Skip to main content

Microalgae as Solar-Powered Protein Factories

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 896))

Abstract

Microalgae have an enormous ecological relevance as they contribute significantly to global carbon fixation. But also for biotechnology microalgae became increasingly interesting during the last decades as many algae provide valuable natural products. Especially the high lipid content of some species currently attracts much attention in the biodiesel industry. A further application that emerged some years ago is the use of microalgae as expression platform for recombinant proteins. Several projects on the production of therapeutics, vaccines and feed supplements demonstrated the great potential of using microalgae as novel low-cost expression platform. This review provides an overview on the prospects and advantages of microalgal protein expression systems and gives an outlook on potential future applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aggarwal SR (2012) What’s fueling the biotech engine-2011 to 2012. Nat Biotechnol 30(12):1191–1197

    Article  CAS  PubMed  Google Scholar 

  2. Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17

    Article  CAS  Google Scholar 

  3. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    Article  CAS  PubMed  Google Scholar 

  4. Martinez JL, Liu L, Petranovic D, Nielsen J (2012) Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation. Curr Opin Biotechnol 23(6):965–971

    Article  CAS  PubMed  Google Scholar 

  5. Frenzel A, Hust M, Schirrmann T (2013) Expression of recombinant antibodies. Front Immunol 4:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Amano K, Chiba Y, Kasahara Y, Kato Y, Kaneko MK, Kuno A, Ito H, Kobayashi K, Hirabayashi J, Jigami Y, Narimatsu H (2008) Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci U S A 105(9):3232–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87(5):1617–1631

    Article  PubMed  CAS  Google Scholar 

  8. Wildt S, Gerngross TU (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3(2):119–128

    Article  CAS  PubMed  Google Scholar 

  9. Ye J, Ly J, Watts K, Hsu A, Walker A, McLaughlin K, Berdichevsky M, Prinz B, Sean Kersey D, d’Anjou M, Pollard D, Potgieter T (2011) Optimization of a glycoengineered Pichia pastoris cultivation process for commercial antibody production. Biotechnol Prog 27(6):1744–1750

    Article  CAS  PubMed  Google Scholar 

  10. el Redwan RM (2007) Cumulative updating of approved biopharmaceuticals. Hum Antibodies 16(3–4):137–158

    CAS  Google Scholar 

  11. Dietmair S, Nielsen LK, Timmins LE (2012) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7(1):75–89

    Article  CAS  PubMed  Google Scholar 

  12. Pauwels K, Herman P, Van Vaerenbergh B, Dai Do thi C, Berghmans L, Waeterloos G, Van Bockstaele D, Dorsch-Häsler K, Sneyers M (2007) Animal cell cultures: risk assessment and biosafety recommendations. Appl Biosaf 12(1):26–38

    Article  Google Scholar 

  13. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7(2):152–158

    Article  CAS  PubMed  Google Scholar 

  15. Franken E, Teuschel U, Hain R (1997) Recombinant proteins from transgenic plants. Curr Opin Biotechnol 8(4):411–416

    Article  CAS  PubMed  Google Scholar 

  16. Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4(10):794–805

    Article  CAS  PubMed  Google Scholar 

  17. Fooks AR (2000) Development of oral vaccines for human use. Curr Opin Mol Ther 2(1):80–86

    CAS  PubMed  Google Scholar 

  18. Giddings G, Allison G, Brooks D, Carter A (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18(11):1151–1155

    Article  CAS  PubMed  Google Scholar 

  19. Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 8(5):564–587

    Article  CAS  PubMed  Google Scholar 

  20. Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30(2):410–418

    Article  CAS  PubMed  Google Scholar 

  21. Ruybicki EP (2009) Plant-produced vaccines: promise and reality. Drug Discov Today 14(1–2):16–24

    Article  CAS  Google Scholar 

  22. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22(11):1415–1422

    Article  CAS  PubMed  Google Scholar 

  23. Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29(3):278–299

    Article  CAS  PubMed  Google Scholar 

  24. Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):1669–1685

    Article  CAS  PubMed  Google Scholar 

  25. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34(2):77–88

    Article  CAS  PubMed  Google Scholar 

  26. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411):329–335

    Article  CAS  PubMed  Google Scholar 

  27. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel produciton and other applications: A review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  28. Moody JW, McGinty CM, Quinn JC (2014) Global evaluation of biofuel potential from microalgae. Proc Natl Acad Sci U S A 111(23):8691–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799

    Article  CAS  PubMed  Google Scholar 

  30. Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7(2):159–165

    Article  CAS  PubMed  Google Scholar 

  31. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123(3):227–239

    Article  CAS  PubMed  Google Scholar 

  32. Rosales-Mendoza S, Paz-Maldonado LM, Soria-Guerra RE (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31(3):479–494

    Article  CAS  PubMed  Google Scholar 

  33. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24(11):629–641

    Article  CAS  PubMed  Google Scholar 

  34. Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 6(12):e28424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hempel F, Maier UG (2012) An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb Cell Factories 11:126

    Article  CAS  Google Scholar 

  36. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104(4):663–673

    CAS  PubMed  Google Scholar 

  37. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110(1):E15–E22

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield SP (2013) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110(11):2826–2835

    Article  CAS  PubMed  Google Scholar 

  39. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100(2):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barrera DJ, Rosenberg JN, Chiu JG, Chang YN, Debatis M, Ngoi SM, Chang JT, Shoemaker CB, Oyler GA, Mayfield SP (2015) Algal chloroplast produced camelid V H antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J 13(1):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145(3):273–280

    Article  CAS  PubMed  Google Scholar 

  42. Dauvillee D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d’Hulst C, Long CA, Ball SG, Tomavo S (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5(12):e15424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7(5):e37179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79(13):3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jones CS, Luong T, Hannon M, Tran M, Gregory JA, Shen Z, Briggs SP, Mayfield SP (2013) Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97(5):1987–1995

    Article  CAS  PubMed  Google Scholar 

  46. Li S, Tsai H (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26(2):316–325

    Article  PubMed  CAS  Google Scholar 

  47. Feng S, Feng W, Zhao L, Gu H, Li Q, Shi K, Guo S, Zhang N (2014) Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol 159(3):519–525

    Article  CAS  PubMed  Google Scholar 

  48. Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15(6):451–456

    Article  CAS  Google Scholar 

  49. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 8(4):e61473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25(13):1087–1092

    Article  CAS  PubMed  Google Scholar 

  51. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37(3):133–138

    Article  CAS  PubMed  Google Scholar 

  52. He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B: Biointerfaces 55(1):26–30

    Article  CAS  PubMed  Google Scholar 

  53. Soria-Guerra RE, Ramírez-Alonso JI, Ibánez-Salazar A, Govea-Alonso DO, Paz-Maldonado LMT, Banuelos-Hernández B, Korban SS, Rosales-Mendoza S (2014) Expression of an HBcAg-based antigen carrying angiotensin II in Chlamydomonas reinhardtii as a candidate hypertension vaccine. Plant Cell Tissue Organ Cult 116(2):133–139

    Article  CAS  Google Scholar 

  54. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38(6):335–341

    Article  CAS  PubMed  Google Scholar 

  55. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5(3):402–412

    Article  CAS  PubMed  Google Scholar 

  56. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883

    Article  CAS  PubMed  Google Scholar 

  57. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8(6):719–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen Y, Wang Y, Sun Y, Zhang L, Li W (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39(5–6):365–370

    Article  CAS  PubMed  Google Scholar 

  59. Bai LL, Yin WB, Chen YH, Niu LL, Sun YR, Zhao SM, Yang FQ, Wang RR, Wu Q, Zhang XQ, Hu ZM (2013) A new strategy to produce a defensin: stable production of mutated NP-1 in nitrate reductase-deficient Chlorella ellipsoidea. PLoS One 8(1):e54966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang Z, Li Y, Chen F, Li D, Zhang Z, Liu Y, Zheng D, Wang Y, Shen G (2006) Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin Sci Bull 51(14):1703–1709

    Article  CAS  Google Scholar 

  61. Wang X, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 13(4):460–70

    Google Scholar 

  62. Chai X, Chen H, Xu W, Xu Y (2013) Expression of soybean Kunitz trypsin inhibitor gene SKTI in Dunaliella salina. J Appl Phycol 25(1):139–144

    Article  CAS  Google Scholar 

  63. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign genes in Dunaliella by electroporation. Mol Biotechnol 30(3):185–192

    Article  CAS  PubMed  Google Scholar 

  64. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol (NY) 4(1):63–73

    Article  CAS  Google Scholar 

  65. Chen HL, Li SS, Huang R, Tsai HJ (2008) Conditional production of a functional fish growth hormone in the transgenic line of nannochloropsis oculata (eustigmatophyceae). J Phycol 44(3):768–776

    Article  CAS  PubMed  Google Scholar 

  66. Yoon SM, Kim SY, Li KF, Yoon BH, Choe S, Kuo MM (2011) Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol 91(3):553–563

    Article  CAS  PubMed  Google Scholar 

  67. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7(8):e43349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Georgianna DR, Hannon MJ, Marcuschi M, Shuiqin W, Botsch K, Lewis AJ, Hyun J, Mendez M, Mayfield SP (2013) Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res 2(1):2–9

    Article  Google Scholar 

  69. Hou Q, Qiu S, Liu Q, Tian J, Hu Z, Ni J (2013) Selenoprotein-transgenic Chlamydomonas reinhardtii. Nutrients 5(3):624–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han S, Hu Z, Lei A (2008) Expression and function analysis of the metallothionein-like (MT-like) gene from Festuca rubra in Chlamydomonas reinhardtii chloroplast. Sci China C Life Sci 51(12):1076–1081

    Article  CAS  PubMed  Google Scholar 

  71. Borovsky D, Powell CR, Dawson WO, Shivprasad S, Lewandowski D, DeBondt HL, DeRanter C, DeLoof A (eds) (1998) Trypsin modulating oostatic factor (TMOF): a new biorational insecticide against mosquitoes. Insects, Chemical Physiological and Environmental Aspects. Wroclaw University Press, Wroclaw

    Google Scholar 

  72. Zhang YK, Shen GF, Ru BG (2006) Survival of human metallothionein-2 transplastomic Chlamydomonas reinhardtii to ultraviolet B exposure. Acta Biochim Biophys Sin (Shanghai) 38(3):187–193

    Article  CAS  Google Scholar 

  73. Kim J, Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278(5345):1954–1957

    Article  CAS  PubMed  Google Scholar 

  74. Schroda M (2004) The Chlamydomonas genome reveals its secrets: chaperone genes and the potential roles of their gene products in the chloroplast. Photosynth Res 82(3):221–240

    Article  CAS  PubMed  Google Scholar 

  75. Gregory JA, Mayfield SP (2014) Developing inexpensive malaria vaccines from plants and algae. Appl Microbiol Biotechnol 98(5):1983–1990

    Article  CAS  PubMed  Google Scholar 

  76. Specht EA, Mayfield SP (2014) Algae-based oral recombinant vaccines. Front Microbiol 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lauersen KJ, Berger H, Mussgnug JH, Kruse O (2013) Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. J Biotechnol 167(2):101–110

    Article  CAS  PubMed  Google Scholar 

  78. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Article  CAS  PubMed  Google Scholar 

  79. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456(7219):239–244

    Article  CAS  PubMed  Google Scholar 

  81. Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252(5):572–579

    CAS  PubMed  Google Scholar 

  82. Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K (2013) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem 77(4):874–876

    Article  CAS  PubMed  Google Scholar 

  83. Zhang C, Hu H (2013) High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar Genomics 16:63–66

    Article  PubMed  Google Scholar 

  84. Xie WH, Zhu CC, Zhang NS, Li DW, Yang WD, Liu JS, Sathishkumar R, Li HY (2014) Construction of novel chloroplast expression vector and development of an efficient transformation system for the diatom phaeodactylum tricornutum. Mar Biotechnol (NY) 16(5):538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Armenia Ferguson A, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya SJP, Terbush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8(11):e1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci U S A 108(52):21265–21269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kroger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86

    Article  CAS  PubMed  Google Scholar 

  89. Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42(5):1059–1065

    Article  Google Scholar 

  90. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11(4):2328–2332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajamani MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738

    Article  CAS  Google Scholar 

  94. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22(9):2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18(9):778–780

    Article  CAS  Google Scholar 

  96. Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35(6):356–362

    Article  CAS  PubMed  Google Scholar 

  97. Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43(4):361–365

    CAS  PubMed  Google Scholar 

  98. Feng S, Xue L, Liu H, Lu P (2009) Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol Biol Rep 36(6):1433–1439

    Article  CAS  PubMed  Google Scholar 

  99. Walker TL, Becker DK, Dale JL, Collet C (2005) Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J Appl Phycol 17(4):363–368

    Article  CAS  Google Scholar 

  100. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  CAS  PubMed  Google Scholar 

  101. Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52

    Article  CAS  PubMed  Google Scholar 

  102. Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Y. Le Gal, H. O. Halvorson, Publisher: Springer US, Biotechnol Adv 28(6):910–918

    Article  CAS  PubMed  Google Scholar 

  103. De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37(14):e96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49(2):69–84

    Article  CAS  PubMed  Google Scholar 

  105. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  CAS  PubMed  Google Scholar 

  106. Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  CAS  PubMed  Google Scholar 

  107. Weyman PD, Beeri K, Lefebvre SC, Rivera J, McCarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2014) Inactivation of phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13(4):460-70

    Google Scholar 

  108. Fuhrmann M, Hausherr A, Ferbitz L, Schodl T, Heitzer M, Hegemann P (2004) Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol Biol 55(6):869–881

    Article  CAS  PubMed  Google Scholar 

  109. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19(3):353–361

    Article  CAS  PubMed  Google Scholar 

  110. Shao N, Bock R (2008) A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr Genet 53(6):381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Factories 10:81

    Article  CAS  Google Scholar 

  112. Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37(3):449–458

    Article  CAS  PubMed  Google Scholar 

  113. Gimpel JA, Hyun JS, Schoepp NG, Mayfield SP (2014) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng. doi:10.1002/bit.25357

    PubMed  Google Scholar 

  114. Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57(6):1140–1150

    Article  CAS  PubMed  Google Scholar 

  115. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Poulsen N, Kroger N (2005) A new molecular tool for transgenic diatoms: control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272(13):3413–3423

    Article  CAS  PubMed  Google Scholar 

  117. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14(4):441–447

    Article  CAS  Google Scholar 

  118. Baiet B, Burel C, Saint-Jean B, Louvet R, Menu-Bouaouiche L, Kiefer-Meyer MC, Mathieu-Rivet E, Lefebvre T, Castel H, Carlier A, Cadoret JP, Lerouge P, Bardor M (2011) N-glycans of Phaeodactylum tricornutum diatom and functional characterization of its N-acetylglucosaminyltransferase I enzyme. J Biol Chem 286(8):6152–6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mathieu-Rivet E, Kiefer-Meyer MC, Vanier G, Ovide C, Burel C, Lerouge P, Bardor M (2014) Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals. Front Plant Sci 5:359

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C, Kiefer-Meyer MC, Fufezan C, Burel C, Lerouge P, Martinez F, Bardor M, Hippler M (2013) Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 12(11):3160–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kerrigan JJ, Xie Q, Ames RS, Lu Q (2011) Production of protein complexes via co-expression. Protein Expr Purif 75(1):1–14

    Article  CAS  PubMed  Google Scholar 

  122. Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol (NY) 1(3):239–251

    Article  CAS  Google Scholar 

  123. Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19(5):417–423

    Article  CAS  Google Scholar 

  125. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338(Pt 2):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rajamani S, Siripornadulsil S, Falcao V, Torres M, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. Adv Exp Med Biol 616:99–109

    Article  PubMed  Google Scholar 

  127. Cai X, Traina S, Sayre RT (1998) Heavy metal binding properties of wild type and transgenic algae (Chlamydomonas sp.). In: New Developments in Marine Biotechnology. Y. Le Gal, H. O. Halvorson: Springer US pp 189–192

    Google Scholar 

  128. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Stefan Zauner (Marburg) for comments on the manuscript. This work was supported by the LOEWE program of the state of Hesse, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe G. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hempel, F., Maier, U.G. (2016). Microalgae as Solar-Powered Protein Factories. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_16

Download citation

Publish with us

Policies and ethics