Skip to main content

Applications of Computational Methods to Simulations of Proteins Dynamics

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

The present advanced state of the computer hardware offers superb opportunities for further explorations of protein structure and dynamics. Sound and well-established theoretical models are successfully used for searching new biochemical phenomena, correlations, and protein properties. In this chapter, the fast-growing field of computer simulations of protein dynamics is panoramically presented. The principles of currently used computational methods are briefly outlined, and representative examples of their recent advanced applications are given. In particular protein folding studies, intrinsically disordered proteins, protein-drug interactions, ligand transport phenomena, ion channel activity, molecular machine mechanics, origins of molecular diseases, and simulations of single-molecule AFM experiments are addressed. Special attention is devoted to emerging methods of enhanced molecular dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., et al. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25.

    Article  Google Scholar 

  • Abrams, C., & Bussi, G. (2013). Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy, 16(1), 163.

    Article  CAS  Google Scholar 

  • Achary, M. S., & Nagarajaram, H. A. (2009). Effects of disease causing mutations on the essential motions in proteins. Journal of Biomolecular Structure and Dynamics, 26(5), 609–624.

    Article  CAS  Google Scholar 

  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615.

    Article  CAS  Google Scholar 

  • Akimov, A. V., & Prezhdo, O. V. (2015). Large-scale computations in chemistry: A bird’s eye view of a vibrant field. Chemical Reviews, 115(12), 5797–5890.

    Article  CAS  Google Scholar 

  • Aksimentiev, A., Balabin, I. A., Fillingame, R. H., & Schulten, K. (2004). Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase. Biophysical Journal, 86(3), 1332–1344.

    Article  CAS  Google Scholar 

  • Aksimentiev, A., Brunner, R., Cohen, J., Comer, J., Cruz-Chu, E., Hardy, D., et al. (2008). Computer modeling in biotechnology: A partner in development. Methods in Molecular Biology, 474, 181–234.

    Article  CAS  Google Scholar 

  • Alder, B. J., & Wainwright, T. E. (1957). Phase transition for a hard sphere system. The Journal of Chemical Physics, 27, 1208–1210.

    Article  CAS  Google Scholar 

  • Aleksandrov, A., Thompson, D., & Simonson, T. (2010). Alchemical free energy simulations for biological complexes: Powerful but temperamental. Journal of Molecular Recognition, 23(2), 117–127.

    CAS  Google Scholar 

  • Alexander, S. (2010). Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.

    Article  Google Scholar 

  • Aliev, A. E., & Courtier-Murias, D. (2010). Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. Journal of Physical Chemistry B, 114(38), 12358–12375.

    Article  CAS  Google Scholar 

  • Allen, M. P., & Tildesley, D. J. (1987). Computer simulation of liquids. Oxford: Clarendon.

    Google Scholar 

  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425.

    Article  CAS  Google Scholar 

  • Andersen, O. J., Grouleff, J., Needham, P., Walker, R. C., & Jensen, F. (2015). Toward an enhanced sampling molecular dynamics method for studying ligand-induced conformational changes in proteins. Journal of Physical Chemistry B, 119(46), 14594–14603.

    Article  CAS  Google Scholar 

  • Andoh, Y., Yoshii, N., Fujimoto, K., Mizutani, K., Kojima, H., Yamada, A., et al. (2013). MODYLAS: A highly parallelized general-purpose molecular dynamics simulation program for large-scale systems with long-range forces calculated by fast multipole method (FMM) and highly scalable fine-grained new parallel processing algorithms. Journal of Chemical Theory and Computation, 9(7), 3201–3209.

    Article  CAS  Google Scholar 

  • Aqvist, J., Luzhkov, V. B., & Brandsdal, B. O. (2002). Ligand binding affinities from MD simulations. Accounts of Chemical Research, 35(6), 358–365.

    Article  CAS  Google Scholar 

  • Aryal, P., Sansom, M. S., & Tucker, S. J. (2015). Hydrophobic gating in ion channels. Journal of Molecular Biology, 427(1), 121–130.

    Article  CAS  Google Scholar 

  • Avila, C. L., Drechsel, N. J., Alcantara, R., & Ville-Freixa, J. (2011). Multiscale molecular dynamics of protein aggregation. Current Protein and Peptide Science, 21, 12(3), 221–234.

    Google Scholar 

  • Ayton, G. S., Noid, W. G., & Voth, G. A. (2007). Multiscale modeling of biomolecular systems: In serial and in parallel. Current Opinion in Structural Biology, 17(2), 192–198.

    Article  CAS  Google Scholar 

  • Ayton, G. S., Lyman, E., & Voth, G. A. (2010). Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. Faraday Discussions, 144, 347–357.

    Article  CAS  Google Scholar 

  • Bahar, I., Lezon, T. R., Yang, L.-W., & Eyal, E. (2010). Global dynamics of proteins: Bridging between structure and function. Annual Review of Biophysics, 39(1), 23–42.

    Article  CAS  Google Scholar 

  • Bahar, I., Cheng, M. H., Lee, J. Y., Kaya, C., & Zhang, S. (2015). Structure-encoded global motions and their role in mediating protein-substrate interactions. Biophysical Journal, 109(6), 1101–1109.

    Article  CAS  Google Scholar 

  • Baker, C. M., & Best, R. B. (2013). Matching of additive and polarizable force fields for multiscale condensed phase simulations. Journal of Chemical Theory and Computation, 9(6), 2826–2837.

    Article  CAS  Google Scholar 

  • Baker, C. M., & Best, R. B. (2014). Insights into the binding of intrinsically disordered proteins from molecular dynamics simulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(3), 182–198.

    CAS  Google Scholar 

  • Barnoud, J., & Monticelli, L. (2015). Coarse-grained force fields for molecular simulations. Methods in Molecular Biology, 1215, 125–149.

    Article  CAS  Google Scholar 

  • Beauchamp, K. A., Lin, Y. S., Das, R., & Pande, V. S. (2012). Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. Journal of Chemical Theory and Computation, 8(4), 1409–1414.

    Article  CAS  Google Scholar 

  • Becker, O. M., & Karplus, M. (2006). A guide to biomolecular simulations (Vol. 4). Dordrecht: Springer.

    Google Scholar 

  • Becker, T., Bhushan, S., Jarasch, A., Armache, J. P., Funes, S., Jossinet, F., et al. (2009). Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science, 326(5958), 1369–1373.

    Article  CAS  Google Scholar 

  • Belden, O. S., Baker, S. C., & Baker, B. M. (2015). Citizens unite for computational immunology! Trends in Immunology, 36(7), 385–387.

    Article  CAS  Google Scholar 

  • Berendsen, H. J. C. E. (1976). In Proceedings of the CECAM workshop on models for protein dynamics, Orsay.

    Google Scholar 

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242.

    Article  CAS  Google Scholar 

  • Bernardi, R. C., Melo, M. C., & Schulten, K. (2015). Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta, 1850(5), 872–877.

    Article  CAS  Google Scholar 

  • Biarnes, X., Bongarzone, S., Vargiu, A. V., Carloni, P., & Ruggerone, P. (2011). Molecular motions in drug design: The coming age of the metadynamics method. Journal of Computer-Aided Molecular Design, 25(5), 395–402.

    Article  CAS  Google Scholar 

  • Bikiel, D. E., Boechi, L., Capece, L., Crespo, A., De Biase, P. M., Di Lella, S., et al. (2006). Modeling heme proteins using atomistic simulations. Physical Chemistry Chemical Physics, 8(48), 5611–5628.

    Article  CAS  Google Scholar 

  • Bisha, I., & Magistrato, A. (2016). The molecular mechanism of secondary sodium symporters under the lens of the computational microscope. RSC Advances, 6, 9522–9540.

    Article  CAS  Google Scholar 

  • Blaszczyk, M., Jamroz, M., Kmiecik, S., & Kolinski, A. (2013). CABS-fold: Server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res, 41(Web Server issue), W406–411.

    Google Scholar 

  • Boas, F. E., & Harbury, P. B. (2007). Potential energy functions for protein design. Current Opinion in Structural Biology, 17(2), 199–204.

    Article  CAS  Google Scholar 

  • Bock, L. V., Blau, C., Schröder, G. F., Davydov, I. I., Fischer, N., Stark, H., et al. (2013). Energy barriers and driving forces in tRNA translocation through the ribosome. Nature Structural & Molecular Biology, 20(12), 1390–1396.

    Article  CAS  Google Scholar 

  • Boiteux, C., Kraszewski, S., Ramseyer, C., & Girardet, C. (2007). Ion conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives. Journal of Molecular Modeling, 13(6–7), 699–713.

    Article  CAS  Google Scholar 

  • Borell, B. (2008). Chemistry: Power play. Nature, 451, 240–243.

    Article  CAS  Google Scholar 

  • Borhani, D. W., & Shaw, D. E. (2012). The future of molecular dynamics simulations in drug discovery. Journal of Computer-Aided Molecular Design, 26(1), 15–26.

    Article  CAS  Google Scholar 

  • Bottaro, S., Lindorff-Larsen, K., & Best, R. B. (2013). Variational optimization of an all-atom implicit solvent force field to match explicit solvent simulation data. Journal of Chemical Theory and Computation, 9(12), 5641–5652.

    Article  CAS  Google Scholar 

  • Bowman, G. R., Voelz, V. A., & Pande, V. S. (2011). Taming the complexity of protein folding. Current Opinion in Structural Biology, 21(1), 4–11.

    Article  CAS  Google Scholar 

  • Brooks, B. R., Brooks, C. L., 3rd, Mackerell, A. D., Jr., Nilsson, L., Petrella, R. J., Roux, B., et al. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614.

    Article  CAS  Google Scholar 

  • Brunk, E., & Rothlisberger, U. (2015). Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chemical Reviews, 115(12), 6217–6263.

    Article  CAS  Google Scholar 

  • Carnevale, V., Raugei, S., Neri, M., Pantano, S., Micheletti, C., & Carloni, P. (2009). Multi-scale modeling of HIV-1 proteins. Journal of Molecular Structure (THEOCHEM), 898(1–3), 97–105.

    Article  CAS  Google Scholar 

  • Carvalho, A. T. P., Barrozo, A., Doron, D., Kilshtain, A. V., Major, D. T., & Kamerlin, S. C. L. (2014). Challenges in computational studies of enzyme structure, function and dynamics. Journal of Molecular Graphics and Modelling, 54, 62–79.

    Article  CAS  Google Scholar 

  • Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr., et al. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688.

    Article  CAS  Google Scholar 

  • Chen, J., & Brooks, C. L., 3rd. (2008). Implicit modeling of nonpolar solvation for simulating protein folding and conformational transitions. Physical Chemistry Chemical Physics, 10(4), 471–481.

    Article  CAS  Google Scholar 

  • Chen, J., Brooks, C. L., 3rd, & Khandogin, J. (2008). Recent advances in implicit solvent-based methods for biomolecular simulations. Current Opinion in Structural Biology, 18(2), 140–148.

    Article  CAS  Google Scholar 

  • Chen, J., Xie, Z. -R., & Wu, Y. (2016). Study of protein structural deformations under external mechanical perturbations by a coarse-grained simulation method. Biomechanics and Modeling in Mechanobiology, 15, 317–329.

    Google Scholar 

  • Chipot, C. (2015). Applications to real size biological systems. In B. Engquist (Ed.), Encyclopedia of applied and computational mathematics (pp. 72–81). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chou, K. C. (2004). Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry, 11(16), 2105–2134.

    Article  CAS  Google Scholar 

  • Christ, C. D., Mark, A. E., & van Gunsteren, W. F. (2010). Basic ingredients of free energy calculations: A review. Journal of Computational Chemistry, 31(8), 1569–1582.

    CAS  Google Scholar 

  • Christen, M., Hunenberger, P. H., Bakowies, D., Baron, R., Burgi, R., Geerke, D. P., et al. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26(16), 1719–1751.

    Article  CAS  Google Scholar 

  • Chu, J.-W., Ayton, G. S., Izvekov, S., & Voth, G. A. (2007). Emerging methods for multiscale simulation of biomolecular systems. Molecular Physics, 105, 167–175.

    Article  CAS  Google Scholar 

  • Chwastyk, M., Galera-Prat, A., Sikora, M., Gomez-Sicilia, A., Carrion-Vazquez, M., & Cieplak, M. (2014). Theoretical tests of the mechanical protection strategy in protein nanomechanics. Proteins, 82(5), 717–726.

    Article  CAS  Google Scholar 

  • Clementi, C. (2008). Coarse-grained models of protein folding: Toy models or predictive tools? Current Opinion in Structural Biology, 18(1), 10–15.

    Article  CAS  Google Scholar 

  • Cohen, J., Olsen, K. W., & Schulten, K. (2008). Finding gas migration pathways in proteins using implicit ligand sampling. Methods in Enzymology, 437, 439–457.

    Article  CAS  Google Scholar 

  • Comer, J., Phillips, J. C., Schulten, K., & Chipot, C. (2014). Multiple-replica strategies for free-energy calculations in NAMD: Multiple-walker adaptive biasing force and walker selection rules. Journal of Chemical Theory and Computation, 10(12), 5276–5285.

    Article  CAS  Google Scholar 

  • Cornell, W., & Nam, K. (2009). Steroid hormone binding receptors: Application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Current Topics in Medicinal Chemistry, 9(9), 844–853.

    Article  CAS  Google Scholar 

  • Cumberworth, A., Bui, J. M., & Gsponer, J. (2015). Free energies of solvation in the context of protein folding: Implications for implicit and explicit solvent models. Journal of Computational Chemistry, 37(7), 629–640.

    Article  CAS  Google Scholar 

  • Czub, J., & Grubmuller, H. (2014). Rotation triggers nucleotide-independent conformational transition of the empty beta subunit of F(1)-ATPase. Journal of the American Chemical Society, 136(19), 6960–6968.

    Article  CAS  Google Scholar 

  • Dahl, J. P. (2001). Introduction to the quantum world of atoms and molecules. Singapore: World Scientific.

    Book  Google Scholar 

  • Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasi, F., & Elber, R. (2005). Long-timescale simulation methods. Current Opinion in Structural Biology, 15, 151–156.

    Article  CAS  Google Scholar 

  • Dal Peraro, M., Ruggerone, P., Raugei, S., Gervasio, F. L., & Carloni, P. (2007). Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations. Current Opinion in Structural Biology, 17(2), 149–156.

    Article  CAS  Google Scholar 

  • Damborsky, J., & Brezovsky, J. (2014). Computational tools for designing and engineering enzymes. Current Opinion in Chemical Biology, 19, 8–16.

    Article  CAS  Google Scholar 

  • DeLano, W. L. (2002). The PyMOL molecular graphics system.

    Google Scholar 

  • Delemotte, L., Kasimova, M. A., Klein, M. L., Tarek, M., & Carnevale, V. (2015). Free-energy landscape of ion-channel voltage-sensor–domain activation. Proceedings of the National Academy of Sciences, 112(1), 124–129.

    Article  CAS  Google Scholar 

  • DeMarco, M. L., & Daggett, V. (2009). Characterization of cell-surface prion protein relative to its recombinant analogue: Insights from molecular dynamics simulations of diglycosylated, membrane-bound human prion protein. Journal of Neurochemistry, 109(1), 60–73.

    Article  CAS  Google Scholar 

  • Deng, Y., & Roux, B. (2009). Computations of standard binding free energies with molecular dynamics simulations. Journal of Physical Chemistry B, 113(8), 2234–2246.

    Article  CAS  Google Scholar 

  • Di Marino, D., Bonome, E. L., Tramontano, A., & Chinappi, M. (2015). All-atom molecular dynamics simulation of protein translocation through an α-hemolysin nanopore. Journal of Physical Chemistry Letters, 6(15), 2963–2968.

    Article  CAS  Google Scholar 

  • Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science, 338(6110), 1042–1046.

    Article  CAS  Google Scholar 

  • Dittrich, M., & Schulten, K. (2006). PcrA helicase, a prototype ATP-driven molecular motor. Structure, 14(9), 1345–1353.

    Article  CAS  Google Scholar 

  • Dittrich, M., Freddolino, P. L., & Schulten, K. (2005). When light falls in LOV: A quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. Journal of Physical Chemistry B, 109(26), 13006–13013.

    Article  CAS  Google Scholar 

  • Do, T. N., Choy, W. Y., & Karttunen, M. (2014). Accelerating the conformational sampling of intrinsically disordered proteins. Journal of Chemical Theory and Computation, 10(11),5081–5094.

    Article  CAS  Google Scholar 

  • Dodson, G. G., Lane, D. P., & Verma, C. S. (2008). Molecular simulations of protein dynamics: New windows on mechanisms in biology. EMBO Reports, 9(2), 144–150.

    Article  CAS  Google Scholar 

  • Dror, R. O., Dirks, R. M., Grossman, J. P., Xu, H. F., & Shaw, D. E. (2012). Biomolecular simulation: A computational microscope for molecular biology. Annual Review of Biophysics, 41(41), 429–452.

    Article  CAS  Google Scholar 

  • Dror, R. O., Green, H. F., Valant, C., Borhani, D. W., Valcourt, J. R., Pan, A. C., et al. (2013). Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 503(7475), 295–299.

    CAS  Google Scholar 

  • Duan, Y., & Kollman, P. A. (1998). Pathways to a protein folding intermediate observed in a1-microsecond simulation in aqueous solution. Science, 282(5389), 740–744.

    Article  CAS  Google Scholar 

  • Eastman, P., & Pande, V. S. (2015). OpenMM: A hardware independent framework for molecular simulations. Computing in Science & Engineering, 12(4), 34–39.

    Article  Google Scholar 

  • Elber, R. (2010). Ligand diffusion in globins: Simulations versus experiment. Current Opinion in Structural Biology, 20(2), 162–167.

    Article  CAS  Google Scholar 

  • Elber, R., & Kirmizialtin, S. (2013). Molecular machines. Current Opinion in Structural Biology, 23(2), 206–211.

    Article  CAS  Google Scholar 

  • Elber, R., Ghosh, A., & Cardenas, A. (2002). Long time dynamics of complex systems. Accounts of Chemical Research, 35(6), 396–403.

    Article  CAS  Google Scholar 

  • English, N. J., & Waldron, C. J. (2015). Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Physical Chemistry Chemical Physics, 17(19), 12407–12440. doi:10.1039/C5CP00629E.

    Article  CAS  Google Scholar 

  • Ensign, D. L., Kasson, P. M., & Pande, V. S. (2007). Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. Journal of Molecular Biology, 374(3), 806–816.

    Article  CAS  Google Scholar 

  • Espinoza-Fonseca, L. M., & Ramírez-Salinas, G. L. (2015). Microsecond molecular simulations reveal a transient proton pathway in the calcium pump. Journal of the American Chemical Society, 137(22), 7055–7058.

    Article  CAS  Google Scholar 

  • Estarellas, C., Otyepka, M., Koča, J., Banáš, P., Krepl, M., & Šponer, J. (2015). Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(5), 1072–1090.

    Article  CAS  Google Scholar 

  • Fersht, A. R., & Daggett, V. (2002). Protein folding and unfolding at atomic resolution. Cell, 108(4), 573–582.

    Google Scholar 

  • Field, M. J. (2015). Technical advances in molecular simulation since the 1980s. Archives of Biochemistry and Biophysics, 582, 3–9.

    Article  CAS  Google Scholar 

  • Flechsig, H., & Mikhailov, A. S. (2010). Tracing entire operation cycles of molecular motor hepatitis C virus helicase in structurally resolved dynamical simulations. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20875–20880.

    Article  CAS  Google Scholar 

  • Forti, F., Boechi, L., Bikiel, D., Martí, M. A., Nardini, M., Bolognesi, M., et al. (2011a). Ligand migration in Methanosarcina acetivorans protoglobin: Effects of ligand binding and dimeric assembly. The Journal of Physical Chemistry B, 115(46), 13771–13780.

    Article  CAS  Google Scholar 

  • Forti, F., Boechi, L., Estrin, D. A., & Marti, M. A. (2011b). Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins. Journal of Computational Chemistry, 32(10), 2219–2231.

    Article  CAS  Google Scholar 

  • Fowler, P. W., & Sansom, M. S. (2013). The pore of voltage-gated potassium ion channels is strained when closed. Nature Communications, 4, 1872.

    Article  CAS  Google Scholar 

  • Frankel, D., & Smit, B. (2001). Understanding molecular simulation (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Freddolino, P. L., & Schulten, K. (2009). Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophysical Journal, 97(8), 2338–2347.

    Article  CAS  Google Scholar 

  • Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., & Schulten, K. (2006a). Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure, 14(3), 437–449.

    Article  CAS  Google Scholar 

  • Freddolino, P. L., Dittrich, M., & Schulten, K. (2006b). Dynamic switching mechanisms in LOV1 and LOV2 domains of plant phototropins. Biophysical Journal, 91(10), 3630–3639.

    Article  CAS  Google Scholar 

  • Freddolino, P. L., Liu, F., Gruebele, M., & Schulten, K. (2008). Ten-microsecond molecular dynamics simulation of a fast-folding WW domain. Biophysical Journal, 94(10), L75–77.

    Article  CAS  Google Scholar 

  • Freddolino, P. L., Harrison, C. B., Liu, Y., & Schulten, K. (2010). Challenges in protein folding simulations: Timescale, representation, and analysis. Nature Physics, 6(10), 751–758.

    Article  CAS  Google Scholar 

  • Frenkel, D., & Smit, B. (2002). Chapter 4 – Molecular dynamics simulations. In Understanding molecular simulation (2nd ed., pp. 63–107). San Diego: Academic.

    Chapter  Google Scholar 

  • Fu, B., & Vendruscolo, M. (2015). Structure and dynamics of intrinsically disordered proteins. Advances in Experimental Medicine and Biology, 870, 35–48.

    Article  Google Scholar 

  • Fujisaki, H., Moritsugu, K., Matsunaga, Y., Morishita, T., & Maragliano, L. (2015). Extended phase-space methods for enhanced sampling in molecular simulations: A review. Frontiers in Bioengineering and Biotechnology, 3, 125.

    Article  Google Scholar 

  • Furini, S., Domene, C., & Cavalcanti, S. (2010). Insights into the sliding movement of the lac repressor nonspecifically bound to DNA. The Journal of Physical Chemistry B, 114(6), 2238–2245.

    Article  CAS  Google Scholar 

  • Galeazzi, R. (2009). Molecular dynamics as a tool in rational drug design: Current status and some major applications. Current Computer-Aided Drug Design, 5(4), 225–240.

    Article  CAS  Google Scholar 

  • Galera-Prat, A., Gomez-Sicilia, A., Oberhauser, A. F., Cieplak, M., & Carrion-Vazquez, M. (2010). Understanding biology by stretching proteins: Recent progress. Current Opinion in Structural Biology, 20(1), 63–69.

    Article  CAS  Google Scholar 

  • Gallicchio, E., & Levy, R. M. (2011). Advances in all atom sampling methods for modeling protein-ligand binding affinities. Current Opinion in Structural Biology, 21, 161–166

    Article  CAS  Google Scholar 

  • Gamini, R., Han, W., Stone, J. E., & Schulten, K. (2014). Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating. PLoS Computational Biology, 10(3), e1003488.

    Article  CAS  Google Scholar 

  • Gamiz-Hernandez, A. P., & Kaila, V. R. (2016). Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Physical Chemistry Chemical Physics, 18(4), 2802–2809.

    Article  CAS  Google Scholar 

  • Gao, M., Sotomayor, M., Villa, E., Lee, E. H., & Schulten, K. (2006). Molecular mechanisms of cellular mechanics. Physical Chemistry Chemical Physics, 8(32), 3692–3706.

    Article  CAS  Google Scholar 

  • Goga, N., Melo, M., Rzepiela, A., De Vries, A., Hadar, A., Marrink, S., et al. (2015). Benchmark of schemes for multiscale molecular dynamics simulations. Journal of Chemical Theory and Computation, 11(4), 1389–1398.

    Article  CAS  Google Scholar 

  • Goh, B. C., Perilla, J. R., England, M. R., Heyrana, K. J., Craven, R. C., & Schulten, K. (2015). Atomic modeling of an immature retroviral lattice using molecular dynamics and mutagenesis. Structure, 23(8), 1414–1425.

    Article  CAS  Google Scholar 

  • Granata, D., Camilloni, C., Vendruscolo, M., & Laio, A. (2013). Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 6817–6822.

    Article  CAS  Google Scholar 

  • Granata, D., Baftizadeh, F., Habchi, J., Galvagnion, C., De Simone, A., Camilloni, C., et al. (2015). The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Scientific Reports, 5, 15449.

    Article  CAS  Google Scholar 

  • Greenberger, D., Hentschel, K., & Weinert, F. (2009). Compendium of quantum physics. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  • Gu, J., & Bourne, P. E. (Eds.). (2009). Structural bioinformatics (2nd ed.). Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., & Schulten, K. (2005). Molecular dynamics simulations of proteins in lipid bilayers. Current Opinion in Structural Biology, 15(4), 423–431.

    Article  CAS  Google Scholar 

  • Guvench, O., & MacKerell, A. D., Jr. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88.

    Article  CAS  Google Scholar 

  • Haile, M. (1992). Molecular dynamics simulation: Elementary methods. New York: Wiley.

    Google Scholar 

  • Hansson, T., Oostenbrink, C., & van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196.

    Article  CAS  Google Scholar 

  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17.

    Article  CAS  Google Scholar 

  • Hardy, D. J., Stone, J. E., & Schulten, K. (2009). Multilevel summation of electrostatic potentials using graphics processing units. Parallel Computing, 35(3), 164–177.

    Article  Google Scholar 

  • Harvey, M. J., & De Fabritiis, G. (2012). High-throughput molecular dynamics: The powerful new tool for drug discovery. Drug Discovery Today, 17(19), 1059–1062.

    Article  CAS  Google Scholar 

  • Hayashi, S., Tajkhorshid, E., & Schulten, K. (2009). Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophysical Journal, 96(2), 403–416.

    Article  CAS  Google Scholar 

  • He, C., Genchev, G. Z., Lu, H., & Li, H. (2012). Mechanically untying a protein slipknot: Multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations. Journal of the American Chemical Society, 134(25), 10428–10435.

    Article  CAS  Google Scholar 

  • Hensen, U., Meyer, T., Haas, J., Rex, R., Vriend, G., & Grubmuller, H. (2012). Exploring protein dynamics space: The dynasome as the missing link between protein structure and function. PLoS One, 7(5), e33931.

    Article  CAS  Google Scholar 

  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450(7172), 964–972.

    Article  CAS  Google Scholar 

  • Horn, R., Roux, B., & Aqvist, J. (2014). Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels. Biophysical Journal, 106(9), 1859–1863.

    Article  CAS  Google Scholar 

  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65, 712–725.

    Article  CAS  Google Scholar 

  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82.

    Article  CAS  Google Scholar 

  • Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD: An introductory tutorial. Current Protocols in Bioinformatics, Chapter 5, Unit 5 7.

    Google Scholar 

  • Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145.

    Article  CAS  Google Scholar 

  • Huang, J., Lopes, P. E., Roux, B., & MacKerell, A. D., Jr. (2014). Recent advances in polarizable force fields for macromolecules: Microsecond simulations of proteins using the classical drude oscillator model. Journal of Physical Chemistry Letters, 5(18), 3144–3150.

    Article  CAS  Google Scholar 

  • Huang, W., Manglik, A., Venkatakrishnan, A. J., Laeremans, T., Feinberg, E. N., Sanborn, A. L., et al. (2015). Structural insights into micro-opioid receptor activation. Nature, 524(7565),315–321.

    Article  CAS  Google Scholar 

  • Hub, J. S., & de Groot, B. L. (2009). Detection of functional modes in protein dynamics. PLoS Computational Biology, 5(8), e1000480.

    Article  CAS  Google Scholar 

  • Hub, J. S., Grubmuller, H., & de Groot, B. L. (2009). Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handbook of Experimental Pharmacology, 190, 57–76.

    Article  CAS  Google Scholar 

  • Hummer, G., & Szabo, A. (2010). Free energy profiles from single-molecule pulling experiments. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21441–21446.

    Article  CAS  Google Scholar 

  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38, 27–38.

    Article  CAS  Google Scholar 

  • Ikeguchi, M. (2009). Water transport in aquaporins: Molecular dynamics simulations. Frontiers in Bioscience, 14, 1283–1291.

    Article  CAS  Google Scholar 

  • Ingolfsson, H. I., Lopez, C. A., Uusitalo, J. J., de Jong, D. H., Gopal, S. M., Periole, X., et al. (2014). The power of coarse graining in biomolecular simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 4(3), 225–248.

    CAS  Google Scholar 

  • Isaksen, G. V., Andberg, T. A. H., Åqvist, J., & Brandsdal, B. O. (2015). Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems. Journal of Molecular Graphics and Modelling, 60,15–23.

    Article  CAS  Google Scholar 

  • Ishida, H. (2014). Essential function of the N-termini tails of the proteasome for the gating mechanism revealed by molecular dynamics simulations. Proteins, 82(9), 1985–1999.

    Article  CAS  Google Scholar 

  • Ito, Y., & Ikeguchi, M. (2014). Molecular dynamics simulations of F1-ATPase. In Protein conformational dynamics (pp. 411–440). Cham: Springer.

    Chapter  Google Scholar 

  • Iwasa, J. H. (2015). Bringing macromolecular machinery to life using 3D animation. Current Opinion in Structural Biology, 31, 84–88.

    Article  CAS  Google Scholar 

  • Jankowski, M., Wertheim-Tysarowska, K., Jakubowski, R., Sota, J., Nowak, W., & Czajkowski, R. (2014). Novel KRT14 mutation causing epidermolysis bullosa simplex with variable phenotype. Experimental Dermatology, 23(9), 684–687.

    Article  CAS  Google Scholar 

  • Jorgensen, W. L. (2013). Foundations of biomolecular modeling. Cell, 155(6), 1199–1202.

    Article  CAS  Google Scholar 

  • Jorgensen, W. L., & Tirado-Rives, J. (1988). The Opls potential functions for proteins – Energy minimizations for crystals of cyclic-peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666.

    Article  CAS  Google Scholar 

  • Kannan, S., & Zacharias, M. (2009). Simulated annealing coupled replica exchange molecular dynamics – An efficient conformational sampling method. Journal of Structural Biology, 166(3), 288–294.

    Article  CAS  Google Scholar 

  • Kardos, J., & Héja, L. (2015). How membrane proteins work giving autonomous traverse pathways? Structural Chemistry, 26(5–6), 1405–1410.

    Article  CAS  Google Scholar 

  • Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68(3), 350–358.

    Article  CAS  Google Scholar 

  • Karplus, M. (2014). Development of multiscale models for complex chemical systems: From H + H(2) to biomolecules (Nobel lecture). Angewandte Chemie International Edition in English, 53(38), 9992–10005.

    Article  CAS  Google Scholar 

  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652.

    Article  CAS  Google Scholar 

  • Kassler, K., Horn, A. H. C., & Sticht, H. (2010). Effect of pathogenic mutations on the structure and dynamics of Alzheimer’s A beta(42)-amyloid oligomers. Journal of Molecular Modeling, 16(5), 1011–1020.

    Article  CAS  Google Scholar 

  • Khafizov, K., Lattanzi, G., & Carloni, P. (2009). G protein inactive and active forms investigated by simulation methods. Proteins: Structure, Function, and Bioinformatics, 75(4), 919–930.

    Article  CAS  Google Scholar 

  • Khalili-Araghi, F., Gumbart, J., Wen, P. C., Sotomayor, M., Tajkhorshid, E., & Schulten, K. (2009). Molecular dynamics simulations of membrane channels and transporters. Current Opinion in Structural Biology, 19(2), 128–137.

    Article  CAS  Google Scholar 

  • Kholmurodov, K. T., Altaisky, M. V., Puzynin, I. V., Darden, T., & Filatov, F. P. (2003). Methods of molecular dynamics for simulation of physical and biological processes. Physics of Particles and Nuclei, 34(2), 244–263.

    CAS  Google Scholar 

  • Khurana, E., Devane, R. H., Dal Peraro, M., & Klein, M. L. (2011). Computational study of drug binding to the membrane-bound tetrameric M2 peptide bundle from influenza A virus. Biochimica et Biophysica Acta, 1808(2), 530–537.

    Article  CAS  Google Scholar 

  • Kim, I., & Warshel, A. (2014). Coarse-grained simulations of the gating current in the voltage-activated Kv1.2 channel. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2128–2133.

    Article  CAS  Google Scholar 

  • Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins, 83(4), 599–611.

    Article  CAS  Google Scholar 

  • Klein, M. L., & Shinoda, W. (2008). Large-scale molecular dynamics simulations of self-assembling systems. Science, 321, 798–800.

    Article  CAS  Google Scholar 

  • Klepeis, J. L., Pieja, M. J., & Floudas, C. A. (2003). Hybrid global optimization algorithms for protein structure prediction: Alternating hybrids. Biophysical Journal, 84(2 Pt 1), 869–882.

    Article  CAS  Google Scholar 

  • Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19(2), 120–127.

    Article  CAS  Google Scholar 

  • Klimovich, P. V., Shirts, M. R., & Mobley, D. L. (2015). Guidelines for the analysis of free energy calculations. Journal of Computer-Aided Molecular Design, 29(5), 397–411.

    Article  CAS  Google Scholar 

  • Kmiecik, S., Gront, D., & Kolinski, A. (2007). Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Structural Biology, 7, 43.

    Article  CAS  Google Scholar 

  • Kmiecik, S., Wabik, J., Kolinski, M., Kouza, M., & Kolinski, A. (2014). Coarse-grained modeling of protein dynamics. In Computational methods to study the structure and dynamics of biomolecules and biomolecular processes (pp. 55–79). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Knapp, B., & Schreiner, W. (2009). Graphical user interfaces for molecular dynamics-quo vadis? Bioinformatics and Biology Insights, 3, 103–107.

    CAS  Google Scholar 

  • Kohen, A. (2015). Dihydrofolate reductase as a model for studies of enzyme dynamics and catalysis [version 1; referees: 2 approved]. F1000Research, 4(F1000 Faculty Rev), 1464. doi:10.12688/f1000research.6968.1.

    Google Scholar 

  • Kremer, K. (2003). Computer simulations for macromolecular science. Macromolecular Chemistry and Physics, 204(2), 257–264.

    Article  CAS  Google Scholar 

  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007.

    Article  CAS  Google Scholar 

  • Kryshtafovych, A., Monastyrskyy, B., & Fidelis, K. (2016). CASP11 statistics and the prediction center evaluation system. Proteins: Structure, Function, and Bioinformatics. doi:10.1002/prot.25005.

    Google Scholar 

  • Kubiak, K., & Nowak, W. (2008). Molecular dynamics simulations of the photoactive protein nitrile hydratase. Biophysical Journal, 94(10), 3824–3838.

    Article  CAS  Google Scholar 

  • Kuczera, K., Jas, G. S., & Elber, R. (2009). Kinetics of helix unfolding: Molecular dynamics simulations with milestoning. The Journal of Physical Chemistry. A, 113(26), 7461–7473.

    Article  CAS  Google Scholar 

  • Kukic, P., Kannan, A., Dijkstra, M. J., Abeln, S., Camilloni, C., & Vendruscolo, M. (2015). Mapping the protein fold universe using the CamTube force field in molecular dynamics simulations. PLoS Computational Biology, 11(10), e1004435.

    Article  CAS  Google Scholar 

  • Kumar, S., & Li, M. S. (2010). Biomolecules under mechanical force. Physics Reports, 486(1–2), 1–74.

    Article  CAS  Google Scholar 

  • Kumar, A., & Purohit, R. (2014). Use of long term molecular dynamics simulation in predicting cancer associated SNPs. PLoS Computational Biology, 10(4), e1003318.

    Article  CAS  Google Scholar 

  • Kupfer, L., Hinrichs, W., & Groschup, M. H. (2009). Prion protein misfolding. Current Molecular Medicine, 9(7), 826–835.

    Article  CAS  Google Scholar 

  • Kutzner, C., Czub, J., & Grubmuller, H. (2011). Keep it flexible: Driving macromolecular rotary motions in atomistic simulations with GROMACS. Journal of Chemical Theory and Computation, 7(5), 1381–1393.

    Article  CAS  Google Scholar 

  • Lane, T. J., Shukla, D., Beauchamp, K. A., & Pande, V. S. (2013). To milliseconds and beyond: Challenges in the simulation of protein folding. Current Opinion in Structural Biology, 23(1), 58–65.

    Article  CAS  Google Scholar 

  • Lange, O. E., Schafer, L. V., & Grubmuller, H. (2006). Flooding in GROMACS: Accelerated barrier crossings in molecular dynamics. Journal of Computational Chemistry, 27(14), 1693–1702.

    Article  CAS  Google Scholar 

  • Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. M. (2010). Molecular modeling approaches in the discovery of new drugs for anti-cancer therapy: The investigation of p53-MDM2 interaction and its inhibition by small molecules. Current Medicinal Chemistry, 17(28), 3142–3154.

    Article  CAS  Google Scholar 

  • Le, L., Lee, E., Schulten, K., & Truong, T. N. (2011). Molecular modeling of swine influenza A/H1N1, Spanish H1N1, and avian H5N1 flu N1 neuraminidases bound to Tamiflu and Relenza. PLoS Currents, 1, RRN1015. doi:10.1371/currents.RRN1015.

    Google Scholar 

  • Leach, A. (2001). Molecular modelling: Principles and applications (2nd ed.). Harlow: Prentice Hall.

    Google Scholar 

  • Lee, G., Nowak, W., Jaroniec, J., Zhang, Q., & Marszalek, P. E. (2004). Nanomechanical control of glucopyranose rotamers. Journal of the American Chemical Society, 126(20), 6218–6219.

    Article  CAS  Google Scholar 

  • Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G., & Schulten, K. (2009). Discovery through the computational microscope. Structure, 17(10), 1295–1306.

    Article  CAS  Google Scholar 

  • Lee, J., Kim, J.-S., & Seok, C. (2010). Cooperativity and specificity of Cys2His2 Zinc finger protein – DNA interactions: A molecular dynamics simulation study. The Journal of Physical Chemistry B, 114(22), 7662–7671.

    Article  CAS  Google Scholar 

  • Lee, K. H., Kuczera, K., & Banaszak Holl, M. M. (2011). The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers, 95(3), 182–193.

    Article  CAS  Google Scholar 

  • Leszczynski, J. (2012). Handbook of computational chemistry. Dordrecht/New York: Springer.

    Book  Google Scholar 

  • Levitt, M. (2014). Birth and future of multiscale modeling for macromolecular systems (Nobel lecture). Angewandte Chemie International Edition in English, 53(38), 10006–10018.

    Article  CAS  Google Scholar 

  • Levitt, M., & Lifson, S. (1969). Refinement of protein conformation using a macromolecular energy minimization procedure. Journal of Molecular Biology, 46, 269–279.

    Article  CAS  Google Scholar 

  • Li, Y., & Gong, H. (2015). Theoretical and simulation studies on voltage-gated sodium channels. Protein & Cell, 6(6), 413–422.

    Article  CAS  Google Scholar 

  • Li, Q., Wanderling, S., Paduch, M., Medovoy, D., Singharoy, A., McGreevy, R., et al. (2014). Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Nature Structural & Molecular Biology, 21(3), 244–252.

    Article  CAS  Google Scholar 

  • Linder, T., Wang, S., Zangerl-Plessl, E.-M., Nichols, C. G., & Stary-Weinzinger, A. (2015). Molecular dynamics simulations of KirBac1.1 mutants reveal global gating changes of Kir channels. Journal of Chemical Information and Modeling, 55(4), 814–822.

    Article  CAS  Google Scholar 

  • Lindorff-Larsen, K., Maragakis, P., Piana, S., Eastwood, M. P., Dror, R. O., & Shaw, D. E. (2012a). Systematic validation of protein force fields against experimental data. PLoS One, 7(2), e32131.

    Article  CAS  Google Scholar 

  • Lindorff-Larsen, K., Trbovic, N., Maragakis, P., Piana, S., & Shaw, D. E. (2012b). Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. Journal of the American Chemical Society, 134(8), 3787–3791.

    Article  CAS  Google Scholar 

  • Liu, J., & Nussinov, R. (2010). Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. Journal of Molecular Biology, 396(5),1508–1523.

    Article  CAS  Google Scholar 

  • Liwo, A., Czaplewski, C., Oldziej, S., & Scheraga, H. A. (2008). Computational techniques for efficient conformational sampling of proteins. Current Opinion in Structural Biology, 18(2), 134–139.

    Article  CAS  Google Scholar 

  • Lonsdale, R., Ranaghan, K. E., & Mulholland, A. J. (2010). Computational enzymology. Chemical Communications, 46(14), 2354–2372.

    Article  CAS  Google Scholar 

  • Lopes, P. E., Guvench, O., & MacKerell, A. D., Jr. (2015). Current status of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 1215, 47–71.

    Article  CAS  Google Scholar 

  • Lorenz, C., & Doltsinis, N. L. (2012). Molecular dynamics simulation: From “Ab Initio” to “Coarse Grained”. In J. Leszczynski (Ed.), Handbook of computational chemistry (pp. 195–238). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lu, Z., Nowak, W., Lee, G., Marszalek, P. E., & Yang, W. (2004). Elastic properties of single amylose chains in water: A quantum mechanical and AFM study. Journal of the American Chemical Society, 126(29), 9033–9041.

    Article  CAS  Google Scholar 

  • Ma, B., & Levine, A. J. (2007). Probing potential binding modes of the p53 tetramer to DNA based on the symmetries encoded in p53 response elements. Nucleic Acids Research, 35(22), 7733–7747.

    Article  CAS  Google Scholar 

  • Ma, W., & Schulten, K. (2015). Mechanism of substrate translocation by a ring-shaped ATPase motor at millisecond resolution. Journal of the American Chemical Society, 137(8), 3031–3040.

    Article  CAS  Google Scholar 

  • Ma, J., Flynn, T. C., Cui, Q., Leslie, A. G., Walker, J. E., & Karplus, M. (2002). A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. Structure, 10(7), 921–931.

    Article  CAS  Google Scholar 

  • Mac Kerell, A. D., Jr., & Nilsson, L. (2008). Molecular dynamics simulations of nucleic acid-protein complexes. Current Opinion in Structural Biology, 18(2), 194–199.

    Article  CAS  Google Scholar 

  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., et al. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18), 3586–3616.

    Article  CAS  Google Scholar 

  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., et al. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037.

    Article  CAS  Google Scholar 

  • Marrink, S. J., & Tieleman, D. P. (2013). Perspective on the Martini model. Chemical Society Reviews, 42(16), 6801–6822.

    Article  CAS  Google Scholar 

  • Martin, L., Bilek, M. M., Weiss, A. S., & Kuyucak, S. (2015). Force fields for simulating the interaction of surfaces with biological molecules. Interface Focus, 6(1). 10.1098/rsfs.2015.0045.

    Google Scholar 

  • Martin-Garcia, F., Papaleo, E., Gomez-Puertas, P., Boomsma, W., & Lindorff-Larsen, K. (2015). Comparing molecular dynamics force fields in the essential subspace. PLoS One, 10(3), e0121114.

    Article  CAS  Google Scholar 

  • May, A., Pool, R., van Dijk, E., Bijlard, J., Abeln, S., Heringa, J., et al. (2014). Coarse-grained versus atomistic simulations: Realistic interaction free energies for real proteins. Bioinformatics, 30(3), 326–334.

    Article  CAS  Google Scholar 

  • Mayne, C. G., Saam, J., Schulten, K., Tajkhorshid, E., & Gumbart, J. C. (2013). Rapid parameterization of small molecules using the force field toolkit. Journal of Computational Chemistry, 34(32), 2757–2770.

    Article  CAS  Google Scholar 

  • McCammon, J. A., Gelin, B. R., & Karplus, M. (1977). Dynamics of folded proteins. Nature, 267(5612), 585–590.

    Article  CAS  Google Scholar 

  • McGreevy, R., Singharoy, A., Li, Q., Zhang, J., Xu, D., Perozo, E., et al. (2014). xMDFF: Molecular dynamics flexible fitting of low-resolution X-ray structures. Acta Crystallographica Section D: Biological Crystallography, 70(9), 2344–2355.

    Article  CAS  Google Scholar 

  • McGreevy, R., Teo, I., Singharoy, A., & Schulten, K. (2016). Advances in the molecular dynamics flexible fitting method for cryo-EM modeling. Methods, 100, 50–60.

    Google Scholar 

  • Meirovitch, H. (2007). Recent developments in methodologies for calculating the entropy and free energy of biological systems by computer simulation. Current Opinion in Structural Biology, 17(2), 181–186.

    Article  CAS  Google Scholar 

  • Miao, L., & Schulten, K. (2009). Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure, 17(3), 449–459.

    Article  CAS  Google Scholar 

  • Miao, Y., Feher, V. A., & McCammon, J. A. (2015). Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation, 11(8), 3584–3595.

    Article  CAS  Google Scholar 

  • Mikulska, K., Pepłowski, Ł., & Nowak, W. (2011). Nanomechanics of Ig-like domains of human contactin (BIG-2). Journal of Molecular Modeling, 17(9), 2313–2323.

    Article  CAS  Google Scholar 

  • Mikulska, K., Strzelecki, J., Balter, A., & Nowak, W. (2012). Nanomechanical unfolding ofα-neurexin: A major component of the synaptic junction. Chemical Physics Letters, 521,134–137.

    Article  CAS  Google Scholar 

  • Mikulska, K., Strzelecki, J., & Nowak, W. (2014). Nanomechanics of β-rich proteins related to neuronal disorders studied by AFM, all-atom and coarse-grained MD methods. Journal of Molecular Modeling, 20(3), 1–10.

    Article  CAS  Google Scholar 

  • Miller, B. T., Singh, R. P., Klauda, J. B., Hodoscek, M., Brooks, B. R., & Woodcock, H. L. (2008). CHARMMing: A new, flexible web portal for CHARMM. Journal of Chemical Information and Modeling, 48, 1920–1929.

    Article  CAS  Google Scholar 

  • Monroe, J. I., El-Nahal, W. G., & Shirts, M. R. (2014). Investigating the mutation resistance of nonnucleoside inhibitors of HIV-RT using multiple microsecond atomistic simulations. Proteins, 82(1), 130–144.

    Article  CAS  Google Scholar 

  • Moradi, M., & Tajkhorshid, E. (2014). Computational recipe for efficient description of large-scale conformational changes in biomolecular systems. Journal of Chemical Theory and Computation, 10(7), 2866–2880.

    Article  CAS  Google Scholar 

  • Moraitakis, G., Purkiss, A. G., & Goodfellow, J. M. (2003). Simulated dynamics and biological molecules. Reports on Progress in Physics, 66, 483–406.

    Article  Google Scholar 

  • Mornon, J.-P., Hoffmann, B., Jonic, S., Lehn, P., & Callebaut, I. (2015). Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cellular and Molecular Life Sciences, 72(7), 1377–1403.

    Article  CAS  Google Scholar 

  • Morra, G., Meli, M., & Colombo, G. (2008). Molecular dynamics simulations of proteins and peptides: From folding to drug design. Current Protein and Peptide Science, 9(2), 181–196.

    Article  CAS  Google Scholar 

  • Mortier, J., Rakers, C., Bermudez, M., Murgueitio, M. S., Riniker, S., & Wolber, G. (2015). The impact of molecular dynamics on drug design: Applications for the characterization of ligand–macromolecule complexes. Drug Discovery Today, 20(6), 686–702.

    Article  CAS  Google Scholar 

  • Mukherjee, S., & Warshel, A. (2012). Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14876–14881.

    Article  CAS  Google Scholar 

  • Mukherjee, S., & Warshel, A. (2015a). Bronsted slopes based on single-molecule imaging data help to unveil the chemically coupled rotation in F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 112(46), 14121–14122.

    Article  CAS  Google Scholar 

  • Mukherjee, S., & Warshel, A. (2015b). Dissecting the role of the gamma-subunit in the rotary-chemical coupling and torque generation of F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2746–2751.

    Article  CAS  Google Scholar 

  • Nasica-Labouze, J., Nguyen, P. H., Sterpone, F., Berthoumieu, O., Buchete, N.-V., Coté, S., et al. (2015). Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chemical Reviews, 115(9), 3518–3563.

    Article  CAS  Google Scholar 

  • Nguyen, H., Maier, J., Huang, H., Perrone, V., & Simmerling, C. (2014). Folding simulations for proteins with diverse topologies are accessible in days with a physics-based force field and implicit solvent. Journal of the American Chemical Society, 136(40), 13959–13962.

    Article  CAS  Google Scholar 

  • Nielsen, S. O., Bulo, R. E., Moore, P. B., & Ensing, B. (2010). Recent progress in adaptive multiscale molecular dynamics simulations of soft matter. Physical Chemistry Chemical Physics, 12(39), 12401–12414.

    Article  CAS  Google Scholar 

  • Noel, J. K., & Whitford, P. C. (2014). How simulations reveal dynamics, disorder, and the energy landscapes of biomolecular function. Israel Journal of Chemistry, 54(8–9), 1093–1107.

    Article  CAS  Google Scholar 

  • Nowak, W., & Marszalek, P. (2005). Molecular dynamics simulations of single molecule atomic force microscope experiments. Singapore: World Scientific.

    Book  Google Scholar 

  • Nowak, W., Czerminski, R., & Elber, R. (1991). Reaction path study of ligand diffusion in proteins: Application of the self penalty walk (SPW) method to calculate reaction coordinates for the motion of CO through leghemoglobin. Journal of the American Chemical Society, 113(15), 5627–5637.

    Article  CAS  Google Scholar 

  • Oliveira, A. S., Damas, J. M., Baptista, A. M., & Soares, C. M. (2014). Exploring O2 diffusion inA-type cytochrome c oxidases: Molecular dynamics simulations uncover two alternative channels towards the binuclear site. PLoS Computational Biology, 10(12), e1004010.

    Article  Google Scholar 

  • Olsen, S., Lamothe, K., & Martinez, T. J. (2010). Protonic gating of excited-state twisting and charge localization in GFP chromophores: A mechanistic hypothesis for reversible photoswitching. Journal of the American Chemical Society, 132(4), 1192–1193.

    Article  CAS  Google Scholar 

  • Orlowski, S., & Nowak, W. (2007). Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin. Journal of Molecular Modeling, 13(6–7), 715–723.

    Article  CAS  Google Scholar 

  • Orlowski, S., & Nowak, W. (2008). Topology and thermodynamics of gaseous ligands diffusion paths in human neuroglobin. Biosystems, 94(3), 263–266.

    Article  CAS  Google Scholar 

  • Orozco, M. (2014). A theoretical view of protein dynamics. Chemical Society Reviews, 43(14), 5051–5066.

    Article  CAS  Google Scholar 

  • Ortore, G., & Martinelli, A. (2012). Computational studies on transthyretin. Current Medicinal Chemistry, 19(15), 2380–2387.

    Article  CAS  Google Scholar 

  • Paci, E. (2002). High pressure simulations of biomolecules. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1595(1–2), 185–200.

    Article  CAS  Google Scholar 

  • Paci, E., Caflisch, A., Pluckthun, A., & Karplus, M. (2001). Forces and energetics of hapten-antibody dissociation: A biased molecular dynamics simulation study. Journal of Molecular Biology, 314(3), 589–605.

    Article  CAS  Google Scholar 

  • Pande, V. S., Baker, I., Chapman, J., Elmer, S. P., Khaliq, S., Larson, S. M., et al. (2003). Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 68, 91–109.

    Article  CAS  Google Scholar 

  • Pantelopulos, G. A., Mukherjee, S., & Voelz, V. A. (2015). Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics. Proteins, 83(9), 1665–1676.

    Article  CAS  Google Scholar 

  • Papaleo, E. (2015). Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: Strength in unity. Frontiers in Molecular Biosciences, 2, 28.

    Article  CAS  Google Scholar 

  • Papaleo, E., & Invernizzi, G. (2011). Conformational diseases: Structural studies of aggregation of polyglutamine proteins. Current Computer-Aided Drug Design, 7(1), 23–43.

    Article  CAS  Google Scholar 

  • Peplowski, L., Kubiak, K., & Nowak, W. (2008). Mechanical aspects of nitrile hydratase enzymatic activity. Steered molecular dynamics simulations of Pseudonocardia thermophila JCM 3095. Chemical Physics Letters, 467(1–3), 144–149.

    Article  CAS  Google Scholar 

  • Perez, A., MacCallum, J. L., & Dill, K. A. (2015). Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proceedings of the National Academy of Sciences of the United States of America, 112(38), 11846–11851.

    Article  CAS  Google Scholar 

  • Perilla, J. R., Goh, B. C., Cassidy, C. K., Liu, B., Bernardi, R. C., Rudack, T., et al. (2015). Molecular dynamics simulations of large macromolecular complexes. Current Opinion in Structural Biology, 31, 64–74.

    Article  CAS  Google Scholar 

  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802.

    Article  CAS  Google Scholar 

  • Piana, S., Sarkar, K., Lindorff-Larsen, K., Guo, M., Gruebele, M., & Shaw, D. E. (2011). Computational design and experimental testing of the fastest-folding beta-sheet protein. Journal of Molecular Biology, 405(1), 43–48.

    Article  CAS  Google Scholar 

  • Piana, S., Lindorff-Larsen, K., & Shaw, D. E. (2013). Atomic-level description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5915–5920.

    Article  CAS  Google Scholar 

  • Piana, S., Klepeis, J. L., & Shaw, D. E. (2014). Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Current Opinion in Structural Biology, 24, 98–105.

    Article  CAS  Google Scholar 

  • Piana, S., Donchev, A. G., Robustelli, P., & Shaw, D. E. (2015). Water dispersion interactions strongly influence simulated structural properties of disordered protein States. Journal of Physical Chemistry B, 119(16), 5113–5123.

    Article  CAS  Google Scholar 

  • Piela, L. (2014). Chapter 1 – The magic of quantum mechanics. In Ideas of quantum chemistry (2nd ed., pp. 1–59). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. Journal of Physical Chemistry B, 114(32), 10235–10253.

    Article  CAS  Google Scholar 

  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., et al. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854.

    Article  CAS  Google Scholar 

  • Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. The Journal of Chemical Physics, 55, 3336–3359.

    Article  CAS  Google Scholar 

  • Rapaport, D. C. (1995). The art of molecular dynamics simulation. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Rauscher, S., Gapsys, V., Gajda, M. J., Zweckstetter, M., de Groot, B. L., & Grubmuller, H. (2015). Structural ensembles of intrinsically disordered proteins depend strongly on force field: A comparison to experiment. Journal of Chemical Theory and Computation, 11(11), 5513–5524.

    Article  CAS  Google Scholar 

  • Reddy, T., & Sansom, M. S. (2016). Computational virology: From the inside out. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(7, Part B), 1610–1618.

    Google Scholar 

  • Reddy, T., Shorthouse, D., Parton, D. L., Jefferys, E., Fowler, P. W., Chavent, M., et al. (2015). Nothing to sneeze at: A dynamic and integrative computational model of an influenza a virion. Structure, 23(3), 584–597.

    Article  CAS  Google Scholar 

  • Rehm, S., Trodler, P., & Pleiss, J. (2010). Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science, 19(11), 2122–2130.

    Article  CAS  Google Scholar 

  • Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., & Scheuring, S. (2013). High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science, 342(6159), 741–743.

    Article  CAS  Google Scholar 

  • Rief, M., & Grubmuller, H. (2002). Force spectroscopy of single biomolecules. Chemphyschem, 3(3), 255–261.

    Article  CAS  Google Scholar 

  • Ritchie, D. W. (2008). Recent progress and future directions in protein-protein docking. Current Protein and Peptide Science, 9(1), 1–15.

    Article  CAS  Google Scholar 

  • Rizzuti, B., & Daggett, V. (2013). Using simulations to provide the framework for experimental protein folding studies. Archives of Biochemistry and Biophysics, 531(1), 128–135.

    Article  CAS  Google Scholar 

  • Robustelli, P., Kohlhoff, K., Cavalli, A., & Vendruscolo, M. (2010). Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure, 18(8), 923–933.

    Article  CAS  Google Scholar 

  • Rodrigues, J. R., Simoes, C. J. V., Silva, C. G., & Brito, R. M. M. (2010). Potentially amyloidogenic conformational intermediates populate the unfolding landscape of transthyretin: Insights from molecular dynamics simulations. Protein Science, 19(2), 202–219.

    Article  CAS  Google Scholar 

  • Rohs, R., West, S. M., Liu, P., & Honig, B. (2009). Nuance in the double-helix and its role in protein–DNA recognition. Current Opinion in Structural Biology, 19(2), 171–177.

    Article  CAS  Google Scholar 

  • Romanowska, J., Setny, P., & Trylska, J. (2008). Molecular dynamics study of the ribosomal A-site. Journal of Physical Chemistry B, 112(47), 15227–15243.

    Article  CAS  Google Scholar 

  • Rosales-Hernandez, M. C., Bermudez-Lugo, J., Garcia, J., Trujillo-Ferrara, J., & Correa-Basurto, J. (2009). Molecular modeling applied to anti-cancer drug development. Anti-Cancer Agents in Medicinal Chemistry, 9(2), 230–238.

    Article  CAS  Google Scholar 

  • Rossle, S. C., & Frank, I. (2009). First-principles simulation of photoreactions in biological systems. Frontiers in Bioscience, 14, 4862–4877.

    Article  CAS  Google Scholar 

  • Russel, D., Lasker, K., Phillips, J., Schneidman-Duhovny, D., Velazquez-Muriel, J. A., & Sali, A. (2009). The structural dynamics of macromolecular processes. Current Opinion in Cell Biology, 21(1), 97–108.

    Article  CAS  Google Scholar 

  • Rydzewski, J., & Nowak, W. (2015). Memetic algorithms for ligand expulsion from protein cavities. The Journal of Chemical Physics, 143(12), 124101.

    Article  CAS  Google Scholar 

  • Rydzewski, J., Jakubowski, R., & Nowak, W. (2015a). Communication: Entropic measure to prevent energy over-minimization in molecular dynamics simulations. The Journal of Chemical Physics, 143(17), 171103.

    Article  CAS  Google Scholar 

  • Rydzewski, J., Strzalka, W., & Nowak, W. (2015b). Nanomechanics of PCNA: A protein-made DNA sliding clamp. Chemical Physics Letters, 634, 236–242.

    Article  CAS  Google Scholar 

  • Sagui, C., & Darden, T. A. (1999). Molecular dynamics simulations of biomolecules: Long-range electrostatic effects. Annual Review of Biophysics and Biomolecular Structure, 28(1), 155–179.

    Article  CAS  Google Scholar 

  • Sakudo, A., Xue, G. A., Kawashita, N., Ano, Y., Takagi, T., Shintani, H., et al. (2010). Structure of the prion protein and its gene: An analysis using bioinformatics and computer simulation. Current Protein & Peptide Science, 11(2), 166–179.

    Article  CAS  Google Scholar 

  • Salmas, R. E., Yurtsever, M., & Durdagi, S. (2015). Investigation of inhibition mechanism of chemokine receptor CCR5 by micro-second molecular dynamics simulations. Scientific Reports, 5, 13180.

    Article  CAS  Google Scholar 

  • Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888.

    Article  CAS  Google Scholar 

  • Sanbonmatsu, K. Y. (2012). Computational studies of molecular machines: The ribosome. Current Opinion in Structural Biology, 22(2), 168–174.

    Article  CAS  Google Scholar 

  • Sanbonmatsu, K. Y., & Tung, C. S. (2007). High performance computing in biology: Multimillion atom simulations of nanoscale systems. Journal of Structural Biology, 157(3), 470–480.

    Article  CAS  Google Scholar 

  • Sansom, M. S., Scott, K. A., & Bond, P. J. (2008). Coarse-grained simulation: A high-throughput computational approach to membrane proteins. Biochemical Society Transactions, 36(Pt 1),27–32.

    Article  CAS  Google Scholar 

  • Saunders, M. G., & Voth, G. A. (2013). Coarse-graining methods for computational biology. Annual Review of Biophysics, 41(42), 73–93.

    Article  CAS  Google Scholar 

  • Sborgi, L., Verma, A., Piana, S., Lindorff-Larsen, K., Cerminara, M., Santiveri, C. M., et al. (2015). Interaction networks in protein folding via atomic-resolution experiments and long-time-scale molecular dynamics simulations. Journal of the American Chemical Society, 137(20), 6506–6516.

    Article  CAS  Google Scholar 

  • Scarpazza, D. P., Ierardi, D. J., Lerer, A. K., Mackenzie, K. M., Pan, A. C., Bank, J. A., et al. (2013). Extending the generality of molecular dynamics simulations on a special-purpose machine. In Ieee 27th international parallel and distributed processing symposium (Ipdps 2013), Boston, pp. 933–945.

    Google Scholar 

  • Scheraga, H. A., Khalili, M., & Liwo, A. (2007). Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58, 57–83.

    Article  CAS  Google Scholar 

  • Scheres, S. H. (2010). Visualizing molecular machines in action: Single-particle analysis with structural variability. Advances in Protein Chemistry and Structural Biology, 81, 89–119.

    Article  CAS  Google Scholar 

  • Schlegel, H. B. (2003). Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. Journal of Computational Chemistry, 24(12), 1514–1527.

    Article  CAS  Google Scholar 

  • Schlick, T. (2010). Molecular modeling and simulation: An interdisciplinary guide: An interdisciplinary guide. New York: Springer.

    Book  Google Scholar 

  • Schuyler, A. D., Carlson, H. A., & Feldman, E. L. (2009). Computational methods for predicting sites of functionally important dynamics. Journal of Physical Chemistry B, 113(19), 6613–6622.

    Article  CAS  Google Scholar 

  • Schwede, T., & Peitsch, M. C. (2008). Computational structural biology: Methods and applications. Hackensack: World Scientific.

    Book  Google Scholar 

  • Sen, S., Andreatta, D., Ponomarev, S. Y., Beveridge, D. L., & Berg, M. A. (2009). Dynamics of water and ions near DNA: Comparison of simulation to time-resolved stokes-shift experiments. Journal of the American Chemical Society, 131(5), 1724–1735.

    Article  CAS  Google Scholar 

  • Shakhnovich, E. (2006). Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chemical Reviews, 106(5), 1559–1588.

    Article  CAS  Google Scholar 

  • Shaw, D. E., Grossman, J. P., Bank, J. A., Batson, B., Butts, J. A., Chao, J. C., et al. (2014). Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. In Paper presented at the proceedings of the international conference for high performance computing, networking, storage and analysis, New Orleans.

    Google Scholar 

  • Sherwood, P., Brooks, B. R., & Sansom, M. S. (2008). Multiscale methods for macromolecular simulations. Current Opinion in Structural Biology, 18(5), 630–640.

    Article  CAS  Google Scholar 

  • Sieben, C., Kappel, C., Zhu, R., Wozniak, A., Rankl, C., Hinterdorfer, P., et al. (2012). Influenza virus binds its host cell using multiple dynamic interactions. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13626–13631.

    Article  CAS  Google Scholar 

  • Sigg, D. (2014). Modeling ion channels: Past, present, and future. The Journal of General Physiology, 144(1), 7–26.

    Article  CAS  Google Scholar 

  • Simonson, T., Archontis, G., & Karplus, M. (2002). Free energy simulations come of age: Protein-ligand recognition. Accounts of Chemical Research, 35(6), 430–437.

    Article  CAS  Google Scholar 

  • Sothiselvam, S., Liu, B., Han, W., Ramu, H., Klepacki, D., Atkinson, G. C., et al. (2014). Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proceedings of the National Academy of Sciences of the United States of America, 111(27), 9804–9809.

    Article  CAS  Google Scholar 

  • Sotomayor, M., & Schulten, K. (2007). Single-molecule experiments in vitro and in silico. Science, 316(5828), 1144–1148.

    Article  CAS  Google Scholar 

  • Spiwok, V., Sucur, Z., & Hosek, P. (2015). Enhanced sampling techniques in biomolecular simulations. Biotechnology Advances, 33(6 Pt 2), 1130–1140.

    Article  CAS  Google Scholar 

  • Spyrakis, F., BidonChanal, A., Barril, X., & Luque, F. J. (2011). Protein flexibility and ligand recognition: Challenges for molecular modeling. Current Topics in Medicinal Chemistry, 11(2), 192–210.

    Article  CAS  Google Scholar 

  • Stansfeld, P. J., & Sansom, M. S. (2011a). From coarse grained to atomistic: A serial multiscale approach to membrane protein simulations. Journal of Chemical Theory and Computation, 7(4), 1157–1166.

    Article  CAS  Google Scholar 

  • Stansfeld, P. J., & Sansom, M. S. (2011b). Molecular simulation approaches to membrane proteins. Structure, 19(11), 1562–1572.

    Article  CAS  Google Scholar 

  • Stansfeld, P. J., Goose, J. E., Caffrey, M., Carpenter, E. P., Parker, J. L., Newstead, S., et al. (2015). MemProtMD: Automated insertion of membrane protein structures into explicit lipid membranes. Structure, 23(7), 1350–1361.

    Article  CAS  Google Scholar 

  • Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., & Schulten, K. (2007). Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry, 28(16), 2618–2640.

    Article  CAS  Google Scholar 

  • Straatsma, T. P., & McCammon, J. A. (1992). Computational alchemy. Annual Review of Physical Chemistry, 43, 407–435.

    Article  CAS  Google Scholar 

  • Straub, J. E., & Thirumalai, D. (2010). Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Annual Review of Physical Chemistry, 62, 437–463.

    Article  CAS  Google Scholar 

  • Sugita, Y. (2009). Free-energy landscapes of proteins in solution by generalized-ensemble simulations. Frontiers in Bioscience, 14, 1292–1303.

    Article  CAS  Google Scholar 

  • Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314, 141–151.

    Article  CAS  Google Scholar 

  • Sun, Q., Doerr, M., Li, Z., Smith, S. C., & Thiel, W. (2010). QM/MM studies of structural and energetic properties of the far-red fluorescent protein HcRed. Physical Chemistry Chemical Physics, 12(10), 2450–2458.

    Article  CAS  Google Scholar 

  • Tajkhorshid, E., Aksimentiev, A., Balabin, I., Gao, M., Isralewitz, B., Phillips, J. C., et al. (2003). Large scale simulation of protein mechanics and function. Advances in Protein Chemistry, 66, 195–247.

    Article  CAS  Google Scholar 

  • Tao, P., Hodošček, M., Larkin, J. D., Shao, Y., & Brooks, B. R. (2012). Comparison of three chain-of-states methods: Nudged elastic band and replica path with restraints or constraints. Journal of Chemical Theory and Computation, 8(12), 5035–5051.

    Article  CAS  Google Scholar 

  • Tatke, S. S., Loong, C. K., D’Souza, N., Schoephoerster, R. T., & Prabhakaran, M. (2008). Large scale motions in a biosensor protein glucose oxidase: A combined approach by DENS, normal mode analysis, and molecular dynamics studies. Biopolymers, 89(7), 582–594.

    Article  CAS  Google Scholar 

  • Tautermann, C. S., Seeliger, D., & Kriegl, J. M. (2015). What can we learn from molecular dynamics simulations for GPCR drug design? Computational and Structural Biotechnology Journal, 13, 111–121.

    Article  CAS  Google Scholar 

  • Tekpinar, M., & Zheng, W. (2013). Coarse-grained and all-atom modeling of structural states and transitions in hemoglobin. Proteins, 81(2), 240–252.

    Article  CAS  Google Scholar 

  • Towse, C.-L., & Daggett, V. (2013). Protein folding: Molecular dynamics simulations. In G. C. K. Roberts (Ed.), Encyclopedia of biophysics (pp. 2020–2025). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Tozzini, V. (2010). Multiscale modeling of proteins. Accounts of Chemical Research, 43(2), 220–230.

    Article  CAS  Google Scholar 

  • Trylska, J. (2010). Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. Journal of Physics. Condensed Matter, 22(45), 453101.

    Article  CAS  Google Scholar 

  • Tsuduki, T., Tomita, A., Koshihara, S.-Y., Adachi, S.-I., & Yamato, T. (2012). Ligand migration in myoglobin: A combined study of computer simulation and x-ray crystallography. The Journal of Chemical Physics, 136(16), 165101.

    Article  CAS  Google Scholar 

  • Urbanc, B., Betnel, M., Cruz, L., Bitan, G., & Teplow, D. B. (2010). Elucidation of amyloid beta-protein oligomerization mechanisms: Discrete molecular dynamics Study. Journal of the American Chemical Society, 132(12), 4266–4280.

    Article  CAS  Google Scholar 

  • Van Der Kamp, M. W., Shaw, K. E., Woods, C. J., & Mulholland, A. J. (2008). Biomolecular simulation and modelling: Status, progress and prospects. Journal of the Royal Society Interface, 5, 173–190.

    Article  CAS  Google Scholar 

  • van der Kamp, M. W., Schaeffer, R. D., Jonsson, A. L., Scouras, A. D., Simms, A. M., Toofanny, R. D., et al. (2010). Dynameomics: A comprehensive database of protein dynamics. Structure, 18(4), 423–435.

    Google Scholar 

  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718.

    Article  CAS  Google Scholar 

  • van der Vaart, A. (2015). Coupled binding–bending–folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(5), 1091–1098.

    Article  CAS  Google Scholar 

  • Van Gunsteren, W. F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D. P., Glättli, A., Hünenberger, P. H., Kastenholz, M. A., Oostenbrink, C., Schenk, M., Trzesniak, D., Van Der Vegt, N. F. A., & Yu, H. B. (2006). Biomacromolecular modeling: Goals, problems, perspectives. Angewandte Chemie International Edition, 45,4064–4092.

    Article  CAS  Google Scholar 

  • van Oijen, A. M. (2007). Single-molecule studies of complex systems: The replisome. Molecular BioSystems, 3(2), 117–125.

    Article  Google Scholar 

  • van Speybroeck, V., & Meier, R. J. (2003). A recent development in computational chemistry: Chemical reactions from first principles molecular dynamics simulations. Chemical Society Reviews, 32(3), 151–157.

    Article  CAS  Google Scholar 

  • Vanommeslaeghe, K., & MacKerell, A. D., Jr. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochimica et Biophysica Acta, 1850(5), 861–871.

    Article  CAS  Google Scholar 

  • Vargas, E., Yarov-Yarovoy, V., Khalili-Araghi, F., Catterall, W. A., Klein, M. L., Tarek, M., et al. (2012). An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. Journal of General Physiology, 140(6), 587–594.

    Article  CAS  Google Scholar 

  • Vashisth, H., Skiniotis, G., & Brooks, C. L., 3rd. (2014). Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chemical Reviews, 114(6), 3353–3365.

    Article  CAS  Google Scholar 

  • Vasquez, V., Sotomayor, M., Cordero-Morales, J., Schulten, K., & Perozo, E. (2008). A structural mechanism for MscS gating in lipid bilayers. Science, 321(5893), 1210–1214.

    Article  CAS  Google Scholar 

  • Vemparala, S., Domene, C., & Klein, M. L. (2010). Computational studies on the interactions of inhalational anesthetics with proteins. Accounts of Chemical Research, 43(1), 103–110.

    Article  CAS  Google Scholar 

  • Vicatos, S., Rychkova, A., Mukherjee, S., & Warshel, A. (2014). An effective coarse-grained model for biological simulations: Recent refinements and validations. Proteins, 82(7), 1168–1185.

    Article  CAS  Google Scholar 

  • Villa, E., Balaeff, A., & Schulten, K. (2005). Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 6783–6788.

    Article  CAS  Google Scholar 

  • Vuillon, L., & Lesieur, C. (2015). From local to global changes in proteins: A network view. Current Opinion in Structural Biology, 31, 1–8.

    Article  CAS  Google Scholar 

  • Wang, T., & Duan, Y. (2011). Retinal release from opsin in molecular dynamics simulations. Journal of Molecular Recognition, 24(2), 350–358.

    Article  CAS  Google Scholar 

  • Wang, P.-H., Bruschi, M., De Gioia, L., & Blumberger, J. (2013). Uncovering a dynamically formed substrate access tunnel in carbon monoxide dehydrogenase/acetyl-CoA synthase. Journal of the American Chemical Society, 135(25), 9493–9502.

    Article  CAS  Google Scholar 

  • Wang, L. P., Martinez, T. J., & Pande, V. S. (2014). Building force fields: An automatic, systematic, and reproducible approach. Journal of Physical Chemistry Letters, 5(11), 1885–1891.

    Article  CAS  Google Scholar 

  • Wanko, M., Hoffmann, M., Frauenheim, T., & Elstner, M. (2006). Computational photochemistry of retinal proteins. Journal of Computer-Aided Molecular Design, 20(7–8), 511–518.

    Article  CAS  Google Scholar 

  • Warshel, A. (2002). Molecular dynamics simulations of biological reactions. Accounts of Chemical Research, 35(6), 385–395.

    Article  CAS  Google Scholar 

  • Warshel, A. (2003). Computer simulations of enzyme catalysis: Methods, progress, and insights. Annual Review of Biophysics and Biomolecular Structure, 32, 425–443.

    Article  CAS  Google Scholar 

  • Warshel, A. (2014). Multiscale modeling of biological functions: From enzymes to molecular machines (Nobel lecture). Angewandte Chemie International Edition in English, 53(38), 10020–10031.

    Article  CAS  Google Scholar 

  • Warshel, A., & Levitt, M. (1976). Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. Journal of Molecular Biology, 103(2), 227–249.

    Article  CAS  Google Scholar 

  • Warshel, A., Levitt, M., & Lifson, S. (1970). Consistent force field for calculation of vibrational spectra and conformations of some amides and lactam rings. Journal of Molecular Spectroscopy, 33(1), 84–99.

    Article  CAS  Google Scholar 

  • Warshel, A., Kato, M., & Pisliakov, A. V. (2007). Polarizable force fields: History, test cases, and prospects. Journal of Chemical Theory and Computation, 3(6), 2034–2045.

    Article  CAS  Google Scholar 

  • Weber, D. K., Yao, S., Rojko, N., Anderluh, G., Lybrand, T. P., Downton, M. T., et al. (2015). Characterization of the lipid-binding site of equinatoxin ii by nmr and molecular dynamics simulation. Biophysical Journal, 108(8), 1987–1996.

    Article  CAS  Google Scholar 

  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., et al. (1984). A new force-field for molecular mechanical simulation of nucleic-acids and proteins. Journal of the American Chemical Society, 106(3), 765–784.

    Article  CAS  Google Scholar 

  • Wong, V., & Case, D. A. (2008). Evaluating rotational diffusion from protein MD simulations. Journal of Physical Chemistry B, 112(19), 6013–6024.

    Article  CAS  Google Scholar 

  • Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293(2), 321–331.

    Article  CAS  Google Scholar 

  • Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology, 16(1), 18–29.

    Article  CAS  Google Scholar 

  • Yu, J., Ha, T., & Schulten, K. (2007). How directional translocation is regulated in a DNA helicase motor. Biophysical Journal, 93(11), 3783–3797.

    Article  CAS  Google Scholar 

  • Yuriev, E., Holien, J., & Ramsland, P. A. (2015). Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition, 28(10), 581–604.

    Article  CAS  Google Scholar 

  • Zerze, G. I. H., Miller, C. M., Granata, D., & Mittal, J. (2015). Free energy surface of an intrinsically disordered protein: Comparison between temperature replica exchange molecular dynamics and bias-exchange metadynamics. Journal of Chemical Theory and Computation, 11(6), 2776–2782.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, W., Wang, J., Qin, M., Wu, L., Yan, Z., et al. (2009). Protein folding simulations: From coarse-grained model to all-atom model. IUBMB Life, 61(6), 627–643.

    Article  CAS  Google Scholar 

  • Zhang, L., Lua, L. H. L., Middelberg, A. P. J., Sun, Y., & Connors, N. K. (2015). Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chemical Society Reviews, 44(23), 8608–8618. doi:10.1039/C5CS00526D.

    Google Scholar 

  • Zhao, H., & Caflisch, A. (2015). Molecular dynamics in drug design. European Journal of Medicinal Chemistry, 91, 4–14.

    Article  CAS  Google Scholar 

  • Zhao, G., Perilla, J. R., Yufenyuy, E. L., Meng, X., Chen, B., Ning, J., et al. (2013). Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature, 497(7451), 643–646.

    Article  CAS  Google Scholar 

  • Zhmurov, A., Dima, R. I., Kholodov, Y., & Barsegov, V. (2010). Sop-GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins, 78(14), 2984–2999.

    Article  CAS  Google Scholar 

  • Zink, M., & Grubmuller, H. (2009). Mechanical properties of the Icosahedral shell of southern bean mosaic virus: A molecular dynamics study. Biophysical Journal, 96(4), 1350–1363.

    Article  CAS  Google Scholar 

  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368.

    Article  CAS  Google Scholar 

  • Zwier, M. C., Adelman, J. L., Kaus, J. W., Pratt, A. J., Wong, K. F., Rego, N. B., et al. (2015). WESTPA: An interoperable, highly scalable software package for weighted ensemble simulation and analysis. Journal of Chemical Theory and Computation, 11(2), 800–809.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by Polish funds for science NCN (N N202 262038 and 2012/05/N/ST3/03178). Infrastructure of ICNT UMK is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieslaw Nowak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Nowak, W. (2017). Applications of Computational Methods to Simulations of Proteins Dynamics. In: Leszczynski, J., Kaczmarek-Kedziera, A., Puzyn, T., G. Papadopoulos, M., Reis, H., K. Shukla, M. (eds) Handbook of Computational Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27282-5_31

Download citation

Publish with us

Policies and ethics