Skip to main content

Atlas and Anatomy of PET/CT

  • Chapter
  • First Online:
Atlas and Anatomy of PET/MRI, PET/CT and SPECT/CT

Abstract

PET-CT is a combined system of the positron emission tomography (PET) and computed tomography (CT) scanner, which enables co-registered images from both devices. By PET-CT, functional imaging obtained by PET, which shows metabolic or biochemical activity in the body, can be correlated with the anatomic imaging obtained by a CT scanner. PET-CT has revolutionized medical diagnosis by adding the precision of anatomic localization to functional imaging. Many diagnostic imaging procedures in oncology (e.g., cancer staging, surgical planning, radiation therapy) and neurology (Alzheimer disease, Parkinson disease) have been changed rapidly under the influence of PET-CT availability. In this chapter, oncologic PET/CT cases are mainly covered. The cases are presented in multiple slices with annotation of important structures. The first part of this chapter consists of fludeoxyglucose (FDG) PET/CT cases, and the second part consists of non-FDG PET/CT cases. In the non-FDG PET/CT portion, several neurologic application of PET/CT are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung J-K, Kim Y, Kim S-K, Lee Y, Paek S, Yeo J et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–82

    Article  CAS  PubMed  Google Scholar 

  2. Paidpally V, Tahari AK, Lam S, Alluri K, Marur S, Koch W et al (2013) Addition of 18F-FDG PET/CT to clinical assessment predicts overall survival in HNSCC: a retrospective analysis with follow-up for 12 years. J Nucl Med 54:2039–45

    Article  CAS  PubMed  Google Scholar 

  3. Acar T, Savas R, Kocacelebi K, Guneyli S (2014) Supraclavicular lymphadenopathy: should it be perceived as the Virchow’s node of head and neck tumors? Oncol Res Treat 37:726–30

    Article  PubMed  Google Scholar 

  4. Joo YH, Yoo IR, Cho KJ, Park JO, Nam IC, Kim CS et al (2014) The value of preoperative 18F‐FDG PET/CT for assessing the contralateral neck in head and neck cancer patients with unilateral node metastasis (N1‐3). Clin Otolaryngol 39:338–44

    Article  PubMed  Google Scholar 

  5. Arya S, Rane P, Deshmukh A (2014) Oral cavity squamous cell carcinoma: role of pretreatment imaging and its influence on management. Clin Radiol 69:916–30

    Article  CAS  PubMed  Google Scholar 

  6. Rosen EL, Eubank WB, Mankoff DA (2007) FDG PET, PET/CT, and breast cancer imaging 1. Radiographics 27:S215–9

    Article  PubMed  Google Scholar 

  7. Gaeta C, Vercher-Conejero J, Sher A, Kohan A, Rubbert C, Avril N (2013) Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers. Q J Nucl Med Mol Imaging 57:352–66

    CAS  PubMed  Google Scholar 

  8. Lu Y-Y, Chen J-H, Liang J-A, Chu S, Lin W-Y, Kao C-H (2014) 18F-FDG PET or PET/CT for detecting extensive disease in small-cell lung cancer: a systematic review and meta-analysis. Nucl Med Commun 35:697–703

    Article  CAS  PubMed  Google Scholar 

  9. Antoniou AJ, Marcus C, Tahari AK, Wahl RL, Subramaniam RM (2014) Follow-up or surveillance 18F-FDG PET/CT and survival outcome in lung cancer patients. J Nucl Med 55:1062–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heusch P, Buchbender C, Köhler J, Nensa F, Gauler T, Gomez B et al (2014) Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT. J Nucl Med 55:373–8

    Article  CAS  PubMed  Google Scholar 

  11. De Wever W, Verschakelen J, Coolen J (2014) Role of imaging in diagnosis, staging and follow-up of lung cancer. Curr Opin Pulm Med 20:385–92

    Article  PubMed  Google Scholar 

  12. Hayes SA, Plodkowski AJ, Ginsberg MS (2014) Imaging of thoracic cavity tumors. Surg Oncl Clin N Am 23:709–33

    Article  Google Scholar 

  13. Prabhakar HB, Rabinowitz CB, Gibbons FK, O'Donnell WJ, Shepard J-AO, Aquino SL (2008) Imaging features of sarcoidosis on MDCT, FDG PET, and PET/CT. Am J Roentgenol 190(3 Suppl):S1–6

    Article  Google Scholar 

  14. Soussan M, Augier A, Brillet P-Y, Weinmann P, Valeyre D (2014) Functional imaging in extrapulmonary sarcoidosis: FDG-PET/CT and MR features. Clin Nucl Med 39:e146–59

    PubMed  Google Scholar 

  15. Al-Thani H, El-Menyar A, Rasul KI, Al-Sulaiti M, El-Mabrok J, Hajaji K et al (2014) Clinical presentation, management and outcomes of gastrointestinal stromal tumors. Int J Surg 12:1127–33

    Article  PubMed  Google Scholar 

  16. Kim HO, Kim JE, Bae KS, Choi BH, Jeong CY, Lee JS (2014) Imaging findings of primary malignant gastrointestinal stromal tumor of the liver. Jpn J Radiol 32:365–70

    Article  PubMed  Google Scholar 

  17. Shulkin BL, Chang E, Strouse PJ, Bloom DA, Hutchinson RJ (1997) PET FDG studies of Wilms tumors. J Pediatr Hematol Oncol 19:334–8

    Article  CAS  PubMed  Google Scholar 

  18. Hossain AM, Shulkin BL, Gelfand MJ, Bashir H, Daw NC, Sharp SE et al (2010) FDG positron emission tomography/computed tomography studies of Wilms’ tumor. Eur J Nucl Med Mol Imaging 37:1300–8

    Article  Google Scholar 

  19. Park K, Jang G, Baek S, Song H (2013) Usefulness of combined PET/CT to assess regional lymph node involvement in gastric cancer. Tumori 100:201–6

    Google Scholar 

  20. Yun M (2014) Imaging of gastric cancer metabolism using 18F-FDG PET/CT. J Gastric Cancer 14:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Xin J, Zhao Z, Guo Q, Yu S, Xu W et al (2013) Value of 18F-FDG PET/CT in the diagnosis of primary gastric cancer via stomach distension. Eur J Radiol 82:e302–6

    Article  PubMed  Google Scholar 

  22. Chung HW, Lee S-Y, Han HS, Park HS, Yang JH, Lee HH et al (2013) Gastric cancers with microsatellite instability exhibit high fluorodeoxyglucose uptake on positron emission tomography. Gastric Cancer 16:185–92

    Article  PubMed  Google Scholar 

  23. Rijkers A, Valkema R, Duivenvoorden H, van Eijck C (2014) Usefulness of F-18-fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis. Eur J Surg Oncol 40:794–804

    Article  CAS  PubMed  Google Scholar 

  24. Strobel K, Heinrich S, Bhure U, Soyka J, Veit-Haibach P, Pestalozzi BC et al (2008) Contrast-enhanced 18F-FDG PET/CT: 1-stop-shop imaging for assessing the resectability of pancreatic cancer. J Nucl Med 49:1408–13

    Article  PubMed  Google Scholar 

  25. Epelbaum R, Frenkel A, Haddad R, Sikorski N, Strauss LG, Israel O et al (2013) Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT. J Nucl Med 54:12–8

    Article  CAS  PubMed  Google Scholar 

  26. Heinrich S, Goerres GW, Schäfer M, Sagmeister M, Bauerfeind P, Pestalozzi BC et al (2005) Positron emission tomography/computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg 242:235

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tsurusaki M, Okada M, Kuroda H, Matsuki M, Ishii K, Murakami T (2014) Clinical application of 18F-fluorodeoxyglucose positron emission tomography for assessment and evaluation after therapy for malignant hepatic tumor. J Gastroenterol 49:46–56

    Article  CAS  PubMed  Google Scholar 

  28. Song MJ, Bae SH, Lee SW, Kim HY, Yoo IR, Choi J-I et al (2013) 18F-fluorodeoxyglucose PET/CT predicts tumour progression after transarterial chemoembolization in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 40:865–73

    Article  CAS  PubMed  Google Scholar 

  29. Talbot J-N, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F et al (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51:1699–706

    Article  PubMed  Google Scholar 

  30. Schierz J-H, Opfermann T, Steenbeck J, Lopatta E, Settmacher U, Stallmach A et al (2013) Early dynamic 18F-FDG PET to detect hyperperfusion in hepatocellular carcinoma liver lesions. J Nucl Med 54:848–54

    Article  CAS  PubMed  Google Scholar 

  31. Sun L, Guan Y-S, Pan W-M, Luo Z-M, Wei J-H, Zhao L et al (2009) Metabolic restaging of hepatocellular carcinoma using whole-body 18F-FDG PET/CT. World J Hepatol 1:90

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kijima S, Sasaki T, Nagata K, Utano K, Lefor AT, Sugimoto H (2014) Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J Gastroenterol 20:16964–74

    Article  PubMed  PubMed Central  Google Scholar 

  33. Engelmann BE, Loft A, Kjær A, Nielsen HJ, Gerds TA, Benzon EV et al (2014) Positron emission tomography/computed tomography and biomarkers for early treatment response evaluation in metastatic colon cancer. Oncologist 19:164–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bipat S, Niekel M, Comans E, Nio C, Bemelman W, Verhoef C et al (2012) Imaging modalities for the staging of patients with colorectal cancer. Neth J Med 70:26–34

    CAS  PubMed  Google Scholar 

  35. Brush J, Boyd K, Chappell F, Crawford F, Dozier M, Fenwick E et al (2011) The value of FDG positron emission tomography/computerised tomography (PET/CT) in pre-operative staging of colorectal cancer: a systematic review and economic evaluation. Health Technol Assess 15:1–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grassetto G, Capirci C, Marzola MC, Rampin L, Chondrogiannis S, Musto A et al (2012) Colorectal cancer: prognostic role of 18F-FDG-PET/CT. Abdom Imaging 37:575–9

    Article  PubMed  Google Scholar 

  37. Metser U, Hussey D, Murphy G (2014) Impact of 18F-FDG PET/CT on the staging and management of follicular lymphoma. Br J Radiol 87:1042

    Article  Google Scholar 

  38. Gallamini A, Borra A (2014) Role of PET in lymphoma. Curr Treat Options Oncol 15:248–61

    Article  PubMed  Google Scholar 

  39. Chavdarova LI, Tzonevska AD, Piperkova EN (2012) Discrepancies and priorities in staging and restaging malignant lymphoma by SPET, SPET/CT, PET/CT and PET/MRI. Hell J Nucl Med 16:223–9

    Google Scholar 

  40. Le Dortz L, De Guibert S, Bayat S, Devillers A, Houot R, Rolland Y et al (2010) Diagnostic and prognostic impact of 18F-FDG PET/CT in follicular lymphoma. Eur J Nucl Med Mol Imaging 37:2307–14

    Article  PubMed  Google Scholar 

  41. Quartuccio N, Fox J, Kuk D, Wexler LH, Baldari S, Cistaro A et al (2015) Pediatric bone sarcoma: diagnostic performance of 18F-FDG PET/CT versus conventional imaging for initial staging and follow-up. Am J Roentgenol 204:153–60

    Article  Google Scholar 

  42. Costelloe CM, Chuang HH, Madewell JE (2014) FDG PET/CT of primary bone tumors. Am J Roentgenol 202:W521–31

    Article  Google Scholar 

  43. Quartuccio N, Treglia G, Salsano M, Mattoli MV, Muoio B, Piccardo A et al (2013) The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol 47:97–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Walter F, Federman N, Apichairuk W, Nelson S, Phelps ME, Allen-Auerbach M et al (2011) 18F-fluorodeoxyglucose uptake of bone and soft tissue sarcomas in pediatric patients. Pediatr Hematol Oncol 28:579–87

    Article  CAS  PubMed  Google Scholar 

  45. Charest M, Hickeson M, Lisbona R, Novales-Diaz J-A, Derbekyan V, Turcotte RE (2009) FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases. Eur J Nucl Med Mol Imaging 36:1944–51

    Article  PubMed  Google Scholar 

  46. Fuglø HM, Jørgensen SM, Loft A, Hovgaard D, Petersen MM (2012) The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma: a retrospective study of 89 patients. Eur J Nucl Med Mol Imaging 39:1416–24

    Article  PubMed  Google Scholar 

  47. Oyama N, Okazawa H, Kusukawa N, Kaneda T, Miwa Y, Akino H et al (2009) 11C-Acetate PET imaging for renal cell carcinoma. Eur J Nucl Med Mol Imaging 36:422–7

    Article  PubMed  Google Scholar 

  48. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P et al (2012) The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging 2:33–47

    CAS  PubMed  Google Scholar 

  49. Higashi K, Ueda Y, Matsunari I, Kodama Y, Ikeda R, Miura K et al (2004) 11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging 31:13–21

    Article  PubMed  Google Scholar 

  50. Ogawa T, Shishido F, Kanno I, Inugami A, Fujita H, Murakami M et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    Article  CAS  PubMed  Google Scholar 

  51. Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC (2012) 11C-Methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 53:1709–15

    Article  PubMed  Google Scholar 

  52. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H et al (2008) Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–82

    Article  CAS  PubMed  Google Scholar 

  53. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND et al (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–45

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang S, Smailagic N, Hyde C, Noel-Storr AH, Takwoingi Y, McShane R et al (2014) (11)C-PIB-PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 7:CD010386

    PubMed  Google Scholar 

  55. Cohen AD, Klunk WE. Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol Dis. 2014;72, Part A(0):117–22.

    Google Scholar 

  56. Wang J, Zuo C-T, Jiang Y-P, Guan Y-H, Chen Z-P, Xiang J-D et al (2007) 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol 254:185–90

    Article  CAS  PubMed  Google Scholar 

  57. Song I-U, Chung Y-A, Oh J-K, Chung S-W (2014) An FP-CIT PET comparison of the difference in dopaminergic neuronal loss in subtypes of early Parkinson’s disease. Acta Radiol 55:366–71

    Article  PubMed  Google Scholar 

  58. Lorberboym M, Treves TA, Melamed E, Lampl Y, Hellmann M, Djaldetti R (2006) [123I]‐FP/CIT SPECT imaging for distinguishing drug‐induced parkinsonism from Parkinson’s disease. Mov Disord 21:510–14

    Article  PubMed  Google Scholar 

  59. Yoon H-J, Kang K, Chun I, Cho N, Im S-A, Jeong S et al (2014) Correlation of breast cancer subtypes, based on estrogen receptor, progesterone receptor, and HER2, with functional imaging parameters from 68Ga-RGD PET/CT and 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 41:1534–43

    Article  CAS  PubMed  Google Scholar 

  60. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL et al (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–9

    Article  CAS  PubMed  Google Scholar 

  61. Kroiss A, Putzer D, Decristoforo C, Uprimny C, Warwitz B, Nilica B et al (2013) 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging 40:514–23

    Article  CAS  PubMed  Google Scholar 

  62. Oh J-R, Kulkarni H, Carreras C, Schalch G, Min J-J, Baum RP (2012) Ga-68 Somatostatin receptor PET/CT in von Hippel-Lindau disease. Nucl Med Mol Imaging 46:129–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, E.E., Im, HJ., Lee, D.S., Kang, K.W. (2016). Atlas and Anatomy of PET/CT. In: Atlas and Anatomy of PET/MRI, PET/CT and SPECT/CT. Springer, Cham. https://doi.org/10.1007/978-3-319-28652-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28652-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28650-1

  • Online ISBN: 978-3-319-28652-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics