Skip to main content

Abstract

During the last decade, technology has provided remarkable improvements and accessibility to cutting edge techniques in many departments. The major goal is set to improve quality of life and toxicity profiles of mediastinal treatments without compromising the local control and overall survival. Moving from 2D to 3D and 4D simulation has exposed the secrets of moving targets to individualize margins on specified targets and organs at risk, in addition to ensure precision to minimize the interobserver variability in target delineation via incorporation of FDG–PET fusion in customization. Image-guided radiotherapy with either planar or volumetric imaging increased accurate and appropriate daily localization, promoting comfort to encourage dose escalation or respiratory phase-specific treatment strategies along with motion management in thoracic malignancies. As randomized trials are lacking for many new technologies, knowledge-based tailoring and implementation of any site and stage-specific requirement per patient has been a common practice in the recent years, such as SBRT, IMRT, VMAT, or protons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(13):2181–90.

    Article  CAS  Google Scholar 

  2. Christodoulou M, Bayman N, McCloskey P, Rowbottom C, Faivre-Finn C. New radiotherapy approaches in locally advanced non-small cell lung cancer. Eur J Cancer. 2014;50(3):525–34.

    Article  CAS  PubMed  Google Scholar 

  3. Selek U, Chang JY. Evolution of modern-era radiotherapy strategies for unresectable advanced non-small-cell lung cancer. Lung Cancer Manag. 2013;2(3):213–25.

    Article  CAS  Google Scholar 

  4. Grant JD, Chang JY. Proton-based stereotactic ablative radiotherapy in early-stage non-small-cell lung cancer. BioMed Res Int. 2014;2014:389048.

    PubMed  PubMed Central  Google Scholar 

  5. Nguyen QN, Ly NB, Komaki R, Levy LB, Gomez DR, Chang JY, Allen PK, Mehran RJ, Lu C, Gillin M, et al. Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II-III inoperable non-small cell lung cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2015;115(3):367–72.

    Article  Google Scholar 

  6. Li H, Zhang X, Park P, Liu W, Chang J, Liao Z, Frank S, Li Y, Poenisch F, Mohan R, et al. Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2015;114(3):367–72.

    Article  Google Scholar 

  7. Selek U, Bolukbasi Y, Welsh JW, Topkan E. Intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy strategies for locally advanced non-small-cell lung cancer. Balkan Med J. 2014;31(4):286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014;6(4):303–18.

    PubMed  PubMed Central  Google Scholar 

  9. Zhu A, Marcus DM, Shu HK, Shim H. Application of metabolic PET imaging in radiation oncology. Radiat Res. 2012;177(4):436–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chi A, Nguyen NP, Welsh JS, Tse W, Monga M, Oduntan O, Almubarak M, Rogers J, Remick SC, Gius D. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond. Front Oncol. 2014;4:156.

    PubMed  PubMed Central  Google Scholar 

  11. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med Off Publ Soc Nucl Med. 2001;42(5 Suppl):1S–93.

    CAS  Google Scholar 

  12. Duan YL, Li JB, Zhang YJ, Wang W, Li FX, Sun XR, Guo YL, Shang DP. Comparison of primary target volumes delineated on four-dimensional CT and 18 F-FDG PET/CT of non-small-cell lung cancer. Radiat Oncol. 2014;9:182.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Belohlavek O, Carrio I, Danna M, Deniaud-Alexandre E, Inoue T. The role of PET/CT in radiation treatment planning for cancer patient treatment. International Atomic Energy Agency, Vienna; 2008.

    Google Scholar 

  14. Okubo M, Nishimura Y, Nakamatsu K, Okumura M, Shibata T, Kanamori S, Hanaoka K, Hosono M. Radiation treatment planning using positron emission and computed tomography for lung and pharyngeal cancers: a multiple-threshold method for [(18)F]fluoro-2-deoxyglucose activity. Int J Radiat Oncol Biol Phys. 2010;77(2):350–6.

    Article  PubMed  Google Scholar 

  15. Caldwell CB, Mah K, Skinner M, Danjoux CE. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys. 2003;55(5):1381–93.

    Article  PubMed  Google Scholar 

  16. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59(1):78–86.

    Article  PubMed  Google Scholar 

  17. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG, De Leyn PR, De Wever W, Verbeken EK, Gatti GG, Huyskens DP, Kutcher GJ. The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2000;55(3):317–24.

    Article  CAS  Google Scholar 

  18. Hanna GG, McAleese J, Carson KJ, Stewart DP, Cosgrove VP, Eakin RL, Zatari A, Lynch T, Jarritt PH, Young VA, et al. (18)F-FDG PET-CT simulation for non-small-cell lung cancer: effect in patients already staged by PET-CT. Int J Radiat Oncol Biol Phys. 2010;77(1):24–30.

    Article  PubMed  Google Scholar 

  19. Fox JL, Rengan R, O’Meara W, Yorke E, Erdi Y, Nehmeh S, Leibel SA, Rosenzweig KE. Does registration of PET and planning CT images decrease interobserver and intraobserver variation in delineating tumor volumes for non-small-cell lung cancer? Int J Radiat Oncol Biol Phys. 2005;62(1):70–5.

    Article  PubMed  Google Scholar 

  20. Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, Abdel-Dayem H, Guirguis A, Ross P, Evola A. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(4):1016–23.

    Article  PubMed  Google Scholar 

  21. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, Choi JY, Kwon OJ, Shim YM, Kim S. Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology. 2005;236(3):1011–9.

    Article  PubMed  Google Scholar 

  22. De Ruysscher D, Wanders S, Minken A, Lumens A, Schiffelers J, Stultiens C, Halders S, Boersma L, Baardwijk A, Verschueren T, et al. Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2005;77(1):5–10.

    Article  Google Scholar 

  23. Cole AJ, Hanna GG, Jain S, O’Sullivan JM. Motion management for radical radiotherapy in non-small cell lung cancer. Clin Oncol. 2014;26(2):67–80.

    Article  CAS  Google Scholar 

  24. International Commission on Radiation Units & Measurements. Prescribing, recording and reporting photon beam therapy (Report 62). Bethesda; 2000.

    Google Scholar 

  25. Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys. 2006;33(10):3874–900.

    Article  PubMed  Google Scholar 

  26. Korreman S, Persson G, Nygaard D, Brink C, Juhler-Nottrup T. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients. Int J Radiat Oncol Biol Phys. 2012;83(4):1338–43.

    Article  PubMed  Google Scholar 

  27. Guckenberger M, Krieger T, Richter A, Baier K, Wilbert J, Sweeney RA, Flentje M. Potential of image-guidance, gating and real-time tracking to improve accuracy in pulmonary stereotactic body radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2009;91(3):288–95.

    Article  Google Scholar 

  28. Mageras GS, Pevsner A, Yorke ED, Rosenzweig KE, Ford EC, Hertanto A, Larson SM, Lovelock DM, Erdi YE, Nehmeh SA, et al. Measurement of lung tumor motion using respiration-correlated CT. Int J Radiat Oncol Biol Phys. 2004;60(3):933–41.

    Article  PubMed  Google Scholar 

  29. White BM, Zhao T, Lamb JM, Bradley JD, Low DA. Physiologically guided approach to characterizing respiratory motion. Med Phys. 2013;40(12):121723.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hutchinson A, Bride P. 4DCT radiotherapy for NSCLC: a review of planning methods. J Radiother Pract. 2014;14(1):10.

    Google Scholar 

  31. Nygaard DE, Persson GF, Brink C, Specht L, Korreman SS. Evaluation of methods for selecting the midventilation bin in 4DCT scans of lung cancer patients. Acta Oncol. 2013;52(8):1715–22.

    Article  PubMed  Google Scholar 

  32. Liu HH, Balter P, Tutt T, Choi B, Zhang J, Wang C, Chi M, Luo D, Pan T, Hunjan S, et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys. 2007;68(2):531–40.

    Article  PubMed  Google Scholar 

  33. Pantarotto JR, Piet AH, Vincent A, van Sornsen de Koste JR, Senan S. Motion analysis of 100 mediastinal lymph nodes: potential pitfalls in treatment planning and adaptive strategies. Int J Radiat Oncol Biol Phys. 2009;74(4):1092–9.

    Article  PubMed  Google Scholar 

  34. Cole AJ, O’Hare JM, McMahon SJ, McGarry CK, Butterworth KT, McAleese J, Jain S, Hounsell AR, Prise KM, Hanna GG, et al. Investigating the potential impact of four-dimensional computed tomography (4DCT) on toxicity, outcomes and dose escalation for radical lung cancer radiotherapy. Clin Oncol. 2014;26(3):142–50.

    Article  CAS  Google Scholar 

  35. Ruan D, Fessler JA, Balter JM, Berbeco RI, Nishioka S, Shirato H. Inference of hysteretic respiratory tumor motion from external surrogates: a state augmentation approach. Phys Med Biol. 2008;53(11):2923–36.

    Article  CAS  PubMed  Google Scholar 

  36. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys. 2002;53(4):822–34.

    Article  PubMed  Google Scholar 

  37. Yu ZH, Lin SH, Balter P, Zhang L, Dong L. A comparison of tumor motion characteristics between early stage and locally advanced stage lung cancers. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;104(1):33–8.

    Article  Google Scholar 

  38. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys. 2005;62(2):554–60.

    Article  PubMed  Google Scholar 

  39. Lin H, Lu H, Shu L, Huang H, Chen H, Chen J, Cheng J, Pang Q, Peng L, Gu J, et al. Dosimetric study of a respiratory gating technique based on four-dimensional computed tomography in non-small-cell lung cancer. J Radiat Res. 2014;55(3):583–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schmidt ML, Hoffmann L, Kandi M, Moller DS, Poulsen PR. Dosimetric impact of respiratory motion, interfraction baseline shifts, and anatomical changes in radiotherapy of non-small cell lung cancer. Acta Oncol. 2013;52(7):1490–6.

    Article  PubMed  Google Scholar 

  41. Spoelstra FO, van der Weide L, van Sornsen de Koste JR, Vincent A, Slotman BJ, Senan S. Feasibility of using anatomical surrogates for predicting the position of lung tumours. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;102(2):287–9.

    Article  Google Scholar 

  42. Liao ZX, Komaki RR, Thames Jr HD, Liu HH, Tucker SL, Mohan R, Martel MK, Wei X, Yang K, Kim ES, et al. Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2010;76(3):775–81.

    Article  PubMed  Google Scholar 

  43. Josipovic M, Aznar MC, Persson GF. Deep inspiration breath hold radiotherapy of lung cancer: the good, the bad and the ugly case. Acta Oncol. 2014;53(10):1446–8.

    Article  PubMed  Google Scholar 

  44. Bolukbasi Y, Saglam Y, Selek U, Topkan E, Kataria A, Unal Z, Alpan V. Reproducible deep-inspiration breath-hold irradiation with forward intensity-modulated radiotherapy for left-sided breast cancer significantly reduces cardiac radiation exposure compared to inverse intensity-modulated radiotherapy. Tumori. 2014;100(2):169–78.

    PubMed  Google Scholar 

  45. Hayden AJ, Rains M, Tiver K. Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer. J Med Imaging Radiat Oncol. 2012;56(4):464–72.

    Article  PubMed  Google Scholar 

  46. Yeung R, Conroy L, Long K, Walrath D, Li H, Smith W, Hudson A, Phan T. Cardiac dose reduction with deep inspiration breath hold for left-sided breast cancer radiotherapy patients with and without regional nodal irradiation. Radiat Oncol (London, England). 2015;10(1):200.

    Article  Google Scholar 

  47. Berson AM, Emery R, Rodriguez L, Richards GM, Ng T, Sanghavi S, Barsa J. Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. Int J Radiat Oncol Biol Phys. 2004;60(2):419–26.

    Article  PubMed  Google Scholar 

  48. Scotti VML, Saieva C, Agresti B, Meattini I, Desideri I, Cecchini S, Bertocci S, Franzese C, De Luca Cardillo C, Zei G, Loi M, Greto D, Mangoni M, Bonomo P, Livi L, Biti GP. Impact of a breathing-control system on target margins and normal-tissue sparing in the treatment of lung cancer: experience at the radiotherapy unit of Florence University. Radiol Med. 2014;119:13–9.

    Article  PubMed  Google Scholar 

  49. Partridge M, Tree A, Brock J, McNair H, Fernandez E, Panakis N, Brada M. Improvement in tumour control probability with active breathing control and dose escalation: a modelling study. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2009;91(3):325–9.

    Article  Google Scholar 

  50. Gagel B, Demirel C, Kientopf A, Pinkawa M, Piroth M, Stanzel S, Breuer C, Asadpour B, Jansen T, Holy R, et al. Active breathing control (ABC): determination and reduction of breathing-induced organ motion in the chest. Int J Radiat Oncol Biol Phys. 2007;67(3):742–9.

    Article  PubMed  Google Scholar 

  51. Wilson EM, Williams FJ, Lyn BE, Wong JW, Aird EG. Validation of active breathing control in patients with non-small-cell lung cancer to be treated with CHARTWEL. Int J Radiat Oncol Biol Phys. 2003;57(3):864–74.

    Article  PubMed  Google Scholar 

  52. Smith RL, Yang D, Lee A, Mayse ML, Low DA, Parikh PJ. The correlation of tissue motion within the lung: implications on fiducial based treatments. Med Phys. 2011;38(11):5992–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chi A, Nguyen NP, Komaki R. The potential role of respiratory motion management and image guidance in the reduction of severe toxicities following stereotactic ablative radiation therapy for patients with centrally located early stage non-small cell lung cancer or lung metastases. Front Oncol. 2014;4:151.

    PubMed  PubMed Central  Google Scholar 

  54. Heinzerling JH, Anderson JF, Papiez L, Boike T, Chien S, Zhang G, Abdulrahman R, Timmerman R. Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiat Oncol Biol Phys. 2008;70(5):1571–8.

    Article  PubMed  Google Scholar 

  55. Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, Guerrero TM, Komaki R, Cox JD, Mohan R. Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1268–79.

    Article  PubMed  Google Scholar 

  56. Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, Niibe Y, Karasawa K, Hayakawa K, Takai Y, et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2007;2(7 Suppl 3):S94–100.

    Google Scholar 

  57. Bouilhol G, Ayadi M, Rit S, Thengumpallil S, Schaerer J, Vandemeulebroucke J, Claude L, Sarrut D. Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys Med PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys. 2013;29(4):333–40.

    Google Scholar 

  58. Negoro Y, Nagata Y, Aoki T, Mizowaki T, Araki N, Takayama K, Kokubo M, Yano S, Koga S, Sasai K, et al. The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiat Oncol Biol Phys. 2001;50(4):889–98.

    Article  CAS  PubMed  Google Scholar 

  59. Bissonnette JP, Franks KN, Purdie TG, Moseley DJ, Sonke JJ, Jaffray DA, Dawson LA, Bezjak A. Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. Int J Radiat Oncol Biol Phys. 2009;75(3):688–95.

    Article  PubMed  Google Scholar 

  60. Mampuya WA, Matsuo Y, Ueki N, Nakamura M, Mukumoto N, Nakamura A, Iizuka Y, Kishi T, Mizowaki T, Hiraoka M. The impact of abdominal compression on outcome in patients treated with stereotactic body radiotherapy for primary lung cancer. J Radiat Res. 2014;55(5):934–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Yu XL, Zheng GF, Zhao F. Intensity-modulated radiotherapy and volumetric-modulated arc therapy have distinct clinical advantages in non-small cell lung cancer treatment. Med Oncol (Northwood, London, England). 2015;32(4):94.

    Article  CAS  Google Scholar 

  62. Broderick M, Menezes G, Leech M, Coffey M, Appleyard R. A comparison of kilovoltage and megavoltage cone beam CT in radiotherapy. J Radiother Pract. 2007;6(03):173–8.

    Article  Google Scholar 

  63. Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, Mijnheer B, Khoo V. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;94(2):129–44.

    Article  Google Scholar 

  64. McAleese J, Baluch S, Drinkwater K. The quality of curative-intent radiotherapy for non-small cell lung cancer in the UK. Clin Oncol. 2015;27(9):498–504.

    Article  CAS  Google Scholar 

  65. Chang J, Mageras GS, Yorke E, De Arruda F, Sillanpaa J, Rosenzweig KE, Hertanto A, Pham H, Seppi E, Pevsner A, et al. Observation of interfractional variations in lung tumor position using respiratory gated and ungated megavoltage cone-beam computed tomography. Int J Radiat Oncol Biol Phys. 2007;67(5):1548–58.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Juhler-Nottrup T, Korreman SS, Pedersen AN, Persson GF, Aarup LR, Nystrom H, Olsen M, Tarnavski N, Specht L. Interfractional changes in tumour volume and position during entire radiotherapy courses for lung cancer with respiratory gating and image guidance. Acta Oncol. 2008;47(7):1406–13.

    Article  CAS  PubMed  Google Scholar 

  67. Bissonnette JP, Purdie TG, Higgins JA, Li W, Bezjak A. Cone-beam computed tomographic image guidance for lung cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2009;73(3):927–34.

    Article  PubMed  Google Scholar 

  68. Higgins J, Bezjak A, Hope A, Panzarella T, Li W, Cho JB, Craig T, Brade A, Sun A, Bissonnette JP. Effect of image-guidance frequency on geometric accuracy and setup margins in radiotherapy for locally advanced lung cancer. Int J Radiat Oncol Biol Phys. 2011;80(5):1330–7.

    Article  PubMed  Google Scholar 

  69. Nielsen TB, Hansen VN, Westberg J, Hansen O, Brink C. A dual centre study of setup accuracy for thoracic patients based on cone-beam CT data. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;102(2):281–6.

    Article  Google Scholar 

  70. Owen R, Kron T, Foroudi F, Milner A, Cox J, Duchesne G, Cleeve L, Zhu L, Cramb J, Sparks L, et al. Comparison of CT on rails with electronic portal imaging for positioning of prostate cancer patients with implanted fiducial markers. Int J Radiat Oncol Biol Phys. 2009;74(3):906–12.

    Article  PubMed  Google Scholar 

  71. Yin F, Wong J. The role of in-room kv x-ray imaging for patient setup and target localization: Report of Task group 104. College Park, M: AAPM; 2009.

    Google Scholar 

  72. Bayman N, Blackhall F, McCloskey P, Taylor P, Faivre-Finn C. How can we optimise concurrent chemoradiotherapy for inoperable stage III non-small cell lung cancer? Lung Cancer. 2014;83(2):117–25.

    Article  PubMed  Google Scholar 

  73. Chang JY. Intensity-modulated radiotherapy, not 3 dimensional conformal, is the preferred technique for treating locally advanced lung cancer. Semin Radiat Oncol. 2015;25(2):110–6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Machtay M, Paulus R, Moughan J, Komaki R, Bradley JE, Choy H, Albain K, Movsas B, Sause WT, Curran WJ. Defining local-regional control and its importance in locally advanced non-small cell lung carcinoma. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2012;7(4):716–22.

    Google Scholar 

  75. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, Bogart JA, Dobelbower MC, Bosch WR, Galvin JM et al. Comparison of 3-D conformal and intensity modulated radiation therapy outcomes for locally advanced non-small cell lung cancer in NRG oncology/RTOG 0617. Int J Radiat Oncol Biol Phys. 2015;93(3):S1–2.

    Google Scholar 

  77. Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL. Potential for reduced toxicity and dose escalation in the treatment of inoperable non–small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys. 2003;57(3):875–90.

    Article  PubMed  Google Scholar 

  78. Sura S, Gupta V, Yorke E, Jackson A, Amols H, Rosenzweig KE. Intensity-modulated radiation therapy (IMRT) for inoperable non-small cell lung cancer: the Memorial Sloan-Kettering Cancer Center (MSKCC) experience. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2008;87(1):17–23.

    Article  Google Scholar 

  79. Uyterlinde W, Belderbos J, Baas C, van Werkhoven E, Knegjens J, Baas P, Smit A, Rikers C, van den Heuvel M. Prediction of acute toxicity grade >/= 3 in patients with locally advanced non-small-cell lung cancer receiving intensity modulated radiotherapy and concurrent low-dose Cisplatin. Clin Lung Cancer. 2013;14(5):541–8.

    Article  CAS  PubMed  Google Scholar 

  80. Yom SS, Liao Z, Liu HH, Tucker SL, Hu CS, Wei X, Wang X, Wang S, Mohan R, Cox JD, et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  81. Shirvani SM, Juloori A, Allen PK, Komaki R, Liao Z, Gomez D, O’Reilly M, Welsh J, Papadimitrakopoulou V, Cox JD, et al. Comparison of 2 common radiation therapy techniques for definitive treatment of small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013;87(1):139–47.

    Article  PubMed  Google Scholar 

  82. Movsas B, Hu C, Sloan J, Bradley JD, Kavadi VS, Narayan S, Robinson C, Johnson DW, Paulus R, Choy H. Quality of Life (QOL) Analysis of the Randomized Radiation (RT) Dose-Escalation NSCLC Trial (RTOG 0617): the rest of the story. Int J Radiat Oncol Biol Phys. 2013;87(2):S1–2.

    Google Scholar 

  83. Jiang X, Li T, Liu Y, Zhou L, Xu Y, Zhou X, Gong Y. Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat Oncol. 2011;6:140.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chan OS, Lee MC, Hung AW, Chang AT, Yeung RM, Lee AW. The superiority of hybrid-volumetric arc therapy (VMAT) technique over double arcs VMAT and 3D-conformal technique in the treatment of locally advanced non-small cell lung cancer – a planning study. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;101(2):298–302.

    Article  Google Scholar 

  85. Holt A, van Vliet-Vroegindeweij C, Mans A, Belderbos JS, Damen EM. Volumetric-modulated arc therapy for stereotactic body radiotherapy of lung tumors: a comparison with intensity-modulated radiotherapy techniques. Int J Radiat Oncol Biol Phys. 2011;81(5):1560–7.

    Article  PubMed  Google Scholar 

  86. Dickey M, Roa W, Drodge S, Ghosh S, Murray B, Scrimger R, Gabos Z. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer. Med Dosim Off J Am Assoc Med Dosimet. 2015;40(4):347–51. Epub 2015/05/28.

    Google Scholar 

  87. McGrath SD, Matuszak MM, Yan D, Kestin LL, Martinez AA, Grills IS. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: a dosimetric and treatment efficiency analysis. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;95(2):153–7.

    Article  Google Scholar 

  88. Scorsetti M, Navarria P, Mancosu P, Alongi F, Castiglioni S, Cavina R, Cozzi L, Fogliata A, Pentimalli S, Tozzi A, et al. Large volume unresectable locally advanced non-small cell lung cancer: acute toxicity and initial outcome results with rapid arc. Radiat Oncol. 2010;5:94.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Song CH, Pyo H, Moon SH, Kim TH, Kim DW, Cho KH. Treatment-related pneumonitis and acute esophagitis in non-small-cell lung cancer patients treated with chemotherapy and helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;78(3):651–8.

    Article  PubMed  Google Scholar 

  90. Shi A, Zhu G, Wu H, Yu R, Li F, Xu B. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol. 2010;5:35.

    Article  PubMed  PubMed Central  Google Scholar 

  91. van Baardwijk A, Wanders S, Boersma L, Borger J, Ollers M, Dingemans AM, Bootsma G, Geraedts W, Pitz C, Lunde R, et al. Mature results of an individualized radiation dose prescription study based on normal tissue constraints in stages I to III non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(8):1380–6.

    Article  Google Scholar 

  92. Tvilum M, Khalil AA, Møller DS, Hoffmann L, Knap MM. Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncol. 2015;54(9):1430–7. Epub 2015/07/24.

    Google Scholar 

  93. RTOG 1106/ACRIN 6697, Randomized phase II trial of individualized adaptive radiotherapy using during treatment FDG-PET/CT and modern technology in locally advanced Non-Small Cell Lung Cancer (NSCLC). [https://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=1106].

  94. Wink KC, Roelofs E, Solberg T, Lin L, Simone 2nd CB, Jakobi A, Richter C, Lambin P, Troost EG. Particle therapy for non-small cell lung tumors: where do we stand? A systematic review of the literature. Front Oncol. 2014;4:292.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Berman AT, James SS, Rengan R. Proton beam therapy for non-small cell lung cancer: current clinical evidence and future directions. Cancers. 2015;7(3):1178–90.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dowdell S, Grassberger C, Sharp GC, Paganetti H. Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters. Phys Med Biol. 2013;58(12):4137–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gomez DR, Chang JY. Accelerated dose escalation with proton beam therapy for non-small cell lung cancer. J Thorac Dis. 2014;6(4):348–55.

    PubMed  PubMed Central  Google Scholar 

  98. Hoppe BS, Flampouri S, Henderson RH, Pham D, Bajwa AA, D’Agostino H, Huh SN, Li Z, Mendenhall NP, Nichols RC. Proton therapy with concurrent chemotherapy for non-small-cell lung cancer: technique and early results. Clin Lung Cancer. 2012;13(5):352–8.

    Article  PubMed  Google Scholar 

  99. Hoppe BS, Huh S, Flampouri S, Nichols RC, Oliver KR, Morris CG, Mendenhall NP, Li Z. Double-scattered proton-based stereotactic body radiotherapy for stage I lung cancer: a dosimetric comparison with photon-based stereotactic body radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2010;97(3):425–30.

    Article  Google Scholar 

  100. Kadoya N, Obata Y, Kato T, Kagiya M, Nakamura T, Tomoda T, Takada A, Takayama K, Fuwa N. Dose-volume comparison of proton radiotherapy and stereotactic body radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;79(4):1225–31.

    Article  PubMed  Google Scholar 

  101. Nakayama H, Satoh H, Sugahara S, Kurishima K, Tsuboi K, Sakurai H, Ishikawa S, Tokuuye K. Proton beam therapy of Stage II and III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;81(4):979–84.

    Article  PubMed  Google Scholar 

  102. Mohan R, Zhang X, Matney J, Bluett J, Dong L, Balter P, Engelsman M, Choi N, Komaki R, Liao Z. IMRT vs. Passively Scattered Proton Therapy (PSPT) for Locally Advanced Non-small Cell Lung CA (LA NSCLC) randomized trial – is there equipoise? Int J Radiat Oncol Biol Phys, 2010;78(3):S201–S202.

    Google Scholar 

  103. Grassberger C, Dowdell S, Sharp G, Paganetti H. Motion mitigation for lung cancer patients treated with active scanning proton therapy. Med Phys. 2015;42(5):2462–9.

    Article  PubMed  Google Scholar 

  104. Li Y, Kardar L, Li X, Li H, Cao W, Chang JY, Liao L, Zhu RX, Sahoo N, Gillin M, et al. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014;41(2):021721.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Grassberger C, Dowdell S, Lomax A, Sharp G, Shackleford J, Choi N, Willers H, Paganetti H. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2013;86(2):380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dowdell S, Grassberger C, Paganetti H. Four-dimensional Monte Carlo simulations demonstrating how the extent of intensity-modulation impacts motion effects in proton therapy lung treatments. Med Phys. 2013;40(12):121713.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Stuschke M, Kaiser A, Pottgen C, Lubcke W, Farr J. Potentials of robust intensity modulated scanning proton plans for locally advanced lung cancer in comparison to intensity modulated photon plans. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2012;104(1):45–51.

    Article  Google Scholar 

  108. Zhu Z, Liu W, Gillin M, Gomez DR, Komaki R, Cox JD, Mohan R, Chang JY. Assessing the robustness of passive scattering proton therapy with regard to local recurrence in stage III non-small cell lung cancer: a secondary analysis of a phase II trial. Radiat Oncol. 2014;9:108.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Bush DA, Cheek G, Zaheer S, Wallen J, Mirshahidi H, Katerelos A, Grove R, Slater JD. High-dose hypofractionated proton beam radiation therapy is safe and effective for central and peripheral early-stage non-small cell lung cancer: results of a 12-year experience at Loma Linda University Medical Center. Int J Radiat Oncol Biol Phys. 2013;86(5):964–8.

    Article  PubMed  Google Scholar 

  110. Chang JY, Komaki R, Lu C, Wen HY, Allen PK, Tsao A, Gillin M, Mohan R, Cox JD. Phase 2 study of high-dose proton therapy with concurrent chemotherapy for unresectable stage III nonsmall cell lung cancer. Cancer. 2011;117(20):4707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Oshiro Y, Mizumoto M, Okumura T, Hashimoto T, Fukumitsu N, Ohkawa A, Kanemoto A, Hashii H, Ohno T, Sakae T, et al. Results of proton beam therapy without concurrent chemotherapy for patients with unresectable stage III non-small cell lung cancer. J Thor Oncol Off Publ Int Assoc Stud Lung Cancer. 2012;7(2):370–5.

    Google Scholar 

  112. Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X, Allen PK, Lu C, Gillin M, Cox JD. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer. 2011;117(13):3004–13.

    Article  PubMed  Google Scholar 

  113. RTOG 1308, Phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II–IIIB NSCLC NCI/Local Protocol #: RTOG-1308/RTOG 1308.2015. In.

    Google Scholar 

  114. Benedict SH, Yenice KM, Followill D, Galvin JM, Hinson W, Kavanagh B, Keall P, Lovelock M, Meeks S, Papiez L, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078–101.

    Article  PubMed  Google Scholar 

  115. Potters L, Kavanagh B, Galvin JM, Hevezi JM, Janjan NA, Larson DA, Mehta MP, Ryu S, Steinberg M, Timmerman R, et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2010;76(2):326–32.

    Article  PubMed  Google Scholar 

  116. Kirkbride P, Cooper T. Stereotactic body radiotherapy. Guidelines for commissioners, providers and clinicians: a national report. Clin Oncol. 2011;23(3):163–4.

    Article  CAS  Google Scholar 

  117. Sahgal A, Roberge D, Schellenberg D, Purdie TG, Swaminath A, Pantarotto J, Filion E, Gabos Z, Butler J, Letourneau D, et al. The Canadian Association of Radiation Oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Oncol. 2012;24(9):629–39.

    Article  CAS  Google Scholar 

  118. Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, Michalski J, Galvin JM. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(4):1235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chetty IJ, Curran B, Cygler JE, DeMarco JJ, Ezzell G, Faddegon BA, Kawrakow I, Keall PJ, Liu H, Ma CM, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys. 2007;34(12):4818–53.

    Article  PubMed  Google Scholar 

  120. Rosenzweig KE, Chang JY, Chetty IJ, Decker RH, Ginsburg ME, Kestin LL, Kong FM, Lally BE, Langer CJ, Movsas B, et al. ACR appropriateness criteria nonsurgical treatment for non-small-cell lung cancer: poor performance status or palliative intent. J Am College Radiol JACR. 2013;10(9):654–64.

    Article  Google Scholar 

  121. Baba F, Shibamoto Y, Tomita N, Ikeya-Hashizume C, Oda K, Ayakawa S, Ogino H, Sugie C. Stereotactic body radiotherapy for stage I lung cancer and small lung metastasis: evaluation of an immobilization system for suppression of respiratory tumor movement and preliminary results. Radiat Oncol. 2009;4:15.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guckenberger M, Andratschke N, Alheit H, Holy R, Moustakis C, Nestle U, Sauer O. Deutschen Gesellschaft fur R: definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol Organ Dtsch Rontgengesellschaft. 2014;190(1):26–33.

    Article  CAS  Google Scholar 

  123. Onishi H, Shirato H, Nagata Y, Hiraoka M, Fujino M, Gomi K, Karasawa K, Hayakawa K, Niibe Y, Takai Y et al. Stereotactic Body Radiotherapy (SBRT) for operable stage I non–small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol Phys, 2007;81(5):1352–8.

    Google Scholar 

  124. Feigenberg SJ, Sharma N, Wang L, Cohen R, Buyyounouski M, Lally B, Movsas B. Phase I dose escalation trial of image guided stereotactic body radiotherapy for lung tumors. Int J Radiat Oncol Biol Phys, 2008;72(1):S114.

    Google Scholar 

  125. Sharma NK, Ruth K, Konski AA, Buyyounouski MK, Nicolaou N, Lally BE, Yu JQ, Langer CJ, Movsas B, Feigenberg SJ. Low morbidity and excellent local control using Image Guided Stereotactic Body Radiotherapy (IGSBRT) for lung tumors. Int J Radiat Oncol Biol Phys, 2008;72(1):S454.

    Google Scholar 

  126. ACR Appropriateness Criteria®; early-stage non-small-cell lung cancer [http://www.guideline.gov/content.aspx?id=47693].

  127. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Timmerman RD, Hu C, Michalski J, Straube W, Galvin J, Johnstone D, Bradley J, Barriger R, Bezjak A, Videtic GM, et al. Long-term Results of RTOG 0236: a phase II trial of Stereotactic Body Radiation Therapy (SBRT) in the treatment of patients with medically inoperable stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;90(1):S30.

    Article  Google Scholar 

  129. Mutter RW, Liu F, Abreu A, Yorke E, Jackson A, Rosenzweig KE. Dose–volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer. Int J Radiat Oncol Biol Phys, 2011;82(5):1783–90.

    Google Scholar 

  130. Dunlap NE, Cai J, Biedermann GB, Yang W, Benedict SH, Sheng K, Schefter TE, Kavanagh BD, Larner JM. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys, 2008;76(3):796–801.

    Google Scholar 

  131. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J, Ewing M, Abdulrahman R, DesRosiers C, Williams M, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(30):4833–9.

    Article  Google Scholar 

  132. Chang JY, Bezjak A, Mornex F. Stereotactic ablative radiotherapy for centrally located early stage non-small-cell lung cancer: what we have learned. J Thorac Oncol Off Publ Int Assoc Stud Lung Cancer. 2015;10(4):577–85.

    CAS  Google Scholar 

  133. Chang JY, Li QQ, Xu QY, Allen PK, Rebueno N, Gomez DR, Balter P, Komaki R, Mehran R, Swisher SG, et al. Stereotactic ablative radiation therapy for centrally located early stage or isolated parenchymal recurrences of non-small cell lung cancer: how to fly in a “no fly zone”. Int J Radiat Oncol Biol Phys. 2014;88(5):1120–8.

    Article  PubMed  Google Scholar 

  134. Heal C, Ding W, Lamond J, Wong M, Lanciano R, Su S, Yang J, Feng J, Arrigo S, Markiewicz D, et al. Definitive treatment of early-stage non-small cell lung cancer with stereotactic ablative body radiotherapy in a community cancer center setting. Front Oncol. 2015;5.

    Google Scholar 

  135. Chang JY, Senan S, Paul MA, Mehran RJ, Louie AV, Balter P, Groen HJM, McRae SE, Widder J, Feng L et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol, 2015;16(6):630–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Selek MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolukbasi, Y., Sezen, D., Topkan, E., Selek, U. (2016). Modern Radiotherapy Techniques in Lung Cancer. In: Ozyigit, G., Selek, U., Topkan, E. (eds) Principles and Practice of Radiotherapy Techniques in Thoracic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-319-28761-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28761-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28759-1

  • Online ISBN: 978-3-319-28761-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics