Skip to main content

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 3))

Abstract

Bacterial opportunistic pathogens are defined as microorganisms causing disease in hosts experiencing atypical environmental stressors or having impaired immune function. In intensive aquacultural rearing, stress factors (such as hypoxia, abnormal pH, and high population density) generate an optimal setting for such pathogens to thrive. The status of these organisms—either as natural components of a healthy microbiome, or a latent step in disease establishment, or both—is still not entirely clear. In this chapter, we outline the current understanding (i.e., taxonomy, biology, disease impact, and current treatment options) of major opportunist bacterial genera of special interest in aquaculture: Aeromonas, Flavobacterium, and Vibrio. On a broader scale, we consider the importance of host/microbiota/environment interactions in opportunistic infections of teleost fish. Not only does this cross talk play a crucial role in defining disease, but their importance also reveals novel strategies to prevent and cure opportunistic diseases. As such, preventive measures to reduce host stress, along with active interventions to enhance (or restore) the protective effect of the microbiome (i.e., prebiotics, probiotics, synbiotics), can mitigate bacterial opportunistic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott SL, Cheung WK, Kroske-Bystrom S et al (1992) Identification of Aeromonas strains to the genospecies level in the clinical laboratory. J Clin Microbiol 30:1262–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adams SM (1990) Status and use of biological indicators for evaluating the effects of stress on fish. Am Fish Soc Symp 8:1–8

    Google Scholar 

  • Aguirre-Guzmán G, Ruíz HM, Ascencio F (2004) A review of extracellular virulence product of Vibrio species important in diseases of cultivated shrimp. Aquacult Res 35:1395–1404. doi:10.1111/j.1365-2109.2004.01165.x

    Article  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi:10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  • Amita K, Hoshino M, Honma T, Wakabayashi H (2000) An investigation on the distribution of Flavobacterium psychrophilum in the Umikawa River. Fish Pathol 35:193–197

    Article  Google Scholar 

  • Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  PubMed  Google Scholar 

  • Arias CA, Murray BE (2009) Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med 360:439–443. doi:10.1056/NEJMp0804651

    Article  CAS  PubMed  Google Scholar 

  • Arkoosh MR, Casillas E, Huffman P et al (1998) Increased susceptibility of juvenile Chinook salmon from a contaminated estuary to Vibrio anguillarum. Trans Am Fish Soc 127:360–374. doi:10.1577/1548-8659(1998)127<0360:ISOJCS>2.0.CO;2

    Article  Google Scholar 

  • Armstrong SM, Hargrave BT, Haya K (2005) Antibiotic use in finfish aquaculture: modes of action, environmental fate, and microbial resistance. In: Hargrave BT (ed) Environmental effects of marine finfish aquaculture. Springer, Berlin, pp 341–357

    Chapter  Google Scholar 

  • Ashley PJ (2007) Fish welfare: current issues in aquaculture. Appl Anim Behav Sci 104:199–235

    Article  Google Scholar 

  • Austin B (2006) The bacterial microflora of fish, revised. ScientificWorldJournal 6:931–945. doi:10.1100/tsw.2006.181

    Article  CAS  PubMed  Google Scholar 

  • Austin B (2010) Vibrios as causal agents of zoonoses. Vet Microbiol 140:310–317. doi:10.1016/j.vetmic.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  • Austin B, Austin DA (2007) Bacterial fish pathogens: diseases of farmed and wild fish. Praxis, Chichester

    Google Scholar 

  • Austin B, Austin DA (2012a) Aeromonadaceae Representative (Aeromonas salmonicida). In: Austin B, Austin DA (eds) Bacterial fish pathogens. Springer, Dordrecht, pp 147–228

    Chapter  Google Scholar 

  • Austin B, Austin DA (2012b) Aeromonadaceae representatives (motile aeromonads). In: Austin B, Austin DA (eds) Bacterial fish pathogens. Springer, Dordrecht, pp 147–228

    Chapter  Google Scholar 

  • Baerwald MR, Petersen JL, Hedrick RP, Schisler GJ, May B (2011) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926

    Article  CAS  PubMed  Google Scholar 

  • Bagge J, Bagge O (1956) Vibrio anguillarum som årsak til ulcus sykdom hos torsk (Gadus callarias Linné). Nord Vet Med 8:481–492

    Google Scholar 

  • Balcazar J, Blas I, Ruizzarzuela I et al (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186. doi:10.1016/j.vetmic.2006.01.009

    Article  PubMed  Google Scholar 

  • Baras E (1995) Seasonal activities of Barbus barbus: effect of temperature on time-budgeting. J Fish Biol 46:806–818

    Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26. doi:10.1016/0959-8030(91)90019-g

    Article  Google Scholar 

  • Bates JM, Akerlund J, Mittge E, Guillemin K (2007) Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371–382. doi:10.1016/j.chom.2007.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology: individuals populations and communities, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Benmansour A, De Kinkelin P (1996) Live fish vaccines: history and perspectives. Dev Biol Stand 90:279–289

    Google Scholar 

  • Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938. doi:10.1073/pnas.1007028107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman AM (1909) Die rote Beulenkrankheit des Aals. Ber Aus K Bayer Vers 2:10–54

    Google Scholar 

  • Bernardet J-F, Bowman J (2006) The genus Flavobacterium. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 481–531

    Chapter  Google Scholar 

  • Biering E, Villoing S, Sommerset I, Christie KE (2004) Update on viral vaccines for fish. Dev Biol 121:97–113

    Google Scholar 

  • Bly JE, Clem LW (1992) Temperature and teleost immune functions. Fish Shellfish Immunol 2:159–171

    Article  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derôme N (2012) Antagonistic effect of indigenous skin bacteria of brook charr (Salvelinus fontinalis) against Flavobacterium columnare and F. psychrophilum. Vet Microbiol 155:355–361. doi:10.1016/j.vetmic.2011.09.002

    Article  PubMed  Google Scholar 

  • Boutin S, Audet C, Derôme N (2013a) Probiotic treatment by indigenous bacteria decreases mortality without disturbing the natural microbiota of Salvelinus fontinalis. Can J Microbiol 59:662–670

    Article  CAS  PubMed  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derôme N (2013b) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8:e84772. doi:10.1371/journal.pone.0084772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boutin S, Sauvage C, Bernatchez L et al (2014) Inter individual variations of the fish skin microbiota: host genetics basis of mutualism? PLoS One 9:e102649. doi:10.1371/journal.pone.0102649

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowden TJ, Thompson KD, Morgan AL et al (2007) Seasonal variation and the immune response: a fish perspective. Fish Shellfish Immunol 22:695–706

    Article  PubMed  Google Scholar 

  • Brown LL, Cox WT, Levine RP (1997) Evidence that the causal agent of bacterial cold-water disease Flavobacterium psychrophilum is transmitted within salmonid eggs. Dis Aquat Organ 29:213–218

    Article  Google Scholar 

  • Bruhn JB, Dalsgaard I, Nielsen KF et al (2005) Quorum sensing signal molecules (acylated homoserine lactones) in gram-negative fish pathogenic bacteria. Dis Aquat Organ 65:43–52

    Article  CAS  PubMed  Google Scholar 

  • Bullock GL, Snieszko SF (1981) Fin rot, coldwater disease, and peduncle disease of salmonid fishes. U.S. Fish and Wildlife Service, Fish Disease Leaflet No. 25

    Google Scholar 

  • Burbank DR, Shah DH, LaPatra SE et al (2011) Enhanced resistance to coldwater disease following feeding of probiotic bacterial strains to rainbow trout (Oncorhynchus mykiss). Aquaculture 321:185–190. doi:10.1016/j.aquaculture.2011.09.004

    Article  Google Scholar 

  • Burridge L, Weis JS, Cabello F et al (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306:7–23

    Article  CAS  Google Scholar 

  • Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41. doi:10.1007/bf02015051

    Article  CAS  PubMed  Google Scholar 

  • Canestrini G (1893) La malattia dominante delle anguille: richerche batteriologiche. Atti R Ist Veneto Sci Lett Ed Arti 7:809–814

    Google Scholar 

  • Cerezuela R, Meseguer J, Esteban M (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquacult Res Dev 1:1–7

    Google Scholar 

  • Chakroun C, Grimont F, Urdaci MC, Bernardet J-F (1998) Fingerprinting of Flavobacterium psychrophilum isolates by ribotyping and plasmid profiling. Dis Aquat Organ 33:167–177

    Article  CAS  PubMed  Google Scholar 

  • Chapra I, Hodgson J, Metcalf B, Poste G (1997) The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob Agents Chemother 41:497–503

    Google Scholar 

  • Cipriano RC (2005) Intraovum infection caused by Flavobacterium psychrophilum among eggs from captive Atlantic salmon broodfish. J Aquat Anim Health 17:275–283

    Article  Google Scholar 

  • Cipriano RC, Bullock GL (2001) Furunculosis and other diseases caused by Aeromonas salmonicida. United States Geological Survey

    Google Scholar 

  • Cipriano R, Bullock G, Pyle S (1984) Aeromonas hydrophila and other septicemias of fish. U.S. Fish and Wildlife Service Publications

    Google Scholar 

  • Coburn B, Sekirov I, Finlay BB (2007) Type III secretion systems and disease. Clin Microbiol Rev 20:535–549. doi:10.1128/CMR.00013-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cole DW, Cole R, Gaydos SJ et al (2009) Aquaculture: environmental, toxicological, and health issues. Int J Hyg Environ Health 212:369–377

    Article  CAS  PubMed  Google Scholar 

  • Crothers‐Stomps C, Høj L, Bourne DG et al (2010) Isolation of lytic bacteriophage against Vibrio harveyi. J Appl Microbiol 108:1744–1750

    Article  PubMed  Google Scholar 

  • Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87:S145–S151

    Article  CAS  PubMed  Google Scholar 

  • Darwish AM, Ismaiel AA (2005) Genetic diversity of Flavobacterium columnare examined by restriction fragment length polymorphism and sequencing of the 16S ribosomal RNA gene and the 16S–23S rDNA spacer. Mol Cell Probes 19:267–274

    Article  CAS  PubMed  Google Scholar 

  • Davis HS (1946) Care and diseases of trout. US Department of Interior Research Report No. 12

    Google Scholar 

  • Day T (2002) Virulence evolution via host exploitation and toxin production in spore-producing pathogens. Ecol Lett 5:471–476

    Article  Google Scholar 

  • Decostere A, Haesebrouck F, Devriese LA (1998) Characterization of four Flavobacterium columnare (Flexibacter columnaris) strains isolated from tropical fish. Vet Microbiol 62:35–45. doi:10.1016/s0378-1135(98)00196-5

    Article  CAS  PubMed  Google Scholar 

  • Decostere A, Lammens M, Haesebrouck F (2000) Difficulties in experimental infection studies with Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) using immersion, oral and anal challenges. Res Vet Sci 69:165–169

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt T, Sorgeloos P, Bossier P (2011) Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr Opin Microbiol 14:251–258, http://dx.doi.org/10.1016/j.mib.2011.03.004

    Article  PubMed  Google Scholar 

  • Delneste Y, Beauvillain C, Jeannin P (2007) Immunité naturelle: Structure et fonction des toll-like receptors. Med Paris 23:67–74

    Google Scholar 

  • Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509, http://dx.doi.org/10.1016/S0923-2508(02)01361-X

    Article  CAS  PubMed  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Bernatchez L (2009) MHC standing genetic variation and pathogen resistance in wild Atlantic salmon. Philos Trans R Soc Lond B Biol Sci 364:1555–1565. doi:10.1098/rstb.2009.0011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DR, Bainbridge BW, Darveau RP (2004) Modulation of the innate immune response within the periodontium. Periodontol 2000 35:53–74. doi:10.1111/j.0906-6713.2004.003556.x

    Article  PubMed  Google Scholar 

  • Drouin de Bouville R de (1908) Les maladies des poissons d’eau douce d’Europe: d’après les travaux des divers icthyo-pathologistes et le traité du professeur Hofer (Deuxième édition, revue et augmentée)/par R. de Drouin de Bouville,… Berger-Levrault (Paris)

    Google Scholar 

  • Durborow RM, Thune RL, Hawke JP, Camus AC (1998) Columnaris disease: a bacterial infection caused by Flavobacterium columnare. Southern Regional Aquaculture Center (SRAC) Publication No. 479

    Google Scholar 

  • Ebert D (1998) Experimental evolution of parasites. Science 282:1432–1436

    Article  CAS  PubMed  Google Scholar 

  • Ebert D, Mangin KL (1997) The influence of host demography on the evolution of virulence of a microsporidian gut parasite. Evolution 51:1828–1837

    Article  Google Scholar 

  • Egidius E (1987) Vibriosis: pathogenicity and pathology. A review. Aquaculture 67:15–28. doi:10.1016/0044-8486(87)90004-4

    Article  Google Scholar 

  • Ekman E, Börjeson H, Johansson N (1999) Flavobacterium psychrophilum in Baltic salmon Salmo salar brood fish and their offspring. Dis Aquat Organ 37:159–163

    Article  CAS  PubMed  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839. doi:10.1016/s0145-305x(01)00038-6

    Article  CAS  PubMed  Google Scholar 

  • Emmerich R, Weibel F (1890) Über eine durch Bakterien verursachte Infektionskrankheit der Forellen. Allg Fisch-Ztg 15:73–77, 85–92

    Google Scholar 

  • Evelyn TPT (1971) First records of vibriosis in pacific salmon cultured in Canada, and taxonomic status of the responsible bacterium, Vibrio anguillarum. J Fish Res Board Can 28:517–525. doi:10.1139/f71-073

    Article  Google Scholar 

  • Farzanfar A (2006) The use of probiotics in shrimp aquaculture. FEMS Immunol Med Microbiol 48:149–158. doi:10.1111/j.1574-695X.2006.00116.x

    Article  CAS  PubMed  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson HW, Ostland VE, Byrne P, Lumsdsen JS (1991) Experimental production of bacterial gill disease in trout by horizontal transmission and by bath challenge. J Aquat Anim Health 3:118–123

    Article  Google Scholar 

  • Fijan N (1967) The survival of Chondrococcus columnaris in waters of different quality. Bull Off Int Epizoot 69:1159–1166

    Google Scholar 

  • Foott JS, Hedrick RP (1987) Seasonal occurrence of the infectious stage of proliferative kidney disease (PKD) and resistance of rainbow trout, Salmo gairdneri Richardson, to reinfection. J Fish Biol 30:477–483

    Article  Google Scholar 

  • Frank DN, Zhu W, Sartor RB, Li E (2011) Investigating the biological and clinical significance of human dysbioses. Trends Microbiol 19:427–434. doi:10.1016/j.tim.2011.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frans I, Michiels CW, Bossier P et al (2011) Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J Fish Dis 34:643–661. doi:10.1111/j.1365-2761.2011.01279.x

    Article  CAS  PubMed  Google Scholar 

  • Freestone PP, Sandrini SM, Haigh RD, Lyte M (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695

    Article  CAS  PubMed  Google Scholar 

  • Garduño RA, Kay WW (1992) Interaction of the fish pathogen Aeromonas salmonicida with rainbow trout macrophages. Infect Immun 60:4612–4620

    PubMed  PubMed Central  Google Scholar 

  • Gatesoupe FJ (2010) Probiotics and other microbial manipulations in fish feeds: prospective health benefits. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health. Probiotics and prebiotics. Academic, San Diego, CA, pp 541–552

    Chapter  Google Scholar 

  • Geraylou Z, Souffreau C, Rurangwa E et al (2012) Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish Shellfish Immunol 33:718–724. doi:10.1016/j.fsi.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  • Ghittino C, Latini M, Agnetti F et al (2003) Emerging pathologies in aquaculture: effects on production and food safety. Vet Res Commun 27:471–479. doi:10.1023/B:VERC.0000014204.37722.b6

    Article  PubMed  Google Scholar 

  • Gibson GR (2004) Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl 1:25–31

    Article  Google Scholar 

  • Gold HS, Moellering RC (1996) Antimicrobial-drug resistance. N Engl J Med 335:144–1453

    Article  Google Scholar 

  • Gram L, Ringø E (2005) Prospects of fish probiotics. In: Holzapfel WH, Naughton PJ (eds) Microbial ecology of the growing animal. Elsevier, Amsterdam, pp 379–417

    Chapter  Google Scholar 

  • Grisez L, Chair M, Sorgeloos P, Ollevier F (1996) Mode of infection and spread of Vibrio anguillarum in turbot Scophthalmus maximus larvae after oral challenge through live feed. Dis Aquat Organ 26:181–187

    Article  Google Scholar 

  • Han Y, Mo Z, Xiao P et al (2011) Characterization of EmpA protease in Vibrio anguillarum M3. J Ocean Univ Chin 10:379–384. doi:10.1007/s11802-011-1781-x

    Article  CAS  Google Scholar 

  • Hanley F, Brown H, Carberry J (1995) First observations on the effects of mannan oligosaccharide added to the hatchery diets for warmwater Hybrid Red Tilapia. In: Nutritional biotechnology in the feed and food industries. Proceedings of Alltech’s 11th annual symposium, Lexington, KY

    Google Scholar 

  • Hart S, Wrathmell AB, Harris JE, Grayson TH (1988) Gut immunology in fish: a review. Dev Comp Immunol 12:453–480

    Article  CAS  PubMed  Google Scholar 

  • Håstein T, Gudding R, Evensen O (2004) Bacterial vaccines for fish—an update of the current situation worldwide. Dev Biol 121:55–74

    Google Scholar 

  • Heo G-J, Kasai K, Wakabayashi H (1990) Occurrence of Flavobacterium branchiophila associated with bacterial gill disease at a trout hatchery. Fish Pathol 25:99–105

    Article  Google Scholar 

  • Hjelm M, Riaza A, Formoso F et al (2004) Seasonal incidence of autochthonous antagonistic Roseobacter spp. and Vibrionaceae strains in a turbot larva (Scophthalmus maximus) rearing system. Appl Environ Microbiol 70:7288–7294. doi:10.1128/aem.70.12.7288-7294.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoare R, Hovland H, Langston AL et al (2002) Susceptibility of three different strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) cultured at two different temperatures to Vibrio anguillarum and temperature effect on antibody response. Fish Shellfish Immunol 13:111–123

    Article  CAS  PubMed  Google Scholar 

  • Holt RA, Rohovec JS, Fryer JL (1993) Bacterial coldwater disease. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial disease of fish. Blackwell, Oxford, pp 3–22

    Google Scholar 

  • Horneman AJ, Ali A, Abbott SL (2007) Aeromonas. In: Murray PR, Baron EJ, Landry ML, Jorgensen JH, Pfaller MA (eds) Manual of clinical microbiology, 9th edn. ASM, Washington, DC, pp 715–722

    Google Scholar 

  • Iida Y, Mizokami A (1996) Outbreaks of coldwater disease in wild Ayu and Pale Chub. Fish Pathol 31:157–164. doi:10.3147/jsfp.31.157

    Article  Google Scholar 

  • Izumi S, Liu H, Aranishi F, Wakabayashi H (2003) A novel serotype of Flavobacterium psychrophilum detected using antiserum against an isolate from amago, Oncorhynchus masou rhodurus Jordan & Gilbert, in Japan. J Fish Dis 26:677–680. doi:10.1046/j.1365-2761.2003.00502.x

    Article  CAS  PubMed  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73. doi:10.1128/CMR.00039-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda JM, Duffey PS (1988) Mesophilic aeromonads in human disease: current taxonomy, laboratory identification, and infectious disease spectrum. Rev Infect Dis 10:980–997

    Article  CAS  PubMed  Google Scholar 

  • Johnson CM, Tatner MF, Horne MT (1985) Autoaggregation and extracellular A-layer protein in Aeromonas salmonicida. Aquaculture 46:163–166. doi:10.1016/0044-8486(85)90200-5

    Article  CAS  Google Scholar 

  • Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245

    Article  CAS  PubMed  Google Scholar 

  • Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333. doi:10.1016/j.it.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  • Kent ML, Dawe SC, Speare DJ (1999) Resistance to reinfection in chinook salmon Oncorhynchus tshawytscha to Loma salmonae (Microsporidia). Dis Aquat Organ 37:205

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Wakabayashi H, Kudo S (1978) Studies on bacterial gill disease in salmonids, 1: Selection of bacterium transmitting gill disease. Fish Pathol 12:233–242

    Article  Google Scholar 

  • Kumagai A, Yamaoka S, Takahashi K et al (2000) Waterborne transmission of Flavobacterium psychrophilum in Coho salmon eggs. Gyobyo Kenkyu Fish Pathol 35:25–28

    Article  Google Scholar 

  • Langevin C, Blanco M, Martin SAM, Jouneau L, Bernardet J-F, Houel A, Lunazzi A, Duchaud E, Michel C, Quillet E, Boudinot P (2012) Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum. PLoS One 7, e39126. doi:10.1371/journal.pone.0039126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen MH, Boesen HT (2001) Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol Lett 203:149–152. doi:10.1111/j.1574-6968.2001.tb10833.x

    Article  CAS  PubMed  Google Scholar 

  • Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P (1998) Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish Shellfish Immunol 8:621–629. doi:10.1006/fsim.1998.0166

    Article  Google Scholar 

  • Levy SB (1998) Multidrug resistance—a sign of the times. N Engl J Med 338:1376–1378

    Article  CAS  PubMed  Google Scholar 

  • Lillehaug A, Lunestad BT, Grave K (2003) Epidemiology of bacterial diseases in Norwegian aquaculture—a description based on antibiotic prescription data for the ten-year period 1991 to 2000. Dis Aquat Organ 53:115–125

    Article  CAS  PubMed  Google Scholar 

  • Lindsay J, Holden M (2006) Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201. doi:10.1007/s10142-005-0019-7

    Article  CAS  PubMed  Google Scholar 

  • Lipsitch M, Nowak MA, Ebert D, May RM (1995) The population dynamics of vertically and horizontally-transmitted parasites. Proc Biol Sci 260:321–327. doi:10.1098/rspb.1995.0099

    Article  CAS  PubMed  Google Scholar 

  • Littman RA, Bourne DG, Willis BL (2010) Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host. Mol Ecol 19:1978–1990. doi:10.1111/j.1365-294X.2010.04620.x

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Izumi S, Wakabayashi H (2001) Detection of Flavobacterium psychrophilum in various organs of ayu Plecoglossus altivelis by in situ hybridization. Fish Pathol 36:7–11

    Article  Google Scholar 

  • Loch TP, Faisal M (2010) Isolation of Aeromonas salmonicida subspecies salmonicida from Lake Whitefish (Coregonus clupeaformis) inhabiting Lakes Michigan and Huron. J Great Lakes Res 36(Suppl 1):13–17. doi:10.1016/j.jglr.2009.07.002

    Article  Google Scholar 

  • Lorenzen E (1994) Studies on Flexibacter psychrophilus in relation to rainbow trout fry syndrome (RTFS). Royal Veterinary and Agricultural University, Copenhagen

    Google Scholar 

  • Lorenzen E, Olesen NJ (1997) Characterization of isolates of Flavobacterium psychrophilum associated with coldwater disease or rainbow trout fry syndrome II: serological studies. Dis Aquat Organ 31:209–220. doi:10.3354/dao031209

    Article  Google Scholar 

  • Lowry T, Smith SA (2007) Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. J Am Vet Med Assoc 231:876–880. doi:10.2460/javma.231.6.876

    Article  PubMed  Google Scholar 

  • Madetoja J, Dalsgaard I, Wiklund T (2002) Occurrence of Flavobacterium psychrophilum in fish-farming environments. Dis Aquat Organ 52:109–118

    Article  Google Scholar 

  • Madsen L, Dalsgaard I (1999) Reproducible methods for experimental infection with Flavobacterium psychrophilum in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 36:169

    Article  CAS  PubMed  Google Scholar 

  • Mahious A, Ollevier F (2005) Probiotics and prebiotics in aquaculture. In: 1st Regional workshop on techniques for enrichment for use in larviculture. Urmia, Iran

    Google Scholar 

  • Marcil V, Delvin E, Seidman E et al (2002) Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 283:G340–G346

    Article  CAS  PubMed  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslanik T, Tannura K, Mahaffey L et al (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS One 7:e50636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Mackay CR (2010) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    Article  CAS  Google Scholar 

  • Massault C, Franch R, Haley C, De Koning DJ, Bovenhuis H, Pellizzari C, Patarnello T, Bargelloni L (2011) Quantitative trait loci for resistance to fish pasteurellosis in gilthead sea bream (Sparus aurata). Anim Genet 42:191–203

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki S, Rashel M, Uchiyama J et al (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  • Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858

    Article  CAS  PubMed  Google Scholar 

  • McGee K, Horstedt P, Milton DL (1996) Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 178:5188–5198

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKnite AM, Perez-Munoz ME, Lu L et al (2012) Murine gut microbiota is defined by host genetics and modulates variation of metabolic traits. PLoS One 7:e39191. doi:10.1371/journal.pone.0039191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medzhitov R, Janeway CA (1999) Innate immune induction of the adaptive immune response. Cold Spring Harb Symp Quant Biol 64:429–436. doi:10.1101/sqb.1999.64.429

    Article  CAS  PubMed  Google Scholar 

  • Merrifield DL, Dimitroglou A, Foey A et al (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Milton DL, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed MH, Ahmed Refat NAG (2011) Pathological evaluation of probiotic, Bacillus subtilis, against Flavobacterium columnare in tilapia nilotica (Oreochromis niloticus) fish in Sharkia governorate, Egypt. J Am Sci 7:244–256

    Google Scholar 

  • Moloney R, Desbonnet L, Clarke G et al (2013) The microbiome: stress, health and disease. Mamm Genome 25:49–74. doi:10.1007/s00335-013-9488-5

    Article  PubMed  CAS  Google Scholar 

  • Moriarty DJW (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358. doi:10.1016/s0044-8486(98)00199-9

    Article  Google Scholar 

  • Morin R (2010) L’utilisation des antibiotiques pour combattre la furonculose chez l’omble de fontaine génère de l’antibiorésistance chez Aeromonas salmonicida. Bull L’Association Aquaculteurs Qué 15:3–6

    Google Scholar 

  • Morris JJ, Lenski RE, Zinser ER (2012) The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio. doi:10.1128/mBio.00036-12

    PubMed  PubMed Central  Google Scholar 

  • Myhr E, Larsen JL, Lillehaug A et al (1991) Characterization of Vibrio anguillarum and closely related species isolated from farmed fish in Norway. Appl Environ Microbiol 57:2750–2757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naik S, Bouladoux N, Wilhelm C et al (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. doi:10.1126/science.1225152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi T, Ototake M (1997) Antigen uptake and immune responses after immersion vaccination. Dev Biol Stand 90:59

    CAS  PubMed  Google Scholar 

  • Nakayama T, Lu H, Nomura N (2009) Inhibitory effects of Bacillus probionts on growth and toxin production of Vibrio harveyi pathogens of shrimp. Lett Appl Microbiol 49:679–684. doi:10.1111/j.1472-765X.2009.02725.x

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29:2–14. doi:10.1016/j.fsi.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  • Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192

    Article  CAS  PubMed  Google Scholar 

  • Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574. doi:10.1046/j.1365-2761.2003.00488.x

    Article  CAS  PubMed  Google Scholar 

  • Nielsen ME, Høi L, Schmidt AS et al (2001) Is Aeromonas hydrophila the dominant motile Aeromonas species that causes disease outbreaks in aquaculture production in the Zhejiang Province of China? Dis Aquat Organ 46:23–29. doi:10.3354/dao046023

    Article  CAS  PubMed  Google Scholar 

  • Nikoskelainen S, Ouwehand AC, Bylund G et al (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452. doi:10.1016/s1050-4648(03)00023-8

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony C, Scully P, O’Mahony D et al (2008) Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog 4:e1000112. doi:10.1371/journal.ppat.1000112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Toole R, Milton DL, Wolf-Watz H (1996) Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol Microbiol 19:625–637

    Article  PubMed  Google Scholar 

  • O’Toole R, Lundberg S, Fredriksson SA et al (1999) The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181:4308–4317

    PubMed  PubMed Central  Google Scholar 

  • Ondračková M, Reichard M, Jurajda P, Gelnar M (2004) Seasonal dynamics of Posthodiplostomum cuticola (Digenea, Diplostomatidae) metacercariae and parasite-enhanced growth of juvenile host fish. Parasitol Res 93:131–136

    Article  PubMed  Google Scholar 

  • Ostland VE, Lumsden JS, MacPhee DD, Ferguson HW (1994) Characteristics of Flavobacterium branchiophilum, the cause of salmonid bacterial gill disease in Ontario. J Aquat Anim Health 6:13–26

    Article  Google Scholar 

  • Ostland VE, MacPhee DD, Lumsden JS, Ferguson HW (1995) Virulence of Flavobacterium branchiophilum in experimentally infected salmonids. J Fish Dis 18:249–262. doi:10.1111/j.1365-2761.1995.tb00300.x

    Article  Google Scholar 

  • Ostland VE, McGrogan DG, Ferguson HW (1997) Cephalic osteochondritis and necrotic scleritis in intensively reared salmonids associated with Flexibacter psychrophilus. J Fish Dis 20:443–451. doi:10.1046/j.1365-2761.1997.00323.x

    Article  Google Scholar 

  • Ozaki A, Sakamoto T, Khoo S, Nakamura K, Coimbra MR, Akutsu T, Okamoto N (2001) Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics 265:23–31

    Article  CAS  PubMed  Google Scholar 

  • Paillard C, Le Roux F, Borrego JJ (2004) Bacterial disease in marine bivalves, a review of recent studies: trends and evolution. Aquat Living Resour 17:477–498. doi:10.1051/alr:2004054

    Article  Google Scholar 

  • Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35:1263–1272. doi:10.1016/j.dci.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  • Pavey SA, Sevellec M, Adam W et al (2013) Nonparallelism in MHCIIbeta diversity accompanies nonparallelism in pathogen infection of lake whitefish (Coregonus clupeaformis) species pairs as revealed by next-generation sequencing. Mol Ecol 22:3833–3849. doi:10.1111/mec.12358

    Article  CAS  PubMed  Google Scholar 

  • Phillips I, Casewell M, Cox T et al (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52. doi:10.1093/jac/dkg483

    Article  CAS  PubMed  Google Scholar 

  • Pizarro-Cerdá J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727. doi:10.1016/j.cell.2006.02.012

    Article  PubMed  CAS  Google Scholar 

  • Plumb JA, Grizzle JM, Defigueiredo J (1976) Necrosis and bacterial infection in channel catfish (Ictalurus punctatus) following hypoxia. J Wildl Dis 12:247–253

    Article  CAS  PubMed  Google Scholar 

  • Pulkkinen K, Suomalainen L-R, Read AF et al (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci 277:593–600. doi:10.1098/rspb.2009.1659

    Article  CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241. doi:10.1016/j.cell.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  • Ramsey MM, Whiteley M (2009) Polymicrobial interactions stimulate resistance to host innate immunity through metabolite perception. Proc Natl Acad Sci USA 106:1578–1583. doi:10.1073/pnas.0809533106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangdale RE (1995) Studies on rainbow trout fry syndrome (RTFS). PhD thesis, University of Stirling, Stirling

    Google Scholar 

  • Rangdale RE, Richards RE, Alderman DJ (1996) Isolation of Cytophaga psychrophila, causal agent of rainbow trout fry syndrome (RTFS) from reproductive fluids and egg surfaces of rainbow trout (Oncorhynchus mykiss). Bull Eur Assoc Fish Pathol 16:63–67

    Google Scholar 

  • Rangdale RE, Richards RH, Alderman DJ (1997a) Colonisation of eyed rainbow trout ova with Flavobacterium psychrophilum leads to rainbow trout fry syndrome in fry. Bull Eur Assoc Fish Pathol 17:108–111

    Google Scholar 

  • Rangdale RE, Richards RH, Alderman DJ (1997b) Minimum inhibitory concentrations of selected antimicrobial compounds against Flavobacterium psychrophilum the causal agent of rainbow trout fry syndrome (RTFS). Aquaculture 158:193–201. doi:10.1016/s0044-8486(97)00202-0

    Article  CAS  Google Scholar 

  • Reith ME, Singh RK, Curtis B et al (2008) The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. doi:10.1186/1471-2164-9-427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revie CW, Gettinby G, Treasurer JW et al (2002) Temporal, environmental and management factors influencing the epidemiological patterns of sea lice (Lepeophtheirus salmonis) infestations on farmed Atlantic salmon (Salmo salar) in Scotland. Pest Manag Sci 58:576–584

    Article  CAS  PubMed  Google Scholar 

  • Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in finfish: an update. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health, probiotics and prebiotics. Wiley-Blackwell, Oxford, pp 410–418

    Google Scholar 

  • Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837S

    CAS  PubMed  Google Scholar 

  • Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541. doi:10.1186/1471-2164-12-541

    Article  PubMed  PubMed Central  Google Scholar 

  • Rurangwa E, Laranja JL, Van Houdt R et al (2009) Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono cultures in vitro. J Appl Microbiol 106:932–940

    Article  CAS  PubMed  Google Scholar 

  • Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182:859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SCAN, European Commission Health and Consumer Protection Directorate-General (2003) Opinion of the scientific committee on Animal Nutrition on the criteria for assessing the safety of microorganisms resistant to antibiotics of human clinical and veterinary importance

    Google Scholar 

  • Scott M (1968) The pathogenicity of Aeromonas salmonicida (Griffin) in sea and brackish waters. J Gen Microbiol 50:321–327. doi:10.1099/00221287-50-2-321

    Article  CAS  PubMed  Google Scholar 

  • Shivu MM, Rajeeva BC, Girisha SK et al (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9:322–331

    Article  CAS  PubMed  Google Scholar 

  • Snieszko SF (1974) The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol 6:197–208. doi:10.1111/j.1095-8649.1974.tb04537.x

    Article  Google Scholar 

  • Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101. doi:10.1586/14760584.4.1.89

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SJ, Bailey M, Hansen LH et al (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710

    Article  CAS  PubMed  Google Scholar 

  • Speare DJ, Ferguson HW (1989) Clinical and pathological features of common gill diseases of cultured salmonids in Ontario. Can Vet J 30:882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Speare DJ, Ferguson HW, Beamish FWM et al (1991) Pathology of bacterial gill disease: ultrastructure of branchial lesions. J Fish Dis 14:1–20

    Article  Google Scholar 

  • Starliper CE (2011) Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J Adv Res 2:97–108. doi:10.1016/j.jare.2010.04.001

    Article  Google Scholar 

  • Stecher B, Maier L, Hardt W-D (2013) “Blooming” in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol 11:277–284. doi:10.1038/nrmicro2989

    Article  CAS  PubMed  Google Scholar 

  • Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74:4070–4078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens C, Shapiro L (1997) Bacterial protein secretion—a target for new antibiotics? Chem Biol 4:637–641

    Article  CAS  PubMed  Google Scholar 

  • Stork M, Di Lorenzo M, Welch TJ et al (2002) Plasmid-mediated iron uptake and virulence in Vibrio anguillarum. Plasmid 48:222–228

    Article  CAS  PubMed  Google Scholar 

  • Stuber K, Burr SE, Braun M et al (2003) Type III secretion genes in Aeromonas salmonicida subsp. salmonicida are located on a large thermolabile virulence plasmid. J Clin Microbiol 41:3854–3856. doi:10.1128/JCM.41.8.3854-3856.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell K, Wiklund T (2011) Effect of biofilm formation on antimicrobial tolerance of Flavobacterium psychrophilum. J Fish Dis 34:373–383. doi:10.1111/j.1365-2761.2011.01250.x

    Article  CAS  PubMed  Google Scholar 

  • Tam B, Gough WA, Tsuji L (2011) The impact of warming on the appearance of furunculosis in fish of the James Bay region, Quebec, Canada. Reg Environ Change 11:123–132. doi:10.1007/s10113-010-0122-8

    Article  Google Scholar 

  • Tanaka KH, Dallaire-Dufresne S, Daher RK et al (2012) An insertion sequence-dependent plasmid rearrangement in Aeromonas salmonicida causes the loss of the type three secretion system. PLoS One 7:e33725. doi:10.1371/journal.pone.0033725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touchon M, Barbier P, Bernardet J-F et al (2011) Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 77:7656–7662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi B (2012) Microbiome: the surface brigade. Nature 492:S60–S61

    Article  CAS  PubMed  Google Scholar 

  • Trust TJ, Bull LM, Currie BR, Buckley JT (1979) Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri). J Fish Res Board Can 36:1174–1179. doi:10.1139/f79-169

    Article  Google Scholar 

  • Turnbull JF (1993) Bacterial gill disease and fin rot. In: Inglis V, Roberts RJ, Bromage NR (eds) Bacterial disease fish. Halsted, New York, pp 40–58

    Google Scholar 

  • Vanden Bergh P, Frey J (2013) Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol. doi:10.1111/1751-7915.12091

    Google Scholar 

  • Verrier ER, Dorson M, Mauger S, Torhy C, Ciobotaru C, Hervet C, Dechamp N, Genet C, Boudinot P, Quillet E (2013) Resistance to a rhabdovirus (VHSV) in rainbow trout: identification of a major QTL related to innate mechanisms. PLoS One 8, e55302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatsos IN, Thompson KD, Adams A (2001) Adhesion of the fish pathogen Flavobacterium psychrophilum to unfertilized eggs of rainbow trout (Oncorhynchus mykiss) and n-hexadecane. Lett Appl Microbiol 33:178–182

    Article  CAS  PubMed  Google Scholar 

  • Vatsos IN, Thompson KD, Adams A (2006) Colonization of rainbow trout, Oncorhynchus mykiss (Walbaum), eggs by Flavobacterium psychrophilum, the causative agent of rainbow trout fry syndrome. J Fish Dis 29:441–444

    Article  CAS  PubMed  Google Scholar 

  • Vilches S, Jimenez N, Tomas JM, Merino S (2009) Aeromonas hydrophila AH-3 Type III secretion system expression and regulatory network. Appl Environ Microbiol 75:6382–6392. doi:10.1128/AEM.00222-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR et al (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124

    Article  CAS  Google Scholar 

  • Wakabayashi H (1991) Effect of environmental conditions on the infectivity of Flexibacter columnaris to fish. J Fish Dis 14:279–290. doi:10.1111/j.1365-2761.1991.tb00825.x

    Article  Google Scholar 

  • Wakabayashi H, Egusa S, Fryer JL (1980) Characteristics of filamentous bacteria isolated from a gill disease of salmonids. Can J Fish Aquat Sci 37:1499–1504

    Article  Google Scholar 

  • Wakabayashi H, Toyama T, Iida T (1994) A study on serotyping of Cytophaga-psychrophila isolated from fishes in Japan. Fish Pathol 29:101–104

    Article  Google Scholar 

  • Waldvogel FA (1999) New resistance in Staphylococcus aureus. N Engl J Med 340:556–557

    Article  CAS  PubMed  Google Scholar 

  • Welker TL, Shoemaker CA, Arias CR, Klesius PH (2005) Transmission and detection of Flavobacterium columnare in channel catfish Ictalurus punctatus. Dis Aquat Organ 63:129–138

    Article  CAS  PubMed  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H et al (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  PubMed  Google Scholar 

  • Witte W (1998) Medical consequences of antibiotic use in agriculture. Science 279:996–997

    Article  CAS  PubMed  Google Scholar 

  • Zapata AG, Varas A, Torroba M (1992) Seasonal variations in the immune system of lower vertebrates. Immunol Today 13:142–147

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Derome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Derome, N., Gauthier, J., Boutin, S., Llewellyn, M. (2016). Bacterial Opportunistic Pathogens of Fish. In: Hurst, C. (eds) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-28170-4_4

Download citation

Publish with us

Policies and ethics