Skip to main content

Pathogenesis of Urogenital Tuberculosis

  • Chapter
  • First Online:
Book cover Current Therapy and Surgery for Urogenital Tuberculosis
  • 397 Accesses

Abstract

Tuberculosis (TB) is a contagious disease caused mainly by Mycobacterium tuberculosis (Mtb); M. bovis is a rather rare etiological agent of UGTB. After first contact with TB infection about 90 % of individuals remain healthy, although at least every third of them will be infected and, so, will have latent tuberculosis.

There is a genetically deterministic innate response on TB. A first meeting with Mtb provokes development of an aquired immune response on TB in an immunocompetent person; immunocompromise condition may disturb this process. Mtb survives inside macrophages by manipulating microbicidal functions such as phago-lysosome fusion, production of reactive oxygen species and nitric oxide, and by rendering macrophages non-responsive to IFN-gamma. Apoptosis prevents the release of intracellular components and the spread of mycobacterial infection by sequestering the pathogens within apoptotic bodies. Apoptosis of infected macrophages may result in self-recovery.

Thus there is an innate resistance of the human organism to Mtb – and it is a main reason why TB, a potentially lethal disease, doesn’t destroy all mankind. Mtb itself stimulates acquired response on TB that improves the resistance of the human organism. Special vaccines increase this resistance too.

Tuberculosis used to be healed by forming a scar. Such scar is a benefit outcome for pulmonary TB – but in UGTB we receive “a desirable scarring in an undesirable place”. Inappropriate therapy for TB ulcer of ureter may result in stricture and kidney death due to obstruction – even if this kidney is healed of TB. Redundant scarring of ductus deference may lead in obstructive infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson P, Doherty TM (2005) The success and failure of BCG–implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662

    Article  Google Scholar 

  • Azad AK, Sadee W, Schlesinger LS (2012) Innate immune gene polymorphisms in tuberculosis. Infect Immun 80(10):3343–3359. doi:10.1128/IAI.00443-12. Epub 2012 July 23

    Google Scholar 

  • Boom WH, Canaday DH, Fulton SA, Gehring AJ, Rojas RE, Torres M (2003) Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinb) 83(1–3):98–106

    Article  CAS  Google Scholar 

  • Britton WJ, Fernando SL, Saunders BM, Sluyter R, Wiley JS (2007) The genetic control of susceptibility to Mycobacterium tuberculosis. Novartis Found Symp 281:79–89; discussion 89–92, 208–209

    Article  CAS  PubMed  Google Scholar 

  • Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM (2001) Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun 282(5):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Danelishvili L, McGarvey J, Li YJ, Bermudez LE (2003) Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 5(9):649–660

    Article  CAS  PubMed  Google Scholar 

  • Flynn JL, Chan J, Lin PL (2011) Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4(3):271–278. doi:10.1038/mi.2011.14. Epub 2011 Mar 23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fratazzi C, Arbeit RD, Carini C, Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG (1999) Macrophage apoptosis in mycobacterial infections. J Leukoc Biol 66(5):763–764

    CAS  PubMed  Google Scholar 

  • Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35(5):563–583. doi:10.1007/s00281-013-0388-2. Epub 2013 Jul 18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamura I (2006) Protective immunity against Mycobacterium tuberculosis. Kekkaku 81(11):687–691

    CAS  PubMed  Google Scholar 

  • Kita Y, Okada M, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Takamori Y, McMurray DN, De la Cruz EC, Tan EV, Abalos RM, Burgos JA, Saunderson P, Sakatani M (2011) Development of therapeutic and prophylactic vaccine against Tuberculosis using monkey and transgenic mice models. Hum Vaccin 7(Suppl):108–114. Epub 2011 Jan 1

    Article  CAS  PubMed  Google Scholar 

  • Kulchavenya E, Alkhovik O, Cherednichenko A (2014) To the question of low identification of M.tuberculosis in urine. Urologia 5:53–55

    Google Scholar 

  • Méndez-Samperio P, Vázquez A, Ayala H (2003) Infection of human monocytes with Mycobacterium bovis BCG induces production of CC-chemokines. J Infect 47(2):139–147

    Article  PubMed  Google Scholar 

  • Mitsuyama M, Akagawa K, Kobayashi K, Sugawara I, Kawakami K, Yamamoto S, Okada Z (2003) Up-to-date understanding of tuberculosis immunity. Kekkaku 78(1):51–55

    PubMed  Google Scholar 

  • Munk ME, Emoto M (1995) Functions of T-cell subsets and cytokines in mycobacterial infections. Eur Respir J Suppl 20:668–675

    Google Scholar 

  • Okada M (2006) Novel vaccines against M. tuberculosis. Kekkaku 81(12):745–751

    CAS  PubMed  Google Scholar 

  • Okada M (2008) The development of novel vaccines against tuberculosis. Nihon Rinsho Meneki Gakkai Kaishi 31(5):356–368

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Kita Y (2010) Anti-tuberculosis immunity by cytotoxic T cells * granulysin and the development of novel vaccines (HSP-65 DNA+IL-12 DNA). Kekkaku 85(6):531–538

    CAS  PubMed  Google Scholar 

  • Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, Kaneda Y, Yoshida S, Nishida Y, Nakatani H, Takao K, Kishigami C, Nishimatsu S, Sekine Y, Inoue Y, McMurray DN, Sakatani M (2011) Novel prophylactic vaccine using a prime-boost method and hemagglutinating virus of Japan-envelope against tuberculosis. Clin Dev Immunol 2011:549281. doi:10.1155/2011/549281. Epub 2011 Mar 7

    PubMed Central  PubMed  Google Scholar 

  • Olakanmi O, Kesavalu B, Abdalla MY, Britigan BE (2013) Iron acquisition by Mycobacterium tuberculosis residing within myeloid dendritic cells. Microb Pathog 65:21–28. doi:10.1016/j.micpath.2013.09.002. Epub 2013 Sep 22

    Article  CAS  PubMed  Google Scholar 

  • Pal PG, Horwitz MA (1992) Immunization with extracellular proteins of Mycobacterium tuberculosis induces cell-mediated immune responses and substantial protective immunity in a guinea pig model of pulmonary tuberculosis. Infect Immun 60(11):4781–4792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perskvist N, Long M, Stendahl O, Zheng L (2002) Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J Immunol 168(12):6358–6365

    Article  CAS  PubMed  Google Scholar 

  • Persson YA, Blomgran-Julinder R, Rahman S, Zheng L, Stendahl O (2008) Mycobacterium tuberculosis-induced apoptotic neutrophils trigger a pro-inflammatory response in macrophages through release of heat shock protein 72, acting in synergy with the bacteria. Microbes Infect 10(3):233–240. doi:10.1016/j.micinf.2007.11.007. Epub 2007 Nov 29

    Article  CAS  PubMed  Google Scholar 

  • Pienaar E, Lerm M (2014) A mathematical model of the initial interaction between Mycobacterium tuberculosis and macrophages. J Theor Biol 342:23–32. doi:10.1016/j.jtbi.2013.09.029. Epub 2013 Oct 7. Erratum in: J Theor Biol. 2014 May 21;349:172

    Article  PubMed  Google Scholar 

  • Raja A (2004) Immunology of tuberculosis. Indian J Med Res 120(4):213–232

    CAS  PubMed  Google Scholar 

  • Saukkonen JJ, Bazydlo B, Thomas M, Strieter RM, Keane J, Kornfeld H (2002) Beta-chemokines are induced by Mycobacterium tuberculosis and inhibit its growth. Infect Immun 70(4):1684–1693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen X, Wu J, Jiang Y, Li J, Wang LL, Mei J, Pan QC, Gao Q (2013) Recurrent tuberculosis after successful treatment in an urban area in China. Int J Tuberc Lung Dis 17(Suppl 2,12):s98–s99

    Google Scholar 

  • Thuong NT, Dunstan SJ, Chau TT, Thorsson V, Simmons CP, Quyen NT, Thwaites GE, Thi Ngoc Lan N, Hibberd M, Teo YY, Seielstad M, Aderem A, Farrar JJ, Hawn TR (2008) Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog 4(12):e1000229. doi:10.1371/journal.ppat.1000229. Epub 2008 Dec 5

    Article  PubMed Central  PubMed  Google Scholar 

  • Toossi Z (2000) The inflammatory response in Mycobacterium tuberculosis infection. Arch Immunol Ther Exp (Warsz) 48(6):513–519

    CAS  Google Scholar 

  • Toossi Z, Wu M, Rojas R, Kalsdorf B, Aung H, Hirsch CS, Walrath J, Wolbink A, van Ham M, Silver RF (2012) Induction of serine protease inhibitor 9 by Mycobacterium tuberculosis inhibits apoptosis and promotes survival of infected macrophages. J Infect Dis 205(1):144–151. doi:10.1093/infdis/jir697. Epub 2011 Nov 16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volpe E, Cappelli G, Grassi M, Martino A, Serafino A, Colizzi V, Sanarico N, Mariani F (2006) Gene expression profiling of human macrophages at late time of infection with Mycobacterium tuberculosis. Immunology 118(4):449–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang J, Thorson L, Stokes RW, Santosuosso M, Huygen K, Zganiacz A, Hitt M, Xing Z (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 173(10):6357–6365

    Article  CAS  PubMed  Google Scholar 

  • Wilson G (1931) The Lubeck disaster. Am J Public Health Nations Health 21(3):282

    Article  Google Scholar 

  • Wu M, Aung H, Hirsch CS, Toossi Z (2012) Inhibition of Mycobacterium tuberculosis-induced signalling by transforming growth factor-β in human mononuclear phagocytes. Scand J Immunol 75(3):301–304. doi:10.1111/j.1365-3083.2011.02668.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Z, Lichty BD (2006) Use of recombinant virus-vectored tuberculosis vaccines for respiratory mucosal immunization. Tuberculosis (Edinb) 86(3–4):211–217. Epub 2006 Feb 28

    Article  CAS  Google Scholar 

  • Yim JJ, Selvaraj P (2010) Genetic susceptibility in tuberculosis. Respirology 15(2):241–256. doi:10.1111/j.1440-1843.2009.01690.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kulchavenya, E. (2016). Pathogenesis of Urogenital Tuberculosis. In: Current Therapy and Surgery for Urogenital Tuberculosis. Springer, Cham. https://doi.org/10.1007/978-3-319-28290-9_2

Download citation

Publish with us

Policies and ethics