Skip to main content

Genetic Alphabet Expansion by Unnatural Base Pair Creation and Its Application to High-Affinity DNA Aptamers

  • Chapter
  • First Online:
Modified Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 31))

Abstract

Half a century ago, Alexander Rich proposed a genetic alphabet expansion system by the creation of an artificial extra base pair, known as an unnatural base pair. Now, as an ultimate modification technology, the development of unnatural base pairs and their applications has rapidly advanced. Introducing new components into nucleic acids could increase their functionality and moreover create new types of functional molecules. Three types of unnatural base pairs have been shown to function as a third base pair in replication and transcription. By using the unnatural base pairs, high-affinity DNA aptamers that specifically bind to target proteins and cells have been generated. Furthermore, bacteria bearing an unnatural base pair in their plasmids have been created. Here, we introduce a series of unnatural base pairs that function in replication and transcription, as well as their application to DNA aptamer generation targeting specific proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  2. Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468

    Article  CAS  PubMed  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  4. Lao YH, Phua KK, Leong KW (2015) Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation. ACS Nano 9:2235–2254

    Article  CAS  PubMed  Google Scholar 

  5. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  PubMed  Google Scholar 

  6. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjic N (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  CAS  PubMed  Google Scholar 

  7. Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Naturae 5:34–43

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bell NM, Micklefield J (2009) Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 10:2691–2703

    Article  CAS  PubMed  Google Scholar 

  9. Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15:5423–5444

    Article  CAS  PubMed  Google Scholar 

  10. Rohloff JC, Gelinas AD, Jarvis TC, Ochsner UA, Schneider DJ, Gold L, Janjic N (2014) Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents. Mol Ther Nucleic Acids 3:e201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taylor AI, Arangundy-Franklin S, Holliger P (2014) Towards applications of synthetic genetic polymers in diagnosis and therapy. Curr Opin Chem Biol 22:79–84

    Article  CAS  PubMed  Google Scholar 

  12. Wang RE, Wu H, Niu Y, Cai J (2011) Improving the stability of aptamers by chemical modification. Curr Med Chem 18:4126–4138

    Article  CAS  PubMed  Google Scholar 

  13. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benner SA (2012) Aesthetics in synthesis and synthetic biology. Curr Opin Chem Biol 16:581–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henry AA, Romesberg FE (2003) Beyond A, C, G and T: augmenting nature’s alphabet. Curr Opin Chem Biol 7:727–733

    Article  CAS  PubMed  Google Scholar 

  16. Hirao I, Kimoto M (2012) Unnatural base pair systems toward the expansion of the genetic alphabet in the central dogma. Proc Jpn Acad Ser B 88:345–367

    Article  CAS  Google Scholar 

  17. Hirao I, Kimoto M, Yamashige R (2012) Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc Chem Res 45:2055–2065

    Article  CAS  PubMed  Google Scholar 

  18. Krueger AT, Kool ET (2009) Redesigning the architecture of the base pair: toward biochemical and biological function of new genetic sets. Chem Biol 16:242–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rich A (1962) Problems of evolution and biochemical information transfer. In: Pullman B, Kasha M (eds) Horizons in biochemistry. Academic, New York, pp 103–126

    Google Scholar 

  20. Piccirilli JA, Krauch T, Moroney SE, Benner SA (1990) Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet [see comment]. Nature 343:33–37

    Article  CAS  PubMed  Google Scholar 

  21. Switzer C, Moroney SE, Benner SA (1989) Enzymatic incorporation of a new base pair into DNA and RNA. J Am Chem Soc 111:8322–8323

    Article  CAS  Google Scholar 

  22. Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R, Sato A, Harada Y, Yokoyama S (2006) An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat Methods 3:729–735

    Article  CAS  PubMed  Google Scholar 

  23. Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T, Okuni T, Nakayama H, Takio K, Yabuki T, Kigawa T, Kodama K, Yokogawa T, Nishikawa K, Yokoyama S (2002) An unnatural base pair for incorporating amino acid analogs into proteins. Nat Biotechnol 20:177–182

    Article  CAS  PubMed  Google Scholar 

  24. Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (2009) An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (2012) Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40:2793–2806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hikida Y, Kimoto M, Yokoyama S, Hirao I (2010) Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis. Nat Protoc 5:1312–1323

    Article  CAS  PubMed  Google Scholar 

  27. Kimoto M, Mitsui T, Harada Y, Sato A, Yokoyama S, Hirao I (2007) Fluorescent probing for RNA molecules by an unnatural base-pair system. Nucleic Acids Res 35:5360–5369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kimoto M, Mitsui T, Yamashige R, Sato A, Yokoyama S, Hirao I (2010) A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology. J Am Chem Soc 132:15418–15426

    Article  CAS  PubMed  Google Scholar 

  29. Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P, Torkamani A, Romesberg FE (2012) Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc Natl Acad Sci U S A 109:12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Malyshev DA, Seo YJ, Ordoukhanian P, Romesberg FE (2009) PCR with an expanded genetic alphabet. J Am Chem Soc 131:14620–14621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seo YJ, Malyshev DA, Lavergne T, Ordoukhanian P, Romesberg FE (2011) Site-specific labeling of DNA and RNA using an efficiently replicated and transcribed class of unnatural base pairs. J Am Chem Soc 133:19878–19888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seo YJ, Matsuda S, Romesberg FE (2009) Transcription of an expanded genetic alphabet. J Am Chem Soc 131:5046–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhami K, Malyshev DA, Ordoukhanian P, Kubelka T, Hocek M, Romesberg FE (2014) Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet. Nucleic Acids Res 42:10235–10244

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li L, Degardin M, Lavergne T, Malyshev DA, Dhami K, Ordoukhanian P, Romesberg FE (2014) Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc 136:826–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McMinn DL, Ogawa AK, Wu Y, Liu J, Schultz PG, Romesberg FE (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J Am Chem Soc 121:11585–11586

    Article  CAS  Google Scholar 

  36. Chen F, Yang Z, Yan M, Alvarado JB, Wang G, Benner SA (2011) Recognition of an expanded genetic alphabet by type-II restriction endonucleases and their application to analyze polymerase fidelity. Nucleic Acids Res 39:3949–3961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang Z, Chen F, Alvarado JB, Benner SA (2011) Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc 133:15105–15112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Z, Hutter D, Sheng P, Sismour AM, Benner SA (2006) Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res 34:6095–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (2013) Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat Biotechnol 31:453–457

    Article  CAS  PubMed  Google Scholar 

  40. Sefah K, Yang Z, Bradley KM, Hoshika S, Jimenez E, Zhang L, Zhu G, Shanker S, Yu F, Turek D, Tan W, Benner SA (2014) In vitro selection with artificial expanded genetic information systems. Proc Natl Acad Sci U S A 111:1449–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR Jr, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guckian KM, Krugh TR, Kool ET (1998) Solution structure of a DNA duplex containing a replicable difluorotoluene-adenine pair. Nat Struct Biol 5:954–959

    Article  CAS  PubMed  Google Scholar 

  43. Morales JC, Kool ET (1998) Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat Struct Biol 5:950–954

    Article  CAS  PubMed  Google Scholar 

  44. Hirao I (2006) Unnatural base pair systems for DNA/RNA-based biotechnology. Curr Opin Chem Biol 10:622–627

    Article  CAS  PubMed  Google Scholar 

  45. Ishikawa M, Hirao I, Yokoyama S (2000) Synthesis of 3-(2-deoxy-beta-D-ribofuranosyl)pyridin-2-one and 2-amino-6-(N, N-dimethylamino)-9-(2-deoxy-beta-D-ribofuranosyl)purine derivatives for an unnatural base pair. Tetrahedron Lett 41:3931–3934

    Article  CAS  Google Scholar 

  46. Ohtsuki T, Kimoto M, Ishikawa M, Mitsui T, Hirao I, Yokoyama S (2001) Unnatural base pairs for specific transcription. Proc Natl Acad Sci U S A 98:4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fujiwara T, Kimoto M, Sugiyama H, Hirao I, Yokoyama S (2001) Synthesis of 6-(2-thienyl)purine nucleoside derivatives that form unnatural base pairs with pyridin-2-one nucleosides. Bioorg Med Chem Lett 11:2221–2223

    Article  CAS  PubMed  Google Scholar 

  48. Kawai R, Kimoto M, Ikeda S, Mitsui T, Endo M, Yokoyama S, Hirao I (2005) Site-specific fluorescent labeling of RNA molecules by specific transcription using unnatural base pairs. J Am Chem Soc 127:17286–17295

    Article  CAS  PubMed  Google Scholar 

  49. Mitsui T, Kimoto M, Harada Y, Yokoyama S, Hirao I (2005) An efficient unnatural base pair for a base-pair-expanded transcription system. J Am Chem Soc 127:8652–8658

    Article  CAS  PubMed  Google Scholar 

  50. Moriyama K, Kimoto M, Mitsui T, Yokoyama S, Hirao I (2005) Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs. Nucleic Acids Res 33:e129

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hirao I, Harada Y, Kimoto M, Mitsui T, Fujiwara T, Yokoyama S (2004) A two-unnatural-base-pair system toward the expansion of the genetic code. J Am Chem Soc 126:13298–13305

    Article  CAS  PubMed  Google Scholar 

  52. Hirao I (2006) Placing extra components into RNA by specific transcription using unnatural base pair systems. Biotechniques 40:711–715

    Article  CAS  PubMed  Google Scholar 

  53. Kimoto M, Endo M, Mitsui T, Okuni T, Hirao I, Yokoyama S (2004) Site-specific incorporation of a photo-crosslinking component into RNA by T7 transcription mediated by unnatural base pairs. Chem Biol 11:47–55

    Article  CAS  PubMed  Google Scholar 

  54. Kimoto M, Hikida Y, Hirao I (2013) Site-specific functional labeling of nucleic acids by in vitro replication and transcription using unnatural base pair systems. Isr J Chem 53:450–468

    Article  CAS  Google Scholar 

  55. Mitsui T, Kimoto M, Kawai R, Yokoyama S, Hirao I (2007) Characterization of fluorescent, unnatural base pairs. Tetrahedron 63:3528–3537

    Article  CAS  Google Scholar 

  56. Hirao I, Mitsui T, Kimoto M, Yokoyama S (2007) An efficient unnatural base pair for PCR amplification. J Am Chem Soc 129:15549–15555

    Article  CAS  PubMed  Google Scholar 

  57. Yamashige R, Kimoto M, Mitsui T, Yokoyama S, Hirao I (2011) Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system. Org Biomol Chem 9:7504–7509

    Article  CAS  PubMed  Google Scholar 

  58. Kimoto M, Mitsui T, Yokoyama S, Hirao I (2010) A unique fluorescent base analogue for the expansion of the genetic alphabet. J Am Chem Soc 132:4988–4989

    Article  CAS  PubMed  Google Scholar 

  59. Berger M, Luzzi SD, Henry AA, Romesberg FE (2002) Stability and selectivity of unnatural DNA with five-membered-ring nucleobase analogues. J Am Chem Soc 124:1222–1226

    Article  CAS  PubMed  Google Scholar 

  60. Henry AA, Olsen AG, Matsuda S, Yu C, Geierstanger BH, Romesberg FE (2004) Efforts to expand the genetic alphabet: identification of a replicable unnatural DNA self-pair. J Am Chem Soc 126:6923–6931

    Article  CAS  PubMed  Google Scholar 

  61. Leconte AM, Matsuda S, Hwang GT, Romesberg FE (2006) Efforts towards expansion of the genetic alphabet: pyridone and methyl pyridone nucleobases. Angew Chem Int Ed Engl 45:4326–4329

    Article  CAS  PubMed  Google Scholar 

  62. Leconte AM, Matsuda S, Romesberg FE (2006) An efficiently extended class of unnatural base pairs. J Am Chem Soc 128:6780–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matsuda S, Fillo JD, Henry AA, Rai P, Wilkens SJ, Dwyer TJ, Geierstanger BH, Wemmer DE, Schultz PG, Spraggon G, Romesberg FE (2007) Efforts toward expansion of the genetic alphabet: structure and replication of unnatural base pairs. J Am Chem Soc 129:10466–10473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsuda S, Henry AA, Romesberg FE (2006) Optimization of unnatural base pair packing for polymerase recognition. J Am Chem Soc 128:6369–6375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matsuda S, Romesberg FE (2004) Optimization of interstrand hydrophobic packing interactions within unnatural DNA base pairs. J Am Chem Soc 126:14419–14427

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa AK, Wu YQ, Berger M, Schultz PG, Romesberg FE (2000) Rational design of an unnatural base pair with increased kinetic selectivity. J Am Chem Soc 122:8803–8804

    Article  CAS  Google Scholar 

  67. Ogawa AK, Wu YQ, McMinn DL, Liu JQ, Schultz PG, Romesberg FE (2000) Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J Am Chem Soc 122:3274–3287

    Article  CAS  Google Scholar 

  68. Tae EL, Wu Y, Xia G, Schultz PG, Romesberg FE (2001) Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. J Am Chem Soc 123:7439–7440

    Article  CAS  PubMed  Google Scholar 

  69. Wu YQ, Ogawa AK, Berger M, McMinn DL, Schultz PG, Romesberg FE (2000) Efforts toward expansion of the genetic alphabet: optimization of interbase hydrophobic interactions. J Am Chem Soc 122:7621–7632

    Article  CAS  Google Scholar 

  70. Leconte AM, Hwang GT, Matsuda S, Capek P, Hari Y, Romesberg FE (2008) Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J Am Chem Soc 130:2336–2343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seo YJ, Hwang GT, Ordoukhanian P, Romesberg FE (2009) Optimization of an unnatural base pair toward natural-like replication. J Am Chem Soc 131:3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tor Y, Dervan PB (1993) Site-specific enzymatic incorporation of an unnatural base, N6-(6-aminohexyl)isoguanosine, into RNA. J Am Chem Soc 115:4461–4467

    Article  CAS  Google Scholar 

  73. Lee WM, Grindle K, Pappas T, Marshall DJ, Moser MJ, Beaty EL, Shult PA, Prudent JR, Gern JE (2007) High-throughput, sensitive, and accurate multiplex PCR-microsphere flow cytometry system for large-scale comprehensive detection of respiratory viruses. J Clin Microbiol 45:2626–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marshall DJ, Reisdorf E, Harms G, Beaty E, Moser MJ, Lee WM, Gern JE, Nolte FS, Shult P, Prudent JR (2007) Evaluation of a multiplexed PCR assay for detection of respiratory viral pathogens in a public health laboratory setting. J Clin Microbiol 45:3875–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sherrill CB, Marshall DJ, Moser MJ, Larsen CA, Daude-Snow L, Jurczyk S, Shapiro G, Prudent JR (2004) Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126:4550–4556

    Article  CAS  PubMed  Google Scholar 

  76. Geyer CR, Battersby TR, Benner SA (2003) Nucleobase pairing in expanded Watson-Crick-like genetic information systems. Structure 11:1485–1498

    Article  CAS  PubMed  Google Scholar 

  77. Hutter D, Benner SA (2003) Expanding the genetic alphabet: non-epimerizing nucleoside with the pyDDA hydrogen-bonding pattern. J Org Chem 68:9839–9842

    Article  CAS  PubMed  Google Scholar 

  78. Lutz MJ, Horlacher J, Benner SA (1998) Recognition of a non-standard base pair by thermostable DNA polymerases. Bioorg Med Chem Lett 8:1149–1152

    Article  CAS  PubMed  Google Scholar 

  79. Martinot TA, Benner SA (2004) Artificial genetic systems: exploiting the “aromaticity” formalism to improve the tautomeric ratio for isoguanosine derivatives. J Org Chem 69:3972–3975

    Article  CAS  PubMed  Google Scholar 

  80. Sismour AM, Benner SA (2005) The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–5646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sismour AM, Lutz S, Park JH, Lutz MJ, Boyer PL, Hughes SH, Benner SA (2004) PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1. Nucleic Acids Res 32:728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Merritt KK, Bradley KM, Hutter D, Matsuura MF, Rowold DJ, Benner SA (2014) Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance. Beilstein J Org Chem 10:2348–2360

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yang Z, Durante M, Glushakova LG, Sharma N, Leal NA, Bradley KM, Chen F, Benner SA (2013) Conversion strategy using an expanded genetic alphabet to assay nucleic acids. Anal Chem 85:4705–4712

    Article  CAS  PubMed  Google Scholar 

  84. Potty ASR, Kourentzi K, Fang H, Jackson GW, Zhang X, Legge GB, Willson RC (2009) Biophysical characterization of DNA aptamer interactions with vascular endothelial growth factor. Biopolymers 91:145–156

    Article  CAS  PubMed  Google Scholar 

  85. Tam S, Huey B, Li Y, Lui GM, Hwang DG, Lantz M, Weiss TL, Hunt CA, Garovoy MR (1994) Suppression of interferon-gamma induction of MHC class II and ICAM-1 by a 26-base oligonucleotide composed of deoxyguanosine and deoxythymidine. Transpl Immunol 2:285–292

    Article  CAS  PubMed  Google Scholar 

  86. Hirao I, Harada Y, Nojima T, Osawa Y, Masaki H, Yokoyama S (2004) In vitro selection of RNA aptamers that bind to colicin E3 and structurally resemble the decoding site of 16S ribosomal RNA. Biochemistry 43:3214–3221

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hirao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kimoto, M., Matsunaga, Ki., Redhead, Y.T., Hirao, I. (2016). Genetic Alphabet Expansion by Unnatural Base Pair Creation and Its Application to High-Affinity DNA Aptamers. In: Nakatani, K., Tor, Y. (eds) Modified Nucleic Acids. Nucleic Acids and Molecular Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-27111-8_12

Download citation

Publish with us

Policies and ethics