lin TP. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 2012;158:340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz de Carvalho MH, Brunet J, Bazin J, Kranner I, d’ Arcy-Lameta A, Zuily-Fodil Y, Contour-Ansel D. Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves: expression patterns and accumulation of low-molecular weight thiols. J Plant Physiol. 2010;167:480–7.

    Article  CAS  PubMed  Google Scholar 

  • Dash S, Mohanty N. Response of seedlings to heat-stress in cultivars of wheat: growth temperature dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. J Plant Physiol. 2002;159:49–59.

    Article  CAS  Google Scholar 

  • Datta R, Sinha R, Chattopadhyay S. Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid. J Biosci. 2013;38:317–28.

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Denekamp M, Dicke M, Vuylsteke M, Van Loon L, Smeekens SC, Pieterse CM. The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae. Plant Signal Behavior. 2006;1:305–11.

    Article  Google Scholar 

  • Dhindsa RS. Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol. 1987;83:816–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci U S A. 1988;85:6738–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factor in Arabidopsis. Trends Plant Sci. 2010;15:573–81.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 1976;133:21–5.

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005;17:1866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Schott IM. Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signalling. Physiol Plant. 1997;100:241–54.

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 2005;137:1082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanta S, Bhattacharyya D, Chattopadhyay S. Glutathione signaling acts through NPR1-dependent SA-mediated pathway to mitigate biotic stress. Plant Signal Behav. 2011a;6:1–3.

    Article  Google Scholar 

  • Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid mediated pathway. Planta. 2011b;233:895–910.

    Article  CAS  PubMed  Google Scholar 

  • Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, Mazumdar AB, Chattopadhyay S. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol. 2014;171:940–50.

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem. 2013;70:204–12.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Ausubel FM. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci U S A. 1994;91:8955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J, Zook M, Merrit F, Kagan I, Rogers EE, Crute IR, Holub EB, Hammerschmidt R, Ausubel FM. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics. 1997;146:381–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez LD, Noctor G, Knight MR, Foyer CH. Regulation of calcium signaling and gene expression by glutathione. J Exp Bot. 2004;55:1851–9.

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal. 2013a;18:2106–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 2013b;36:1135–46.

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG. Plant protein serine/threonine kinases: classification and function. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:97–131.

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Bergmann L. Glutathione synthetase in tobacco suspension cultures; catalytic properties and localisation. Physiol Plant. 1988;72:70–6.

    Article  CAS  Google Scholar 

  • Hell R, Bergmann L. γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localisation. Planta. 1990;180:603–12.

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Choudhary D, Kale RK, Bhalla-Sarin N. Salt- and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol Plant. 2002;114:499–505.

    Article  CAS  PubMed  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13:3145–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaymakanov M, Lyubenova L, Schroder P, Stoeva N. Salt stress and glutathione-dependent enzyme activities in bean (Phaseolus vulgaris L.). Genet Appl Plant Physiol. 2010;36:55–9.

    Google Scholar 

  • Kim YJ, Jang MG, Noh HY, Lee HJ, Sukweenadhi J, Kim JH, Kim SY, Kwon WS, Yang DC. Molecular characterisation of two glutathione peroxidase genes of Panax ginseng and their expression analysis under environmental stresses. Gene. 2014;535:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Kocsy G, Szalai G, Vagujfalvi A, Stehli L, Orosz G, Galiba G. Genetic study of glutathione accumulation during cold hardening in wheat. Planta. 2000;210:295–301.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Chakraborty A, Ghanta S, Chattopadhyay S. Agrobacterium-mediated genetic transformation of mint with E. coli glutathione synthetase gene. Plant Cell Tiss Organ Cult. 2009;96:117–26.

    Article  CAS  Google Scholar 

  • Kumar B, Singla-Pareek SL, Sopory SK. Glutathione homeostasis: crucial for abiotic stress tolerance in plants. In: Pareek A, Sopory SK, Bohnert HJ, Govindjee, editors. Abiotic stress adaptation in plants. The Hague: Springer; 2010. p. 263–82.

    Google Scholar 

  • Kumari Vinodhana N, Gunasekaran M, Vindhiyavarman P. Genetic studies of variability, correlation and path coefficient analysis in cotton genotypes. Int J Pure Appl Biosci. 2013;1(5):6–10.

    Google Scholar 

  • Kunert KJ, Foyer CH. Thiol/disulphide exchange in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunhold C, Rausen W, editors. Sulfur nutrition and assimilation in higher plants. Regulatory, agricultural and environmental aspects. The Hague: SPB Academic; 1993. p. 139–51.

    Google Scholar 

  • Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002;5:325–31.

    Article  CAS  PubMed  Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot. 1999;42:129–39.

    Article  CAS  Google Scholar 

  • Li H, Xu H, Graham DE, White RH. Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A. 2003;100:9785–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locato V, de Pinto MC, De Gara L. Different involvement of the mitochondrial, plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses. Physiol Plant. 2009;135:296–306.

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Tang G, Wang D, Luo L. The Sinorhizobium meliloti LysR family transcriptional factors LsrB is involved in regulation of glutathione biosynthesis. Acta Biochim Biophys Sin. 2013;45:882–8.

    Article  CAS  PubMed  Google Scholar 

  • May MJ, Vernoux T, Sánchez-Fernández R, Van Montagu M, Inzé D. Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci U S A. 1998;95:12049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263:17205–8.

    CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G. Arabidopsis glutathione reductase 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol. 2010;153:1144–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Gomez L, Volokita M, Tal M, Foyer CH, Guy M. Co-ordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett. 2003;554:417–21.

    Article  CAS  PubMed  Google Scholar 

  • Morabito D, Guerrier G. The free oxygen radical scavenging enzymes and redox status in roots and leaves of in response to osmotic stress, desiccation and rehydration. J Plant Physiol. 2000;157:74–80.

    Article  CAS  Google Scholar 

  • Munemasa S, Muroyama D, Nagahasi H, Nakamura Y, Mori IC, Murata Y. Regulation of reactive oxygen species- mediated abscisic acid signalling in guard cells and drought tolerance by glutathione. Front Plant Sci. 2013;20:472.

    Google Scholar 

  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.

    Article  CAS  Google Scholar 

  • Musgrave WB, Yi H, Kline D, Cameron JC, Wignes J, Dey S, Pakrasi HB, Jez JM. Probing the origin of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochem J. 2013;450:63–72.

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Sotelo J, Ho TD. Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol. 1986;82:1031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;35:454–84.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K. Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal. 2005;7:973–81.

    Article  CAS  PubMed  Google Scholar 

  • Oufdou K, Benidire L, Lyubenova L, Daoui K, Fatemi ZEA, Schroder P. Enzymes of the glutathione-ascorbate cycle in leaves and roots of rhizobia inoculated faba bean plants (Vicia faba L.) under salinity stress. Eur J Soil Biol. 2014;60:98–103.

    Article  CAS  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F. Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007;49:159–72.

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. Networking by small-molecules hormones in plant immunity. Nat Chem Biol. 2009;5:308–16.

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Cameron JC, Berg RH, Jez JM. Immunolocalisation of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant physiol Biochem. 2014;75:9–13.

    Article  CAS  PubMed  Google Scholar 

  • Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H. Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. Russ J Plant Physiol. 2010;57:233–40.

    Article  CAS  Google Scholar 

  • Rennenberg H. Molecular approaches to glutathione biosynthesis. In: Cram WJ, DeKok LJ, Stulen I, Brunold C, Rennenberg H, editors. Sulphur metabolism in higher plants. Leiden: Backhuys; 1997. p. 59–70.

    Google Scholar 

  • Rüegsegger A, Brunold C. Localization of ã-glutamylcysteine synthetase and glutathione synthetase activity in maize seedlings. Plant Physiol. 1993;101:561–6.

    PubMed  PubMed Central  Google Scholar 

  • Ruiz JM, Blumwald E. Salinity-induced glutathione synthesis in Brassica napus. Planta. 2002;214:965–9.

    Article  CAS  PubMed  Google Scholar 

  • Russell D, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  • Seth CS, Reman T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, Weywns N, Vangronsveld J, Cuypers A. Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ. 2012;35:334–46.

    Article  CAS  PubMed  Google Scholar 

  • Sgherri CLM, Navari-Izzo F. Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol Plant. 1995;93:25–30.

    Article  CAS  Google Scholar 

  • Shepherd RW, Wagner GJ. Phylloplane proteins: emerging defenses at the aerial frontline. Trends Plant Sci. 2007;12:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RW, Bass WT, Houtz RL, Wagner GJ. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell. 2005;17:1851–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci U S A. 2003;100:14672–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK. Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res. 2008;17:171–80.

    Article  CAS  PubMed  Google Scholar 

  • Tsakraklides G, Martin M, Chalam R, Tarczynski MC, Schmidt A, Leustek T. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5’- adenylylsulfate reductase from Pseudomonas aeruginosa. Plant J. 2002;32:879–89.

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties. Plant Sci. 2003;165:1411–8.

    Article  CAS  Google Scholar 

  • Vlot AC, Klessig DF, Park SW. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol. 2008;11:436–42.

    Article  CAS  PubMed  Google Scholar 

  • Wingate VMP, Lawton MA, Lamb CJ. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 1988;87:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Reddy MK, Sopory SK. Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. FEBS Lett. 2005;579:6265–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhao FY, Liu W, Zhang SY. Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and nontransgenic rice. J Integr Plant Biol. 2009;51:942–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is extremely thankful to the director of CSIR-IICB, Kolkata, for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chattopadhyay, S. (2016). Interplay Among Glutathione, Salicylic Acid, and Ethylene to Combat Environmental Stress. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_6

Download citation

Publish with us

Policies and ethics