Skip to main content

Chargaff’s Cluster Rule

  • Chapter
  • First Online:
Evolutionary Bioinformatics
  • 1744 Accesses

Abstract

The two DNA strands of a gene are the mRNA-synonymous “coding” (codon-containing) strand and the mRNA-template strand. Clusters of clusters of purines are general features of coding strands of DNA, which usually contain an excess of purines (“purine-loading”). Accordingly, since purines pair with pyrimidines, complementary clusters of clusters of pyrimidines are general features of the corresponding template strands, which usually contain an excess of pyrimidines (“pyrimidine-loading”). The clustering of clusters within a gene locally violates Chargaff’s PR2. This permits prediction of transcriptionally active regions in uncharted DNA and, in some cases, the origins and termination sites of DNA replication. RNA transcription and DNA replication appear to proceed optimally when the enzymes performing these functions (polymerases) are moving in the same direction along the DNA template. Since the stems of nucleic acid stem-loop structures require equal numbers of complementary bases, clusters tend to occupy loop regions. Here they would militate against the loop-loop ‘kissing’ interactions that precede the formation of nucleic acid duplexes. Thus, the loading of loops with bases that do not strongly base-pair with each other should decrease unproductive interactions between nucleic acids, so leaving them freer to engage in productive interactions, such as those between mRNAs and tRNAs that are critical for protein synthesis.

Another consequence of our studies on deoxyribonucleic acids of animal and plant origin is the conclusion that at least 60% of the pyrimidines occur as oligonucleotide tracts containing three or more pyrimidines in a row; and a corresponding statement must, owing to the equality relationship [between the two strands], apply also to the purines.

Erwin Chargaff (1963) [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chargaff E (1963) Essays on Nucleic Acids. Elsevier, Amsterdam, pp 124, 148

    Google Scholar 

  2. Szybalski W, Kubinski H, Sheldrick P (1966) Pyrimidine clusters on the transcribing strands of DNA and their possible role in the initiation of RNA synthesis. Cold Spring Harbor Symposium in Quantitative Biology 31:123–127

    Article  CAS  Google Scholar 

  3. Smithies O, Engels WR, Devereux JR, Slightom JL, Shen S (1981) Base substitutions, length differences and DNA strand asymmetries in the human G-lambda and A-lambda fetal globin gene region. Cell 26:345–353

    Article  CAS  PubMed  Google Scholar 

  4. Saul A, Battistutta D (1988) Codon usage in Plasmodium falciparum. Molecular Biochemistry and Parasitology 27:35–42

    Article  CAS  Google Scholar 

  5. Bell SJ, Forsdyke DR (1999) Deviations from Chargaff’s second parity rule correlate with direction of transcription. Journal of Theoretical Biology 197:63–76

    Article  CAS  PubMed  Google Scholar 

  6. Lao PJ, Forsdyke DR (2000) Thermophilic bacteria strictly obey Szybalski’s transcription direction rule and politely purine-load RNAs with both adenine and guanine. Genome Research 10:1–20

    Article  Google Scholar 

  7. Schattner P (2002) Searching for RNA genes using base-composition statistics. Nucleic Acids Research 30:2076–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mahen EM, Watson PY, Cottrell JW, Fedor MJ (2010) mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLOS Biology 8:e1000307

    Article  PubMed  PubMed Central  Google Scholar 

  9. Szybalski W, et al. (1969) Transcriptional controls in developing bacteriophages. Journal of Cellular Physiology 74, supplement 1:33–70

    Article  CAS  PubMed  Google Scholar 

  10. Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:65–77

    Article  CAS  PubMed  Google Scholar 

  11. Tillier ERM, Collins RA (2000) Replication orientation affects the rate and direction of bacterial gene evolution. Journal of Molecular Evolution 51:459–463

    CAS  PubMed  Google Scholar 

  12. Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K-I, Watanabe K (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. Molecular Biology and Evolution 32:511–520

    Article  CAS  Google Scholar 

  13. Galtier N (2004) Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends in Genetics 20:347–349

    Article  CAS  PubMed  Google Scholar 

  14. Brewer BJ (1988) When polymerases collide. Cell 53:679–686

    Article  CAS  PubMed  Google Scholar 

  15. French S (1992) Consequences of replication fork movement through transcription units in vivo. Science 258:1362–1365

    Article  CAS  PubMed  Google Scholar 

  16. Olavarrieta L, Hernández P, Krimer DB, Schvartzman JB (2002) DNA knotting caused by head-on collision of transcription and replication. Journal of Molecular Biology 322:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Necsulea A, Guillet C, Cadoret J-C, Prioleau M-N, Duret L (2009) The relationship between DNA replication and human genome organization. Molecular Biology & Evolution 26:729–741

    Article  CAS  Google Scholar 

  18. Chargaff E (1951) Structure and function of nucleic acids as cell constituents. Federation Proceedings 10:654–659

    CAS  PubMed  Google Scholar 

  19. Elson D, Chargaff E (1955) Evidence of common regularities in the composition of pentose nucleic acids. Biochemica Biophysica Acta 17:367–376

    Article  CAS  Google Scholar 

  20. Wang H-C, Hickey DA (2002) Evidence for strong selective constraints acting on the nucleotide composition of 16S ribosomal RNA genes. Nucleic Acids Research 30:2501–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forsdyke DR, Bell SJ (2004) Purine-loading, stem-loops, and Chargaff’s second parity rule: a discussion of the application of elementary principles to early chemical observations. Applied Bioinformatics 3:3–8

    Article  CAS  PubMed  Google Scholar 

  22. Eguchi Y, Itoh T, Tomizawa J (1991) Antisense RNA. Annual Reviews of Biochemistry 60:631–652

    Article  CAS  Google Scholar 

  23. Brunel C, Marquet R, Romby P, Ehresmann C (2002) RNA loop-loop interactions as dynamic functional motifs. Biochimie 84:925–944

    Article  CAS  PubMed  Google Scholar 

  24. Cristillo AD, Heximer SP, Forsdyke DR (1996) A ‘stealth’ approach to inhibition of lymphocyte activation by oligonucleotides complementary to the putative G0/G1 switch regulatory gene G0S30/EGR1/ZFP6. DNA and Cell Biology 15:561–570

    Article  CAS  PubMed  Google Scholar 

  25. Liddicoat BJ et al. (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–1120

    Article  CAS  PubMed  Google Scholar 

  26. Paz A, Mester D, Baca I, Nevo E, Korol A (2004) Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes. Proceedings of the National Academy of Sciences USA 101:2951–2956

    Article  CAS  Google Scholar 

  27. Holt IJ, Jacobs HT (2014) Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. BioEssays 36:1024–1031 [The RNA-DNA duplex structure is known as an “R-loop.”]

    Google Scholar 

  28. Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proceedings of the National Academy of Sciences USA 103:1283–1288

    Article  CAS  Google Scholar 

  29. Mitra K, Roysam B, Lin G, Lippincott-Schwartz J (2009) A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences USA 106:11960–11965

    Article  CAS  Google Scholar 

  30. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Louis EJ (2009) Origins of reproductive isolation. Nature 457:549–550

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Forsdyke, D.R. (2016). Chargaff’s Cluster Rule. In: Evolutionary Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-28755-3_6

Download citation

Publish with us

Policies and ethics