Skip to main content

Drought Tolerant Wild Species Are the Important Sources of Genes and Molecular Mechanisms Studies: Implication for Developing Drought Tolerant Crops

  • Chapter
  • First Online:
Drought Stress Tolerance in Plants, Vol 1

Abstract

Despite recent agricultural advances, climate plays key role in today’s agricultural production. In fact, due to the recent climate change yield of many crops reduces marginally, especially due to the temperature increase, uncertainty of monsoon, and uneven distribution of precipitation. For all important crops, average yields are only a fraction somewhere between 20 and 50 % of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. Therefore, the simplest way to increase agricultural productivity would be to improve the abiotic stress tolerance of crops. Wild species have adapted to a broad range of environments and developed rich genetic diversities for drought tolerances. Advanced backcross quantitative trait locus (QTL) analysis, the introgression libraries based on wild species as donors, and positional cloning of natural QTLs will play prevailing roles in elucidating the molecular control of drought tolerance. Considering the limitations of traditional plant breeding, the most promising strategy to achieve this goal will rely on the generation of transgenic plants expressing genes conferring tolerance. Drought tolerant genes and QTLs have been identified in Triticum dicoccoides and Hordeum spontaneum, and have great potential in wheat and barley improvement. Combining tolerant genes and QTLs in crop breeding programs aimed at improving tolerance to drought will be achieved within a multidisciplinary context. Wild genetic resistances to drought will be shifted in the future from field experiments to the farmer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Melmaiee K, Berg V, Wise RP. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Funct Integr Genomics. 2010;10(2):191–205.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed IM, Nadira UA, Zhang GP, Wu FB. Exploration and Utilization of Drought-Tolerant Barley Germplasm. In: Zhang GP , Li CD, editors. Exploration, Identification and Utilization of Barley Germplasm. Zhejiang University Press: AP Elsevier; 2015. p. 115–152.

    Google Scholar 

  • Ashoub A, Beckhaus T, Berberich T, Karas M, Brüggemann W. Comparative analysis of barley leaf proteome as affected by drought stress. Planta. 2013;237(3):771–81.

    Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR. Some prospective strategies for improving crop salt tolerance. Adv Agron. 2008;97:45–110.

    Article  CAS  Google Scholar 

  • Ashraf M, Öztürk MA, Athar H. Salinity and water stress: improving crop efficiency, vol. 44. Berlin: Springer; 2009.

    Book  Google Scholar 

  • Ashraf M. Inducing drought tolerance in plants: Recent advances. Biotechnol Adv. 2010; 28, 169–183.

    Google Scholar 

  • Ashraf M, Akram NA. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv. 2009;27:744–52.

    Google Scholar 

  • Baenziger PS, Beecher B, Graybosch RA, Ibrahim AMH, Baltensperger DD, Nelson LA, et al. Registration of 'NEO1643’ wheat. J Plant Registr. 2008;2(1):36–42.

    Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B. Breeding for improved drought tolerance in maize adapted to southern Africa. Proceedings of the 4th International Crop Science Congress. Brisbane, Australia. Published on CDROM. 2004.

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor Appl Genet. 2003;107(7):1215–25.

    Article  CAS  PubMed  Google Scholar 

  • Blum A. Plant breeding for stress environments. Boca Raton: CRC Press; 1988.

    Google Scholar 

  • Blum A. Breeding methods for drought resistance. In: Jones HG, Flowrs TJ, Jones MB, editors. Plant under stress. Cambridge: Cambridge University Press; 1989. p. 197–215.

    Chapter  Google Scholar 

  • Cai H, Tian S, Liu C, Dong H. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene. 2011;485(2):146–52.

    Google Scholar 

  • Cai S, Jiang G, Ye N, Chu Z, Xu XZ, Zhang JH, Zhu GH. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One. 2015;10(2), e0116646.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cash SD, Bruckner PL, Wichman DM, Kephart KD, Berg JE, Boyner R, et al. Registration of Willow Creek’ forage wheat. J Plant Registr. 2009;3(2):185–90.

    Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol. 2002;48(5-6):649–65.

    Article  CAS  Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM. Breeding for drought resistance in a changing climate. In: Rao SC, Ryan J, editors. Challenges and strategies of dryland agriculture. Madison: Crop Science Society of America and American Society of Agronomy; 2004. p. 167–90.

    Google Scholar 

  • Chandra Babu R, Zhang J, Blum A, David Ho T-H, Wu R, Nguyen H. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci. 2004;166(4):855–62.

    Article  Google Scholar 

  • Chen, YY, Chen PY, de los Reyes BG. Differential responses of the cultivated and wild species of soybean to dehydration stress. Crop Sci. 2006;46:2041–6.

    Google Scholar 

  • Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu Y-G, Sameri M, Li X, Zhao X. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci U S A. 2011;108(30):12354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Sagi M, Weining S, Krugman T, Fahima T, Korol AB, Nevo E. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta. 2004;219(4):684–93.

    Article  CAS  PubMed  Google Scholar 

  • Choi D-W, Close T. A newly identified barley gene, Dhn12, encoding a YSK2 DHN, is located on chromosome 6H and has embryo-specific expression. Theor Appl Genet. 2000;100(8):1274–8.

    Article  CAS  Google Scholar 

  • Choi D-W, Zhu B, Close T. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet. 1999;98(8):1234–47.

    Article  CAS  Google Scholar 

  • Christiansen MW, Holm PB, Gregersen PL. Characterization of barley (Hordeum vulgare L.). BMC Res Notes. 2011;4(1):302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close T, Choi D, Venegas M, Salvi S, Tuberosa R, Ryabushkina N, Turuspekov Y, Nevo E (2000) Allelic variation in wild and cultivated barley at the Dhn4 locus, which encodes a major drought-induced and seed protein, DHN4. In: 8th International Barley Genetics Symposium, Adelaide, SA, South Australia

    Google Scholar 

  • Collard BCY, Ades PK, Pang ECK, Brouwer JB, Taylar PWJ. Prospecting for sources of resistance to Ascochyta blight in wild Cicer species. Austral Plant Pathol. 2001;30:271–6.

    Article  Google Scholar 

  • Comadran J, Thomas WT, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR. Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet. 2009;119:175–87.

    Article  CAS  PubMed  Google Scholar 

  • Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk FA, Thomas WTB, Romagosa I. Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet. 2011;122:1363–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois B, Shen L, Petalcorin W, Carandang S, Mauleon R, Li Z. Locating QTLs controlling constitutive root traits in the rice population IAC 165-Co39. Euphytica. 2003;134:335–45.

    Article  CAS  Google Scholar 

  • Earl H, Davis RF. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron J. 2003;95:688–96.

    Article  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Sys. 2006;81(2), 77–91.

    Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W. Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot. 2000;51:9–17.

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009; 29, 185–212.

    Google Scholar 

  • Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004;55:307–19.

    Google Scholar 

  • Forster B, Rzussell J, Ellis R, Handley L, Robinson D, Hackett C, Nevo E, Waugh R, Gordon D, Keith R. Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol. 1997;137(1):141–7.

    Article  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D, El-Enein RA, Bahri MH, Salem MB. The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot. 2000;51:19–27.

    Article  CAS  PubMed  Google Scholar 

  • Grando S, Ceccarelli S. Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica. 1995;86(1):73–80.

    Article  Google Scholar 

  • Grando S, Von Bothmer R, Ceccarelli S. Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. Broadening the genetic base of crop production CABI/FAO/IPGRI:351-372. 2001.

    Google Scholar 

  • Guo P, Baum M, Grando, S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney RK, Graner A, Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot. 2009; 60:3531–3544.

    Google Scholar 

  • Harlan J. Genetic resources in wild relatives of crops. Crop Sci. 1976;16(3):329–33.

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ. Toward a rational classification of cultivated plants. Taxon. 1971;20:509–17.

    Article  Google Scholar 

  • Hussain TM, Chandrasekhar T, Hazara M, Sultan Z, Saleh BK, Gopal GR. Recent advances in salt stress biology-a review. Biotechnol Mol Biol Rev. 2008;3:8–13.

    Google Scholar 

  • Hong BS, Zong-Suo L, Ming-An S. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B Biointerfaces. 2005;45:131–5.

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A. 2006;103(35):12987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hymowitz T, Singh RJ. Taxonomy and speciation. In: Wilcox JR, editor. Soybeans: Improvement, production, and uses. 2nd ed. Madison: American Society of Agronomy; 1987. p. 23–48.

    Google Scholar 

  • Irar S, Brini F, Goday A, Masmoudi K, Pagès M. Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (Proteome Lab PF-2D)—a wider perspective of the proteome. J Proteomics. 2010;73(9):1707–21.

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Hackett C, Zhang Z, Staub J, Nevo E, Thomas W, Forster B. Phenotypic responses of wild barley to experimentally imposed water stress. J Exp Bot. 2000;51(353):2021–9.

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Thomas W, Nevo E, Zhang Z, Forster B. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed. 2003;122(4):300–4.

    Article  CAS  Google Scholar 

  • James AT, Lawn RJ, Cooper M. Genotypic variation for drought stress response traits in soybean. I. variation in soybean and wild Glycine spp. for epidermal conductance, osmotic potential, and relative water content. Aust J Agric Res. 2008;59:656–69.

    Article  Google Scholar 

  • Juskiw PE, Helm JH, Oro M, Nyachiro JM, Salmon DF. Registration of ‘Bentley’ barley. J Plant Registr. 2009;3(2):119–23.

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna HS, Vandez CV, Serraj R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica. 2005;146:213–22.

    Article  Google Scholar 

  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Res. 2006;95:171–81.

    Article  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar ZS, Tafreshi RS, Abedini R, Mabood HE. Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol Planta. 2013;35(7):2289–97.

    Article  CAS  Google Scholar 

  • Kausar R, Arshad M, Shahzad A, Komatsu S. Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids. 2013;44(2):345–59.

    Article  CAS  PubMed  Google Scholar 

  • Krugman T, Peleg Z, Quansah L. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Integr Genomics. 2011;11(4):565–83.

    Article  CAS  PubMed  Google Scholar 

  • Lafitte HR, Price AH, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet. 2004;109:1237–46.

    Google Scholar 

  • Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res. 2008;17(4):651–63.

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Choi GJ, Kim KY, Ji HC, Zaman R, Lee SH. Identification of drought induced differentially expressed genes in barley leaves using the annealing control-primer-based GeneFishing technique. Aust J Crop Sci. 2011;11(5):1364–9.

    Google Scholar 

  • Liang J, Deng G, Long H, Pan Z, Wang C, Cai P, Xu D, Nima Z-X, Yu M. Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Mol Breed. 2012;30(1):441–51.

    Article  CAS  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS. The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol. 2009;51(9):825–33.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics. 2011;11(3):431–43.

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Araus JL, Van Heerden PD, Foyer CH. Enhancing drought tolerance in C4 crops. J Exp Bot. 2011;62(9):3135–53.

    Article  CAS  PubMed  Google Scholar 

  • Melišová L, Holková L, Ullmannováet K, Hrstková P, Hronková M. Indirect evaluation of drought tolerance of barley. Tagungsband der 61. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 23–25 November 2010, Raumberg-Gumpenstein, Österreich. Ertrag vs. Qualität bei Getreide, Öl und Eiweisspflanzen. Wheat stress, Höhere Bundeslehr-und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein. 2011.

    Google Scholar 

  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25:239–50.

    Article  CAS  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J. 2011;9(2):230–49.

    Article  CAS  PubMed  Google Scholar 

  • Morrell PL, Lundy KE, Clegg MT. Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci U S A. 2003;100(19):10812–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo E. Evolution of wild barley and barley improvement. In: Zhang G, Li C, Xu L, editors. Advances in barley sciences. Dordrecht: Springer; 2013. p. 1–23.

    Chapter  Google Scholar 

  • Nevo E, Chen G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 2010;33(4):670–85.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Sticklen M. Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). Adv Crop Sci Technol. 2013;1(105):2.

    Google Scholar 

  • Niu CF, Wei W, Zhou QY. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ. 2012;35(6):1156–70.

    Article  CAS  PubMed  Google Scholar 

  • Noaman MM, El Sayad AA, Asaad FA, El Sherbini AM, El Bawab AO, El Moselhi MA. Registration of ‘Giza 126’ barley. Crop Sci. 1995;35(6):1710.

    Article  Google Scholar 

  • Noaman MM, Ahmed IA, El-Sayed AA, Abo-El-Enin RA, El-Gamal AS, El-Sherbiny AM. Registration of ‘Giza 2000’ drought-tolerant six-rowed barley for rainfed and new reclaimed areas in Egypt. Crop Sci. 2007;47:440.

    Article  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK. Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J. 2007;5:646–56.

    Article  CAS  PubMed  Google Scholar 

  • Oka HI. Origin of cultivated rice, Developments in crop science, vol. 14. Amsterdam: Elsevier Science; 1988.

    Book  Google Scholar 

  • Ouyang S-Q, Liu Y-F, Liu P, Lei G, He S-J. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J. 2010;62:316–29.

    Article  CAS  PubMed  Google Scholar 

  • Pan A, Hayes P, Chen F, Chen T, Blake T, Wright S, Karsai I, Bedö Z. Genetic analysis of the components of winterhardiness in barley (Hordeum vulgare L.). Theor Appl Genet. 1994;89(7-8):900–10.

    CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Abbo S. Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ. 2005;28(2):176–91.

    Article  Google Scholar 

  • Peng JH, Sun DF, Nevo E. Domestication evolution, genetics and genomics in wheat. Mol Breed. 2011;28(3):281–301.

    Article  CAS  Google Scholar 

  • Peng JH, Sun DF, Peng YL, Nevo E. Gene discovery in Triticum dicoccoides, the direct progenitor of cultivated wheats. Cer Res Commun. 2013;41(1):1–22.

    Article  CAS  Google Scholar 

  • Pratt RC, Casey MA. Registration of maize germplasm line Oh605. Crop Sci 2006;46:1004–5.

    Google Scholar 

  • Qin Y, Wang M, Tian Y, He W, Han L, Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep. 2012;39(6):7183–92.

    Google Scholar 

  • Quarrie SA, Gulli M, Calestani C, Steed A, Marmiroli N. Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet. 1994;89:794–800.

    Article  CAS  PubMed  Google Scholar 

  • Rampino P, Mita G, Fasano P. Novel durumwheat genes up-regulated in response to a combination of heat and drought stress. Plant Physiol Biochem. 2012;56:72–8.

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Ragot M. Marker-assisted selection to improve drought adaptation in maize: thebackcross approach, perspectives, limitations, and alternatives. J Exp Bot. 2006;58:351–60.

    Google Scholar 

  • Robin S, Pathan MS, Courtois B, Lafitte R, Carandang S, Lanceras S. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet. 2003;107(7):1288–96.

    Google Scholar 

  • Rodriguez E, Svensson J, Malatrasi M, Choi D-W, Close T. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet. 2005;110(5):852–8.

    Article  CAS  PubMed  Google Scholar 

  • Rollins J, Habte E, Templer S, Colby T, Schmidt J, von Korff M. Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot. 2013;64:3201–3212.

    Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci U S A. 2006;103:18656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ. Association mapping of spot blotch resistance in wild barley. Mol Breed. 2010;26:243–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000;23:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Saranga ZY, Krugman T, Abbo S, Nevo E, Fahima T. Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ. 2008;31(1):39–49.

    PubMed  Google Scholar 

  • Sečenji M, Hideg E, Bebes A, Gyorgyey J. Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit. Plant Cell Rep. 2010;29(1):37–50.

    Article  PubMed  Google Scholar 

  • Second G. Origin of the genetic diversity of cultivated rice (Oryza spp.), study of the polymorphism scored at 40 isozyme loci. Jpn J Genet. 1982;57:25–57.

    Article  Google Scholar 

  • Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot. 2011;62(8):2615–32.

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH. Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crops Res. 2004;88:115–27.

    Article  Google Scholar 

  • Shan F, Clarke HC, Plummer JA, Yan G, Siddique KHM. Geographical patterns of genetic variation in the world collections of wild annual Cicer characterized by amplified fragment length polymorphisms. Theor Appl Genet. 2005;110:381–91.

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Bhagwat MP, Pampapathy G, Sharma JP, Ridsdill-Smith TJ. Perennial wild relatives of chickpea as potential sources of resistance to Helicoverpa armigera. Genet Resour Crop Evol. 2006;53:131–8.

    Article  Google Scholar 

  • Singh KB, Ocampo B, Robertson LD. Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol. 1998;45:9–17.

    Article  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho T-HD QR. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA 1 gene. Plant Sci. 2000;155(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Skovmand B, Reynolds MP, DeLacy IH. Searching genetic resources for physiological traits with potential for increasing yield. In: Reynolds MP, Ortiz-Monasterio I, McNab A, editors. Application of physiology in wheat breeding. Mexico: CIMMYT; 2001. p. 17–28.

    Google Scholar 

  • Steele KA, Price AH, Shashidar HE, Witcombe JR. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet 2006;112:208–21.

    Google Scholar 

  • Steele KA, Virk DS, Kumar R, Prasad SC, Witcombe JR. Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 2007;101:180–6.

    Google Scholar 

  • Sun CQ, Wang XK, Yoshimura A, Iwata N. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet. 2001;102:157–62.

    Article  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E. Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ. 2004;27,1297–1308.

    Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol. 2004;64(1–2):17–34.

    Google Scholar 

  • Talame V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, et al.Identification of Hordeum spontaneum QTL alleles improving field performance ofbarley grown under rainfed conditions. Ann Appl Bot. 2004;144:309–20.

    Google Scholar 

  • Tang Y, Liu M, Gao S. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2 a confers drought tolerance in tobacco. Plant Physiol. 2012;144(3):210–24.

    Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B, Salem MB, Bahri H, This D. QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet. 2003;108(1):181–8.

    Article  CAS  PubMed  Google Scholar 

  • Toker C. Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Resour Crop Evol. 2005;52:1–5.

    Article  Google Scholar 

  • Tombuloglu H, Kekec G, Sakcali MS, Unver T. Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genom. 2013;1–15.

    Google Scholar 

  • Tuberosa R, Salvi S. Genomics approaches to improve drought tolerance in crops.Trends Plant Sci. 2006;11:405–12.

    Google Scholar 

  • van der Maesen LJG. Origin, history and taxonomy of chickpea. In: Saxena MC, Singh KB, editors. The chickpea. Wallingford: CAB Int; 1987. p. 11–34.

    Google Scholar 

  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005;16:123–32.

    Article  CAS  PubMed  Google Scholar 

  • Valkoun JJ. Wheat pre-breeding using wild progenitors. Euphytica. 2001;119:17–23.

    Article  Google Scholar 

  • van Zee K, Chen FQ, Hayes PM, Close TJ, Chen TH. Cold-specific induction of a dehydrin gene family member in barley. Plant Physiol. 1995;108(3):1233–9.

    PubMed  PubMed Central  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Rajaram S, Toro ED. Morphological variability in some synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. J Genet Breed. 1994;48:7–16.

    Google Scholar 

  • Volis S, Mendlinger S, Ward D. Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol J Linn Soc. 2002;77(4):479–90.

    Article  Google Scholar 

  • Wang ZY, Second G, Tanksley SD. Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs. Theor Appl Genet. 1992;83:565–81.

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Lemaux PG. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 1994;104:37–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wendelboe-Nelson C, Morris PC. Proteins linked to drought tolerance revealed by DIGE analysis of drought resistant and susceptible barley varieties. Proteomics. 2012;12:3374–85.

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 2007;144:1416–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell. 2003;15:745–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong X, James VA, Zhang H, Altpeter F. Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass (Paspalum notatum Flugge). Mol Breed. 2010;25(3):419–32.

    Article  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996;110:249–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Jørgensen AD, Li H. Implications of high-temperature events and water deficits on protein profiles in wheat (Triticum aestivum L. cv. Vinjett) grain. Proteomics. 2011;11(9):1684–95.

    Article  CAS  PubMed  Google Scholar 

  • Yan-Ying QU, Ping MU, Xue-Qin L, Yu-Xiu T, Feng W, Hong-Liang Z. QTL mapping and correlations between leaf water potential and drought resistance in rice under upland and lowland environments. Acta Agron Sin. 2008;34(2):198–206.

    Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57:781–803.

    Article  CAS  PubMed  Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P. Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci. 2001;41:1321–9.

    Article  Google Scholar 

  • Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet. 2001;103:19–29.

    Article  CAS  Google Scholar 

  • Zhang Z, Liu X, Wang X. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes. New Phytol. 2012;196(4):1155–70.

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun. 2009;379(4):985–9.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K. Plant salt tolerance. Trends Plant Sci. 2001;6:66–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibo B. Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahmed, I.M., Nadira, U.A., Zhang, G.P., Wu, F.B. (2016). Drought Tolerant Wild Species Are the Important Sources of Genes and Molecular Mechanisms Studies: Implication for Developing Drought Tolerant Crops. In: Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, LS. (eds) Drought Stress Tolerance in Plants, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_17

Download citation

Publish with us

Policies and ethics