Skip to main content

Odorant Detection by On-line Chemical Ionization Mass Spectrometry

  • Chapter
Book cover Springer Handbook of Odor

Part of the book series: Springer Handbooks ((SHB))

Abstract

The nasal olfactory receptors allow us, as human beings, to detect and perceive odors almost instantaneously upon exposure and over a broad range of concentrations down to ultratrace levels. Translating this rapid and sensitive detection of odorant molecules to the analytical laboratory is a challenging, nontrivial endeavor that remains unachieved to date. On-line mass spectrometry based on chemical ionization (CIMS) comprises sophisticated analytical techniques that meet several of the key requirements in odorant detection, namely fast response times and direct analyses, trace level limits of detection, and a high sensitivity to a suite of odors or, more specifically, odorants. This chapter discusses on-line CIMS and its application in odorant detection in selected fields. The prominent CIMS techniques of selected ion flow tube mass spectrometry (GlossaryTerm

SIFT

-GlossaryTerm

MS

), proton transfer reaction MS (GlossaryTerm

PTR

-GlossaryTerm

MS

) and atmospheric pressure chemical ionization MS (APCI-MS) are considered, commencing with a brief introduction to their historical developments and a discussion of their operational features and suitability for odorant detection, followed by a review of their widespread applications in odorant measurements in diverse fields of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANOVA:

analysis of variance

APCI:

atmospheric pressure chemical ionization

API-MS:

atmospheric pressure ionization mass spectrometry

CCCRC:

Connecticut Chemosensory Clinical Research Center test

CI:

chemical ionization

CWA:

chemical warfare agent

EBC:

exhaled breath condensate

EEG:

electroencephalography

EI:

electron ionization

FDT:

flow drift tube

FFI:

food freshness indicator

FID:

flame ionization detection

fMRI:

functional magnetic resonance imaging

FTIR:

Fourier transform infrared

FWHM:

full-width at half maximum

GC-O:

gas chromatography-olfactometry

GC:

gas chromatography

IAMS:

ion attachment mass spectrometry

IMR:

ion-molecule reaction

IMS:

ion mobility spectrometry

IT-MS:

ion trap mass spectrometry

LC:

liquid chromatography

LOD:

limit of detection

LOQ:

limit of quantitation

LOX:

lipoxygenase

MAP:

modified atmosphere packaging

MCC:

multicapillary column

MS:

mass spectrometry

m ∕ z :

mass-to-charge ratio

OAV:

odor activity value

OBP:

odor binding protein

PA:

proton affinity

PCA:

principal components analysis

PDO:

protected designation of origin

PEEK:

polyether ether ketone

PID:

photoionization detector

ppbv :

parts per billion by volume

ppmv :

parts per million by volume

pptv :

parts per trillion by volume

PTFE:

polytetrafluoroethylene

PTR:

proton transfer reaction

SESI:

secondary electrospray ionization

SID:

selected ion detection

SIFDT:

selected ion flow drift tube

SIFT:

selected ion flow tube

SIM:

selected ion monitoring

SOA:

secondary organic aerosol

SPME:

solid phase micro extraction

TAGA:

trace atmospheric gas analyzer

TDS:

temporal dominance of sensation

TD:

thermal desorption

TIC:

toxic industrial compound

TOF:

time-of-flight

UPSIT:

University of Pennsylvania smell identification test

UV:

ultraviolet

VMR:

volume mixing ratio

VOC:

volatile organic compound

VSC:

volatile sulfur compound

References

  1. M.S.B. Munson, F.H. Field: Chemical ionization mass spectrometry. I. General introduction, J. Am. Chem. Soc. 88, 2621–2630 (1966)

    Article  CAS  Google Scholar 

  2. F.H. Field: The early days of chemical ionization: A Reminiscence, J. Am. Soc. Mass Spectr. 1, 277–283 (1990)

    Article  CAS  Google Scholar 

  3. B. Munson: Development of chemical ionization mass spectrometry, Int. J. Mass Spectrom. 200, 243–251 (2000)

    Article  CAS  Google Scholar 

  4. F.C. Fehsenfeld, A.L. Schmeltekopf, P.D. Goldan, H.I. Schiff, E.E. Ferguson: Thermal energy ion-neutral reaction rates. I. Some reactions of helium ions, J. Chem. Phys. 44, 4087–4094 (1966)

    Article  CAS  Google Scholar 

  5. E.E. Ferguson, F.C. Fehsenfeld, A.L. Schmeltekopf: Flowing afterglow measurements of ion-neutral reactions. In: Advances in Atomic and Molecular Physics, ed. by D.R. Bates, I. Estermann (Academic, New York 1969)

    Google Scholar 

  6. E.E. Ferguson: A personal history of the early development of the flowing afterglow technique for ion-molecule reaction studies, J. Am. Soc. Mass Spectr. 3, 479–486 (1992)

    Article  CAS  Google Scholar 

  7. M. McFarland, D.L. Albritton, F.C. Fehsenfeld, E.E. Ferguson, A.L. Schmeltekopf: Flow-drift technique for ion mobility and ion-molecule reaction rate constant measurements. I. Apparatus and mobility measurements, J. Chem. Phys. 59, 6610–6619 (1973)

    Article  CAS  Google Scholar 

  8. N.G. Adams, D. Smith: The selected ion flow tube (SIFT); A technique for studying ion-neutral reactions, Int. J. Mass Spectrom. Ion Phys. 21, 349–359 (1976)

    Article  CAS  Google Scholar 

  9. D. Smith, P. Španěl: Ions in the terrestrial atmosphere and in interstellar clouds, Mass Spectrom. Rev. 14, 255–278 (1995)

    Article  CAS  Google Scholar 

  10. F. Howorka, F.C. Feshsenfeld, D.L. Albritton: H\({}^{+}\) and D\({}^{+}\) ions in He: observations of a runaway mobility, J. Phys. B-At. Mol. Phys. 12, 4189 (1979)

    Article  CAS  Google Scholar 

  11. D. Smith, P. Španěl: The novel selected-ion flow tube approach to trace gas analysis of air and breath, Rapid Commun. Mass Spectrom. 10, 1183–1198 (1996)

    Article  CAS  Google Scholar 

  12. A. Lagg, J. Taucher, A. Hansel, W. Lindinger: Applications of proton transfer reactions to gas analysis, Int. J. Mass Spectrom. Ion Proc. 134, 55–66 (1994)

    Article  CAS  Google Scholar 

  13. A. Hansel, A. Jordan, R. Holzinger, P. Prazeller, W. Vogel, W. Lindinger: Proton-transfer-reaction mass-spectrometry – Online trace gas-analysis at the ppb level, Int. J. Mass Spectrom. Ion Proc. 149/150, 609–619 (1995)

    Article  CAS  Google Scholar 

  14. W. Lindinger, A. Hansel, A. Jordan: Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev. 27, 347–354 (1998)

    Article  CAS  Google Scholar 

  15. W. Lindinger, A. Hansel, A. Jordan: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS): Medical applications, food control and environmental research, Int. J. Mass Spectrom. Ion Proc. 173, 191–241 (1998)

    Article  CAS  Google Scholar 

  16. D.I. Carroll, I. Dzidic, R.N. Stillwell, M.G. Horning, E.C. Horning: Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry, Anal. Chem. 46, 706–710 (1974)

    Article  CAS  Google Scholar 

  17. E.C. Horning, M.G. Horning, D.I. Carroll, I. Dzidic, R.N. Stillwell: New picogram detection system based on a mass spectrometer with an external ionization source at atmospheric pressure, Anal. Chem. 45, 936–943 (1973)

    Article  CAS  Google Scholar 

  18. A.G. Harrison: Chemical Ionization Mass Spectrometry (CRC Press, Boca Raton 1992)

    Google Scholar 

  19. E.C. Horning, D.I. Carroll, I. Dzidic, K.D. Haegele, M.G. Horning, R.N. Stillwell: Liquid chromatograph-mass spectrometer-computer analytical systems: A continuous-flow system based on atmospheric pressure ionization mass spectrometry, J. Chromatogr. A 99, 13–21 (1974)

    Article  CAS  Google Scholar 

  20. J.B. French, B.A. Thomson, W.R. Davidson, N.M. Reid, J.A. Buckley: Atmospheric pressure chemical ionization mass spectrometry. In: Mass Spectrometry in Environmental Sciences, ed. by O. Hutzinger, F.W. Karasek, S. Safe (Plenum, New York 1985)

    Google Scholar 

  21. A.P. Bruins: Mass spectrometry with ion sources operating at atmospheric pressure, Mass Spectrom. Rev. 10, 53–77 (1991)

    Article  CAS  Google Scholar 

  22. D.I. Carroll, I. Dzidic, E.C. Horning, R.N. Stillwell: Atmospheric pressure ionization mass spectrometry, Appl. Spectrosc. Rev. 17, 337–406 (1981)

    Article  CAS  Google Scholar 

  23. T.R. Covey, B.A. Thomson, B.B. Schneider: Atmospheric pressure ion sources, Mass Spectrom. Rev. 28, 870–897 (2009)

    Article  CAS  Google Scholar 

  24. A.J. Taylor, R.S.T. Linforth: On-line monitoring of flavour processes. In: Food Flavour Technology, ed. by A.J. Taylor, R.S.T. Linforth (Wiley-Blackwell, Chichester 2010)

    Chapter  Google Scholar 

  25. A. Lovett, N. Reid, J. Buckley, J. French, D. Cameron: Real-time analysis of breath using an atmospheric pressure ionization mass spectrometer, Biomed. Mass Spectrom. 6, 91–97 (1979)

    Article  CAS  Google Scholar 

  26. F.M. Benoit, W.R. Davidson, A.M. Lovett, S. Nacson, A. Ngo: Breath analysis by atmospheric pressure ionization mass spectrometry, Anal. Chem. 55, 805–807 (1983)

    Article  CAS  Google Scholar 

  27. W.J. Soeting, J. Heidema: A mass spectrometric method for measuring flavour concentration/time profiles in human breath, Chem. Senses 13, 607–617 (1988)

    Article  CAS  Google Scholar 

  28. M.B. Springett, V. Rozier, J. Bakker: Use of fiber interface direct mass spectrometry for the determination of volatile flavor release from model food systems, J. Agric. Food Chem. 47, 1125–1131 (1999)

    Article  CAS  Google Scholar 

  29. R.S.T. Linforth, A.J. Taylor: Apparatus and methods for the analysis of trace constituents in gases, European Patent, EP 0819 937 A2 (1998)

    Google Scholar 

  30. A.J. Taylor, R.S.T. Linforth, B.A. Harvey, A. Blake: Atmospheric pressure chemical ionisation mass spectrometry for in vivo analysis of volatile flavour release, Food Chem. 71, 327–338 (2000)

    Article  CAS  Google Scholar 

  31. J.-L. Le Quéré, I. Gierczynski, E. Sémon: An atmospheric pressure chemical ionization–ion-trap mass spectrometer for the on-line analysis of volatile compounds in foods: A tool for linking aroma release to aroma perception, J. Mass Spectrom. 49, 918–928 (2014)

    Article  CAS  Google Scholar 

  32. IUPAC: Recommendations for nomenclature and symbolism for mass spectrometry, Pure Appl. Chem. 63, 1541–1566 (1991)

    Google Scholar 

  33. J. Gross: Mass Spectrometry (Springer-Verlag, Berling, Heidelberg 2011)

    Book  Google Scholar 

  34. K.K. Murray, R.K. Boyd, M.N. Eberlin, G.J. Langley, L. Li, Y. Naito: Definitions of terms relating to mass spectrometry (IUPAC Recommendations 2013), Pure Appl. Chem. 85, 1515–1609 (2013)

    Article  CAS  Google Scholar 

  35. J. de Gouw, C. Warneke: Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom. Rev. 26, 223–257 (2007)

    Article  CAS  Google Scholar 

  36. E.P. Hunter, S.G. Lias: Evaluated gas phase basicities and proton affinities of molecules: An update, J. Phys. Chem. Ref. Data 27, 413–656 (1998)

    Article  CAS  Google Scholar 

  37. K.C. Hunter, A.L.L. East: Properties of C-C bonds in n-alkanes: Relevance to cracking mechanisms, J. Phys. Chem. A 106, 1346–1356 (2002)

    Article  CAS  Google Scholar 

  38. D. Smith, P. Španěl: Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis, Mass Spectrom. Rev. 24, 661–700 (2005)

    Article  CAS  Google Scholar 

  39. J. Beauchamp, J. Herbig, J. Dunkl, W. Singer, A. Hansel: On the performance of proton-transfer-reaction mass spectrometry for breath-relevant gas matrices, Meas. Sci. Technol. 24, 125003 (2013)

    Article  CAS  Google Scholar 

  40. C. Ammann, A. Brunner, C. Spirig, A. Neftel: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys. 6, 4643–4651 (2006)

    Article  CAS  Google Scholar 

  41. E.S.E. van Beelen, T.A. Koblenz, S. Ingemann, S. Hammerum: Experimental and theoretical evaluation of proton affinities of furan, the methylphenols, and the related anisoles, J. Phys. Chem. A 108, 2787–2793 (2004)

    Article  CAS  Google Scholar 

  42. R.S. Blake, M. Patel, P.S. Monks, A.M. Ellis, S. Inomata, H. Tanimoto: Aldehyde and ketone discrimination and quantification using two-stage proton transfer reaction mass spectrometry, Int. J. Mass Spectrom. 278, 15–19 (2008)

    Article  CAS  Google Scholar 

  43. A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, J. Herbig, L. Märk, R. Schottkowsky, H. Seehauser, P. Sulzer, T.D. Märk: An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR\(+\)SRI-MS), Int. J. Mass Spectrom. 286, 32–38 (2009)

    Article  CAS  Google Scholar 

  44. D. Smith, P. Španěl, J. Herbig, J. Beauchamp: Mass spectrometry for real-time quantitative breath analysis, J. Breath Res. 8, 027101 (2014)

    Article  CAS  Google Scholar 

  45. A. Edtbauer, E. Hartungen, A. Jordan, G. Hanel, J. Herbig, S. Jürschik, M. Lanza, K. Breiev, L. Märk, P. Sulzer: Theory and practical examples of the quantification of CH\({}_{4}\), CO, O\({}_{2}\), and CO\({}_{2}\) with an advanced proton-transfer-reaction/selective-reagent-ionization instrument (PTR/SRI-MS), Int. J. Mass Spectrom. 365/366, 10–14 (2014)

    Article  CAS  Google Scholar 

  46. R.V. Hodges, J.L. Beauchamp: Application of alkali ions in chemical ionization mass spectrometry, Anal. Chem. 48, 825–829 (1976)

    Article  CAS  Google Scholar 

  47. A. Jordan, S. Haidacher, G. Hanel, E. Hartungen, L. Märk, H. Seehauser, R. Schottkowsky, P. Sulzer, T.D. Märk: A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS), Int. J. Mass Spectrom. 286, 122–128 (2009)

    Article  CAS  Google Scholar 

  48. L. Cappellin, F. Biasioli, E. Schuhfried, C. Soukoulis, T.D. Märk, F. Gasperi: Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction, Rapid Commun. Mass Spectrom. 25, 179–183 (2011)

    Article  CAS  Google Scholar 

  49. J. Herbig, M. Muller, S. Schallhart, T. Titzmann, M. Graus, A. Hansel: On-line breath analysis with PTR-TOF, J. Breath Res. 3, 027004 (2009)

    Article  CAS  Google Scholar 

  50. E. Zardin, O. Tyapkova, A. Buettner, J. Beauchamp: Performance assessment of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS) for analysis of isobaric compounds in food-flavour applications, LWT-Food Sci. Technol. 56, 153–160 (2014)

    Article  CAS  Google Scholar 

  51. R.G. Cooks, R.E. Kaiser: Quadrupole ion trap mass spectrometry, Accounts Chem. Res. 23, 213–219 (1990)

    Article  CAS  Google Scholar 

  52. R.E. March: An introduction to quadrupole ion trap mass spectrometry, J. Mass Spectrom. 32, 351–369 (1997)

    Article  CAS  Google Scholar 

  53. J.F.J. Todd: Ion trap mass spectrometer—past, present, and future (?), Mass Spectrom. Rev. 10, 3–52 (1991)

    Article  CAS  Google Scholar 

  54. J.F.J. Todd, A.D. Penman: The recent evolution of the quadrupole ion trap mass spectrometer – An overview, Int. J. Mass Spectrom. Ion Proc. 106, 1–20 (1991)

    Article  CAS  Google Scholar 

  55. L.H. Mielke, D.E. Erickson, S.A. McLuckey, M. Müller, A. Wisthaler, A. Hansel, P.B. Shepson: Development of a proton-transfer-reaction-linear ion trap mass spectrometer for quantitative determination of volatile organic compounds, Anal. Chem. 80, 8171–8177 (2008)

    Article  CAS  Google Scholar 

  56. P. Prazeller, P.T. Palmer, E. Boscaini, T. Jobson, M. Alexander: Proton transfer reaction ion trap mass spectrometer, Rapid Commun. Mass Spectrom. 17, 1593–1599 (2003)

    Article  CAS  Google Scholar 

  57. C. Warneke, J.A. de Gouw, E.R. Lovejoy, P.C. Murphy, W.C. Kuster, R. Fall: Development of proton-transfer ion trap-mass spectrometry: On-line detection and identification of volatile organic compounds in air, J. Am. Soc. Mass Spectr. 16, 1316–1324 (2005)

    Article  CAS  Google Scholar 

  58. F. Biasioli, C. Yeretzian, T.D. Märk, J. Dewulf, H. Van Langenhove: Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis, TrAC Trend. Anal. Chem. 30, 1003–1017 (2011)

    Article  CAS  Google Scholar 

  59. S. Inomata, H. Tanimoto, N. Aoki, J. Hirokawa, Y. Sadanaga: A novel discharge source of hydronium ions for proton transfer reaction ionization: Design, characterization, and performance, Rapid Commun. Mass Spectrom. 20, 1025–1029 (2006)

    Article  CAS  Google Scholar 

  60. K.P. Wyche, R.S. Blake, K.A. Willis, P.S. Monks, A.M. Ellis: Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry, Rapid Commun. Mass Spectrom. 19, 3356–3362 (2005)

    Article  CAS  Google Scholar 

  61. P. Sulzer, A. Edtbauer, E. Hartungen, S. Jurschik, A. Jordan, G. Hanel, S. Feil, S. Jaksch, L. Mark, T.D. Mark: From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis, Int. J. Mass Spectrom. 321, 66–70 (2012)

    Article  CAS  Google Scholar 

  62. R.S. Blake, C. Whyte, C.O. Hughes, A.M. Ellis, P.S. Monks: Demonstration of proton-transfer-reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds, Anal. Chem. 76, 3841–3845 (2004)

    Article  CAS  Google Scholar 

  63. M.M.L. Steeghs, E. Crespo, F.J.M. Harren: Collision induced dissociation study of 10 monoterpenes for identification in trace gas measurements using the newly developed proton-transfer reaction ion trap mass spectrometer, Int. J. Mass Spectrom. 263, 204–212 (2007)

    Article  CAS  Google Scholar 

  64. M.M.L. Steeghs, C. Sikkens, E. Crespo, S.M. Cristescu, F.J.M. Harren: Development of a proton-transfer reaction ion trap mass spectrometer: Online detection and analysis of volatile organic compounds, Int. J. Mass Spectrom. 262, 16–24 (2007)

    Article  CAS  Google Scholar 

  65. A. Wisthaler, G. Tamas, D.P. Wyon, P. Strom-Tejsen, D. Space, J. Beauchamp, A. Hansel, T.D. Mark, C.J. Weschler: Products of ozone-initiated chemistry in a simulated aircraft environment, Environ. Sci. Technol. 39, 4823–4832 (2005)

    Article  CAS  Google Scholar 

  66. L. Keck, C. Hoeschen, U. Oeh: Effects of carbon dioxide in breath gas on proton transfer reaction-mass spectrometry (PTR-MS) measurements, Int. J. Mass Spectrom. 270, 156–165 (2008)

    Article  CAS  Google Scholar 

  67. S.C. Herndon, T. Rogers, E.J. Dunlea, J.T. Jayne, R. Miake-Lye, B. Knighton: Hydrocarbon emissions from in-use commercial aircraft during airport operations, Environ. Sci. Technol. 40, 4406–4413 (2006)

    Article  CAS  Google Scholar 

  68. C. Warneke, C. van der Veen, S. Luxembourg, J.A. de Gouw, A. Kok: Measurements of benzene and toluene in ambient air using proton-transfer-reaction mass spectrometry: Calibration, humidity dependence, and field intercomparison, Int. J. Mass Spectrom. 207, 167–182 (2001)

    Article  CAS  Google Scholar 

  69. R.S. Blake, P.S. Monks, A.M. Ellis: Proton-transfer-reaction mass spectrometry, Chem. Rev. 109, 861–896 (2009)

    Article  CAS  Google Scholar 

  70. A.M. Ellis, C.A. Mayhew: Proton Transfer Reaction Mass Spectrometry: Principles and Applications (Wiley, Chichester 2014)

    Book  Google Scholar 

  71. A.J. Taylor, R.S.T. Linforth: Direct mass spectrometry of complex volatile and non-volatile flavour mixtures, Int. J. Mass Spectrom. 223/224, 179–191 (2003)

    Article  Google Scholar 

  72. J. Sunner, G. Nicol, P. Kebarle: Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry, Anal. Chem. 60, 1300–1307 (1988)

    Article  CAS  Google Scholar 

  73. L. Jublot, R.S.T. Linforth, A.J. Taylor: Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds, Int. J. Mass Spectrom. 243, 269–277 (2005)

    Article  CAS  Google Scholar 

  74. G. Zehentbauer, T. Krick, G.A. Reineccius: Use of humidified air in optimizing APCI-MS response in breath analysis, J. Agric. Food Chem. 48, 5389–5395 (2000)

    Article  CAS  Google Scholar 

  75. U. Tegtmeyer, H.P. Weiss, R. Schlögl: Gas analysis by IMR-MS: a comparison to conventional mass spectrometry, Fresenius J. Anal. Chem. 347, 263–268 (1993)

    Article  CAS  Google Scholar 

  76. F. Defoort, S. Thiery, S. Ravel: A promising new on-line method of tar quantification by mass spectrometry during steam gasification of biomass, Biomass Bioenerg. 65, 64–71 (2014)

    Article  CAS  Google Scholar 

  77. G.A. Eiceman, Z. Karpas: Ion mobility spectrometry (Taylor Francis, Boca Raton 2005)

    Book  Google Scholar 

  78. S. Bell, R. Ewing, G. Eiceman, Z. Karpas: Atmospheric pressure chemical ionization of alkanes, alkenes, and cycloalkanes, J. Am. Soc. Mass Spectr. 5, 177–185 (1994)

    Article  CAS  Google Scholar 

  79. J.I. Baumbach: Process analysis using ion mobility spectrometry, Anal. Bioanal. Chem. 384, 1059–1070 (2006)

    Article  CAS  Google Scholar 

  80. D. Collins, M. Lee: Developments in ion mobility spectrometry – Mass spectrometry, Anal. Bioanal. Chem. 372, 66–73 (2002)

    Article  CAS  Google Scholar 

  81. T. Fujii, M. Ogura, H. Jimba: Chemical ionization mass spectrometry with lithium ion attachment to the molecule, Anal. Chem. 61, 1026–1029 (1989)

    Article  CAS  Google Scholar 

  82. T. Fujii, S. Arulmozhiraja: Application of In\({}^{+}\) ions in ion attachment mass spectrometry, Int. J. Mass Spectrom. 198, 15–21 (2000)

    Article  CAS  Google Scholar 

  83. T. Fujii, P.C. Selvin, M. Sablier, K. Iwase: Lithium ion attachment mass spectrometry for on-line analysis of trace components in air: Direct introduction, Int. J. Mass Spectrom. 209, 39–45 (2001)

    Article  CAS  Google Scholar 

  84. P. Španěl, D. Smith: Progress in SIFT-MS: Breath analysis and other applications, Mass Spectrom. Rev. 30, 236–267 (2011)

    Article  CAS  Google Scholar 

  85. J. Kubišta, P. Španěl, K. Dryahina, C. Workman, D. Smith: Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification, Rapid Commun. Mass Spectrom. 20, 563–567 (2006)

    Article  CAS  Google Scholar 

  86. C. Warneke, J.A. de Gouw, W.C. Kuster, P.D. Goldan, R. Fall: Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method, Environ. Sci. Technol. 37, 2494–2501 (2003)

    Article  CAS  Google Scholar 

  87. C. Lindinger, P. Pollien, S. Ali, C. Yeretzian, I. Blank, T. Märk: Unambiguous identification of volatile organic compounds by proton-transfer-reaction mass spectrometry coupled with GC/MS, Anal. Chem. 77, 4117–4124 (2005)

    Article  CAS  Google Scholar 

  88. J. de Gouw, C. Warneke, T. Karl, G. Eerdekens, C. van der Veen, R. Fall: Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom. 223/224, 365–382 (2003)

    Article  Google Scholar 

  89. E. Hurtado-Fernández, T. Pacchiarotta, E. Longueira-Suárez, O.A. Mayboroda, A. Fernández-Gutiérrez, A. Carrasco-Pancorbo: Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: Avocado fruit as example, J. Chromatogr. A 1313, 228–244 (2013)

    Article  CAS  Google Scholar 

  90. A. Romano, L. Fischer, J. Herbig, H. Campbell-Sills, J. Coulon, P. Lucas, L. Cappellin, F. Biasioli: Wine analysis by fastGC proton-transfer reaction-time-of-flight-mass spectrometry, Int. J. Mass Spectrom. 369, 81–86 (2014)

    Article  CAS  Google Scholar 

  91. R. Spitaler, N. Araghipour, T. Mikoviny, A. Wisthaler, J.D. Via, T.D. Märk: PTR-MS in enology: Advances in analytics and data analysis, Int. J. Mass Spectrom. 266, 1–7 (2007)

    Article  CAS  Google Scholar 

  92. E. Boscaini, T. Mikoviny, A. Wisthaler: E.v. Hartungen, T.D. Märk: Characterization of wine with PTR-MS, Int. J. Mass Spectrom. 239, 215–219 (2004)

    Article  CAS  Google Scholar 

  93. J. Beauchamp, J. Herbig: Proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) for aroma compound detection in real-time: Technology, developments, and applications. In: The Chemical Sensory Informatics of Food: Measurement, Analysis, Integration, ed. by B. Guthrie, J. Beauchamp, A. Buettner, B.K. Lavine (American Chemical Society, Washington D.C. 2015)

    Google Scholar 

  94. V. Ruzsanyi, L. Fischer, J. Herbig, C. Ager, A. Amann: Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry, J. Chromatogr. A 1316, 112–118 (2013)

    Article  CAS  Google Scholar 

  95. P. Sulzer, E. Hartungen, G. Hanel, S. Feil, K. Winkler, P. Mutschlechner, S. Haidacher, R. Schottkowsky, D. Gunsch, H. Seehauser, M. Striednig, S. Jürschik, K. Breiev, M. Lanza, J. Herbig, L. Märk, T.D. Märk, A. Jordan: A proton transfer reaction-quadrupole interface time-of-flight mass spectrometer (PTR-QiTOF): High speed due to extreme sensitivity, Int. J. Mass Spectrom. 368, 1–5 (2014)

    Article  CAS  Google Scholar 

  96. A.-M. Haahr, H. Madsen, J. Smedsgaard, W.L.P. Bredie, L.H. Stahnke, H.H.F. Refsgaard: Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles, Anal. Chem. 75, 655–662 (2003)

    Article  CAS  Google Scholar 

  97. C. Baumann, M.A. Cintora, M. Eichler, E. Lifante, M. Cooke, A. Przyborowska, J.M. Halket: A library of atmospheric pressure ionization daughter ion mass spectra based on wideband excitation in an ion trap mass spectrometer, Rapid Commun. Mass Spectrom. 14, 349–356 (2000)

    Article  CAS  Google Scholar 

  98. G. Hanel, W. Sailer, A. Jordan: PTR-MS response-time improvements, 2nd Int. Conf. Proton Trans. React. Mass Spectrom. Its Appl. (Innsbruck University Press, Innsbruck 2005) pp. 170–171

    Google Scholar 

  99. R.A. Buffo, G. Zehentbauer, G.A. Reineccius: Determination of linear response in the detection of aroma compounds by atmospheric pressure ionization-mass spectrometry (API-MS), J. Agric. Food Chem. 53, 702–707 (2005)

    Article  CAS  Google Scholar 

  100. P. Brown, P. Watts, T.D. Märk, C.A. Mayhew: Proton transfer reaction mass spectrometry investigations on the effects of reduced electric field and reagent ion internal energy on product ion branching ratios for a series of saturated alcohols, Int. J. Mass Spectrom. 294, 103–111 (2010)

    Article  CAS  Google Scholar 

  101. K. Buhr, S. van Ruth, C. Delahunty: Analysis of volatile flavour compounds by proton transfer reaction-mass spectrometry: Fragmentation patterns and discrimination between isobaric and isomeric compounds, Int. J. Mass Spectrom. 221, 1–7 (2002)

    Article  CAS  Google Scholar 

  102. E. Aprea, F. Biasioli, T.D. Märk, F. Gasperi: PTR-MS study of esters in water and water/ethanol solutions: Fragmentation patterns and partition coefficients, Int. J. Mass Spectrom. 262, 114–121 (2007)

    Article  CAS  Google Scholar 

  103. G. Amadei, B.M. Ross: The reactions of a series of terpenoids with H\({}_{3}\)O\({}^{+}\), NO\({}^{+}\) and O\({}_{2}^{+}\) studied using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 25, 162–168 (2011)

    Article  CAS  Google Scholar 

  104. I. Déléris, A. Saint-Eve, E. Sémon, H. Guillemin, E. Guichard, I. Souchon, J.-L. Le Quéré: Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods, J. Mass Spectrom. 48, 594–607 (2013)

    Article  CAS  Google Scholar 

  105. S.J. Avison: Real-time flavor analysis: Optimization of a proton-transfer-mass spectrometer and comparison with an atmospheric pressure chemical ionization mass spectrometer with an MS-Nose interface, J. Agric. Food Chem. 61, 2070–2076 (2013)

    Article  CAS  Google Scholar 

  106. M. Flores, A. Olivares, K. Dryahina, P. Španěl: Real time detection of aroma compounds in meat and meat products by SIFT-MS and comparison to conventional techniques (SPME-GC-MS), Curr. Anal. Chem. 9, 622–630 (2013)

    Article  CAS  Google Scholar 

  107. A. Olivares, K. Dryahina, J.L. Navarro, D. Smith, P. Španěl, M. Flores: SPME-GC-MS versus selected ion flow tube mass spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing, J. Agric. Food Chem. 59, 1931–1938 (2011)

    Article  CAS  Google Scholar 

  108. S. van Ruth, E. Boscaini, D. Mayr, J. Pugh, M. Posthumus: Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers, Int. J. Mass Spectrom. 223/224, 55–65 (2003)

    Article  Google Scholar 

  109. T. Karl, C. Yeretzian, A. Jordan, W. Lindinger: Dynamic measurements of partition coefficients using proton-transfer-reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom. 223/224, 383–395 (2003)

    Article  Google Scholar 

  110. P. Pollien, A. Jordan, W. Lindinger, C. Yeretzian: Liquid-air partitioning of volatile compounds in coffee: Dynamic measurements using proton-transfer-reaction mass spectrometry, Int. J. Mass Spectrom. 228, 69–80 (2003)

    Article  CAS  Google Scholar 

  111. O. Tyapkova, S. Bader-Mittermaier, U. Schweiggert-Weisz, S. Wurzinger, J. Beauchamp, A. Buettner: Characterisation of flavour–texture interactions in sugar-free and sugar-containing pectin gels, Food Res. Int. 55, 336–346 (2014)

    Article  CAS  Google Scholar 

  112. A. Hansson, P. Giannouli, S. van Ruth: The influence of gel strength on aroma release from pectin gels in a model mouth and in vivo, monitored with proton-transfer-reaction mass spectrometry, J. Agric. Food Chem. 51, 4732–4740 (2003)

    Article  CAS  Google Scholar 

  113. A.B. Boland, K. Buhr, P. Giannouli, S.M. van Ruth: Influence of gelatin, starch, pectin and artificial saliva on the release of 11 flavour compounds from model gel systems, Food Chem. 86, 401–411 (2004)

    Article  CAS  Google Scholar 

  114. A.B. Boland, C.M. Delahunty, S.M. van Ruth: Influence of the texture of gelatin gels and pectin gels on strawberry flavour release and perception, Food Chem. 96, 452–460 (2006)

    Article  CAS  Google Scholar 

  115. G. Savary, E. Semon, J.M. Meunier, J.L. Doublier, N. Cayot: Impact of destroying the structure of model gels on volatile release, J. Agric. Food Chem. 55, 7099–7106 (2007)

    Article  CAS  Google Scholar 

  116. O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions, Food Chem. 140, 124–134 (2013)

    Article  CAS  Google Scholar 

  117. O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Emulsifying properties of legume proteins compared to β-lactoglobulin and Tween 20 and the volatile release from oil-in-water emulsions, J. Food Sci. 79, E2014–E2022 (2014)

    Article  CAS  Google Scholar 

  118. C. Siefarth, O. Tyapkova, J. Beauchamp, U. Schweiggert, A. Buettner, S. Bader: Influence of polyols and bulking agents on flavour release from low-viscosity solutions, Food Chem. 129, 1462–1468 (2011)

    Article  CAS  Google Scholar 

  119. C. Siefarth, O. Tyapkova, J. Beauchamp, U. Schweiggert, A. Buettner, S. Bader: Mixture design approach as a tool to study in vitro flavor release and viscosity interactions in sugar-free polyol and bulking agent solutions, Food Res. Int. 44, 3202–3211 (2011)

    Article  CAS  Google Scholar 

  120. I. Fisk, M. Boyer, R.T. Linforth: Impact of protein, lipid and carbohydrate on the headspace delivery of volatile compounds from hydrating powders, Eur. Food. Res. Technol. 235, 517–525 (2012)

    Article  CAS  Google Scholar 

  121. M.Á. Pozo-Bayón, M. Santos, P.J. Martín-Álvarez, G. Reineccius: Influence of carbonation on aroma release from liquid systems using an artificial throat and a proton transfer reaction–mass spectrometric technique (PTR–MS), Flavour Frag. J. 24, 226–233 (2009)

    Article  CAS  Google Scholar 

  122. O. Benjamin, P. Silcock, J.A. Kieser, J.N. Waddell, M.V. Swain, D.W. Everett: Development of a model mouth containing an artificial tongue to measure the release of volatile compounds, Innov. Food Sci. Emerg. 15, 96–103 (2012)

    Article  CAS  Google Scholar 

  123. O. Benjamin, P. Silcock, J. Beauchamp, A. Buettner, D.W. Everett: Tongue pressure and oral conditions affect volatile release from liquid systems in a model mouth, J. Agric. Food Chem. 60(39), 9918–9927 (2012)

    Article  CAS  Google Scholar 

  124. S.M. van Ruth, K. Buhr: Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry, Int. J. Mass Spectrom. 239, 187–192 (2004)

    Article  CAS  Google Scholar 

  125. C. Salles, A. Tarrega, P. Mielle, J. Maratray, P. Gorria, J. Liaboeuf, J.J. Liodenot: Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment, J. Food Eng. 82, 189–198 (2007)

    Article  Google Scholar 

  126. S.M. van Ruth, J.P. Roozen: Influence of mastication and saliva on aroma release in a model mouth system, Food Chem. 71, 339–345 (2000)

    Article  Google Scholar 

  127. C. Salles, M.-C. Chagnon, G. Feron, E. Guichard, H. Laboure, M. Morzel, E. Semon, A. Tarrega, C. Yven: In-mouth mechanisms leading to flavor release and perception, Crit. Rev. Food Sci. Nutr. 51, 67–90 (2010)

    Article  CAS  Google Scholar 

  128. S.M. van Ruth, L. Dings, K. Buhr, M.A. Posthumus: In vitro and in vivo volatile flavour analysis of red kidney beans by proton transfer reaction-mass spectrometry, Food Res. Int. 37, 785–791 (2004)

    Article  CAS  Google Scholar 

  129. S.M. van Ruth, J. Frasnelli, L. Carbonell: Volatile flavour retention in food technology and during consumption: Juice and custard examples, Food Chem. 106, 1385–1392 (2008)

    Article  CAS  Google Scholar 

  130. F. Biasioli, F. Gasperi, E. Aprea, L. Colato, E. Boscaini, T.D. Märk: Fingerprinting mass spectrometry by PTR-MS: Heat treatment vs. pressure treatment of red orange juice – A case study, Int. J. Mass Spectrom. 223/224, 343–353 (2003)

    Article  Google Scholar 

  131. F. Biasioli, F. Gasperi, E. Aprea, I. Endrizzi, V. Framondino, F. Marini, D. Mott, T.D. Märk: Correlation of PTR-MS spectral fingerprints with sensory characterisation of flavour and odour profile of ’Trentingrana’ cheese, Food Qual. Prefer. 17, 63–75 (2006)

    Article  Google Scholar 

  132. E. Boscaini, S. van Ruth, F. Biasioli, F. Gasperi, T.D. Mark: Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) analysis of the flavor profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino cheeses, J. Agric. Food Chem. 51, 1782–1790 (2003)

    Article  CAS  Google Scholar 

  133. F. Gasperi, G. Gallerani, A. Boschetti, F. Biasioli, A. Monetti, E. Boscaini, A. Jordan, W. Lindinger, S. Iannotta: The mozzarella chesse flavour profile: A comparison between judge panel analysis and proton transfer reaction mass spectrometry, J. Sci. Food Agric. 81, 357–363 (2000)

    Article  Google Scholar 

  134. A. Boschetti, F. Biasioli, M. van Opbergen, C. Warneke, A. Jordan, R. Holzinger, P. Prazeller, T. Karl, A. Hansel, W. Lindinger, S. Iannotta: PTR-MS real time monitoring of the emission of volatile organic compounds during postharvest aging of berryfruit, Postharvest Biol. Tec. 17, 143–151 (1999)

    Article  CAS  Google Scholar 

  135. P.M. Granitto, F. Biasioli, E. Aprea, D. Mott, C. Furlanello, T.D. Märk, F. Gasperi: Rapid and non-destructive identification of strawberry cultivars by direct PTR-MS headspace analysis and data mining techniques, Sensor Actuat. B-Chemical 121, 379–385 (2007)

    Article  CAS  Google Scholar 

  136. E. Zini, F. Biasioli, F. Gasperi, D. Mott, E. Aprea, T.D. Märk, A. Patocchi, C. Gessler, M. Komjanc: QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry, Euphytica 145, 269–279 (2005)

    Article  CAS  Google Scholar 

  137. S.P. Heenan, J.-P. Dufour, N. Hamid, W. Harvey, C.M. Delahunty: Characterisation of fresh bread flavour: Relationships between sensory characteristics and volatile composition, Food Chem. 116, 249–257 (2009)

    Article  CAS  Google Scholar 

  138. S. Heenan, C. Soukoulis, P. Silcock, A. Fabris, E. Aprea, L. Cappellin, T.D. Märk, F. Gasperi, F. Biasioli: PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition, Food Chem. 131, 477–484 (2012)

    Article  CAS  Google Scholar 

  139. C. Lindinger, D. Labbe, P. Pollien, A. Rytz, M.A. Juillerat, C. Yeretzian, I. Blank: When machine tastes coffee: Instrumental approach to predict the sensory profile of espresso coffee, Anal. Chem. 80, 1574–1581 (2008)

    Article  CAS  Google Scholar 

  140. S. Yener, A. Romano, L. Cappellin, T.D. Märk, J. Sánchez del Pulgar, F. Gasperi, L. Navarini, F. Biasioli: PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins, J. Mass Spectrom. 49, 929–935 (2014)

    Article  CAS  Google Scholar 

  141. C. Yeretzian, A. Jordan, R. Badoud, W. Lindinger: From the green bean to the cup of coffee: Investigating coffee roasting by on-line monitoring of volatiles, Eur. Food. Res. Technol. 214, 92–104 (2002)

    Article  CAS  Google Scholar 

  142. C. Yeretzian, A. Jordan, W. Lindinger: Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry, Int. J. Mass Spectrom. 223–224, 115–139 (2003)

    Article  Google Scholar 

  143. S. van Ruth, K. Buhr: Influence of saliva on temporal volatile flavour release from red bell peppers determined by proton transfer reaction-mass spectrometry, Eur. Food. Res. Technol. 216, 220–223 (2003)

    Article  CAS  Google Scholar 

  144. B.M. Davis, S.T. Senthilmohan, P.F. Wilson, M.J. McEwan: Major volatile compounds in head-space above olive oil analysed by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 19, 2272–2278 (2005)

    Article  CAS  Google Scholar 

  145. D. Smith, T. Wang, P. Španěl: Kinetics and isotope patterns of ethanol and acetaldehyde emissions from yeast fermentations of glucose and glucose-6,6-d2 using selected ion flow tube mass spectrometry: A case study, Rapid Commun. Mass Spectrom. 16, 69–76 (2002)

    Article  CAS  Google Scholar 

  146. A. Olivares, K. Dryahina, J.L. Navarro, M. Flores, D. Smith, P. Španěl: Selected ion flow tube-mass spectrometry for absolute quantification of aroma compounds in the headspace of dry fermented sausages, Anal. Chem. 82, 5819–5829 (2010)

    Article  CAS  Google Scholar 

  147. B. Noseda, P. Ragaert, D. Pauwels, T. Anthierens, H. Van Langenhove, J. Dewulf, F. Devlieghere: Validation of selective ion flow tube mass spectrometry for fast quantification of volatile bases produced on atlantic cod (Gadus morhua), J. Agric. Food Chem. 58, 5213–5219 (2010)

    Article  CAS  Google Scholar 

  148. V.S. Langford, C.J. Reed, D.B. Milligan, M.J. McEwan, S.A. Barringer, W.J. Harper: Headspace analysis of Italian and New Zealand Parmesan cheeses, J. Food Sci. 77, C719–C726 (2012)

    Article  CAS  Google Scholar 

  149. N. Sumonsiri, S.A. Barringer: Application of SIFT-MS in monitoring volatile compounds in fruits and vegetables, Curr. Anal. Chem. 9, 631–641 (2013)

    Article  CAS  Google Scholar 

  150. G. Ozcan, S. Barringer: Effect of enzymes on strawberry volatiles during storage, at different ripeness level, in different cultivars, and during eating, J. Food Sci. 76, C324–C333 (2011)

    Article  CAS  Google Scholar 

  151. H. Duan, S.A. Barringer: Changes in furan and other volatile compounds in sliced carrot during air-drying, J. Food Process Pres. 36, 46–54 (2012)

    Article  CAS  Google Scholar 

  152. P. Ties, S. Barringer: Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh, J. Food Sci. 77, C830–C837 (2012)

    Article  CAS  Google Scholar 

  153. Y. Xu, S. Barringer: Effect of temperature on lipid-related volatile production in tomato puree, J. Agric. Food Chem. 57, 9108–9113 (2009)

    Article  CAS  Google Scholar 

  154. B. Wampler, S.A. Barringer: Volatile generation in bell peppers during frozen storage and thawing using selected ion flow tube mass spectrometry (SIFT-MS), J. Food Sci. 77, C677–C683 (2012)

    Article  CAS  Google Scholar 

  155. C. Azcarate, S.A. Barringer: Effect of enzyme activity and frozen storage on jalapeño pepper volatiles by selected ion flow tube – Mass spectrometry, J. Food Sci. 75, C710–C721 (2010)

    Article  CAS  Google Scholar 

  156. Y. Huang, S.A. Barringer: Alkylpyrazines and other volatiles in cocoa liquors at pH 5 to 8, by selected ion flow tube-mass spectrometry (SIFT-MS), J. Food Sci. 75, C121–C127 (2010)

    Article  CAS  Google Scholar 

  157. Y. Huang, S.A. Barringer: Monitoring of cocoa volatiles produced during roasting by selected ion flow tube-mass spectrometry (SIFT-MS), J. Food Sci. 76, C279–C286 (2011)

    Article  CAS  Google Scholar 

  158. A.L. Smith, S.A. Barringer: Color and volatile analysis of peanuts roasted using oven and microwave technologies, J. Food Sci. 79, C1895–C1906 (2014)

    Article  CAS  Google Scholar 

  159. T. Bowman, S. Barringer: Analysis of factors affecting volatile compound formation in roasted pumpkin seeds with selected ion flow tube-mass spectrometry (sift-ms) and sensory analysis, J. Food Sci. 77, C51–C60 (2012)

    Article  CAS  Google Scholar 

  160. A. Agila, S. Barringer: Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis), J. Food Sci. 77, C461–C468 (2012)

    Article  CAS  Google Scholar 

  161. A.L. Smith, J.J. Perry, J.A. Marshall, A.E. Yousef, S.A. Barringer: Oven, microwave, and combination roasting of peanuts: Comparison of inactivation of Salmonella surrogate Enterococcus faecium, color, volatiles, flavor, and lipid oxidation, J. Food Sci. 79, S1584–S1594 (2014)

    Article  CAS  Google Scholar 

  162. G. Amadei, B.M. Ross: Quantification of character-impacting compounds in Ocimum basilicum and ’Pesto alla Genovese’ with selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 26, 219–225 (2012)

    Article  CAS  Google Scholar 

  163. E.N. Friel, M. Wang, A.J. Taylor, E.A. MacRae: In vitro and in vivo release of aroma compounds from yellow-fleshed kiwifruit, J. Agric. Food Chem. 55, 6664–6673 (2007)

    Article  CAS  Google Scholar 

  164. Z.A. Shojaei, R.S.T. Linforth, A.J. Taylor: Estimation of the oil water partition coefficient, experimental and theoretical approaches related to volatile behaviour in milk, Food Chem. 103, 689–694 (2007)

    Article  CAS  Google Scholar 

  165. J. Wright, F. Wulfert, J. Hort, A.J. Taylor: Effect of preparation conditions on release of selected volatiles in tea headspace, J. Agric. Food Chem. 55, 1445–1453 (2007)

    Article  CAS  Google Scholar 

  166. A.I. Carrapiso: Effect of fat content on flavour release from sausages, Food Chem. 103, 396–403 (2007)

    Article  CAS  Google Scholar 

  167. M. Aznar, M. Tsachaki, R.S.T. Linforth, V. Ferreira, A.J. Taylor: Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS, Int. J. Mass Spectrom. 239, 17–25 (2004)

    Article  CAS  Google Scholar 

  168. M. Tsachaki, R.S.T. Linforth, A.J. Taylor: Dynamic headspace analysis of the release of volatile organic compounds from ethanolic systems by direct APCI-MS, J. Agric. Food Chem. 53, 8328–8333 (2005)

    Article  CAS  Google Scholar 

  169. M. Tsachaki, A.-L. Gady, M. Kalopesas, R.S.T. Linforth, V. Athès, M. Marin, A.J. Taylor: Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions, J. Agric. Food Chem. 56, 5308–5315 (2008)

    Article  CAS  Google Scholar 

  170. J.S. del Pulgar, C. Soukoulis, F. Biasioli, L. Cappellin, C. García, F. Gasperi, P. Granitto, T.D. Märk, E. Piasentier, E. Schuhfried: Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS), Talanta 85, 386–393 (2011)

    Article  CAS  Google Scholar 

  171. A. Agila, S.A. Barringer: Volatile profile of cashews (Anacardium occidentale L.) from different geographical origins during roasting, J. Food Sci. 76, C768–C774 (2011)

    Article  CAS  Google Scholar 

  172. A. Agila, S. Barringer: Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations, J. Food Sci. 78, C184–C191 (2013)

    Article  CAS  Google Scholar 

  173. A. Agila, S. Barringer: Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys, J. Food Sci. 77, C1103–C1108 (2012)

    Article  CAS  Google Scholar 

  174. A.I. Carrapiso, B. Noseda, C. García, R. Reina, J. Sánchez del Pulgar, F. Devlieghere: SIFT-MS analysis of Iberian hams from pigs reared under different conditions, Meat Science 104, 8–13 (2015)

    Article  CAS  Google Scholar 

  175. N. Araghipour, J. Colineau, A. Koot, W. Akkermans, J.M.M. Rojas, J. Beauchamp, A. Wisthaler, T.D. Märk, G. Downey, C. Guillou, L. Mannina, S. van Ruth: Geographical origin classification of olive oils by PTR-MS, Food Chem. 108, 374–383 (2008)

    Article  CAS  Google Scholar 

  176. S. Yener, A. Romano, L. Cappellin, P.M. Granitto, E. Aprea, L. Navarini, T.D. Märk, F. Gasperi, F. Biasioli: Tracing coffee origin by direct injection headspace analysis with PTR/SRI-MS, Food Res. Int. 69, 235–243 (2015)

    Article  CAS  Google Scholar 

  177. H.H. Gan, B. Yan, R.S.T. Linforth, I.D. Fisk: Development and validation of an APCI-MS/GC–MS approach for the classification and prediction of Cheddar cheese maturity, Food Chem. 190, 442–447 (2016)

    Article  CAS  Google Scholar 

  178. K. Gkatzionis, R.S.T. Linforth, C.E.R. Dodd: Volatile profile of Stilton cheeses: Differences between zones within a cheese and dairies, Food Chem. 113, 506–512 (2009)

    Article  CAS  Google Scholar 

  179. H.-H. Gan, C. Soukoulis, I. Fisk: Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classification – A case study: Geographical provenance and cultivar classification of monovarietal clarified apple juices, Food Chem. 146, 149–156 (2014)

    Article  CAS  Google Scholar 

  180. N. Ashraf, R.S.T. Linforth, F. Bealin-Kelly, K. Smart, A.J. Taylor: Rapid analysis of selected beer volatiles by atmospheric pressure chemical ionisation-mass spectrometry, Int. J. Mass Spectrom. 294, 47–53 (2010)

    Article  CAS  Google Scholar 

  181. K. Taylor, C. Wick, H. Castada, K. Kent, W.J. Harper: Discrimination of Swiss cheese from 5 different factories by high impact volatile organic compound profiles determined by odor activity value using selected ion flow tube mass spectrometry and odor threshold, J. Food Sci. 78, C1509–C1515 (2013)

    Article  CAS  Google Scholar 

  182. R. West, K. Seetharaman, L.M. Duizer: Whole grain macaroni: Flavour interactions with sodium-reduced cheese sauce, Food Res. Int. 53, 149–155 (2013)

    Article  CAS  Google Scholar 

  183. V. Langford, J. Gray, B. Foulkes, P. Bray, M.J. McEwan: Application of selected ion flow tube-mass spectrometry to the characterization of monofloral New Zealand honeys, J. Agric. Food Chem. 60, 6806–6815 (2012)

    Article  CAS  Google Scholar 

  184. E. Aprea, F. Biasioli, G. Sani, C. Cantini, T.D. Mark, F. Gasperi: Proton transfer reaction-mass spectrometry (PTR-MS) headspace analysis for rapid detection of oxidative alteration of olive oil, J. Agric. Food Chem. 54, 7635–7640 (2006)

    Article  CAS  Google Scholar 

  185. W.J. Harper, A.K.-V. Nurdan, W. Cheryl, E. Karen, L. Vaughan: Analysis of volatile sulfur compounds in swiss cheese using selected ion flow tube mass spectrometry (SIFT-MS). In: Volatile Sulfur Compounds in Food, ed. by M.C. Qian, X. Fan, K. Mahattanatawee (American Chemical Society, Washington 2011)

    Google Scholar 

  186. D. Mayr, R. Margesin, F. Schinner, T.D. Märk: Detection of the spoiling of meat using PTR-MS, Int. J. Mass Spectrom. 223/224, 229–235 (2003)

    Article  Google Scholar 

  187. D. Mayr, R. Margesin, E. Klingsbichel, E. Hartungen, D. Jenewein, F. Schinner, T.D. Mark: Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry, Appl. Environ. Microbiol. 69, 4697–4705 (2003)

    Article  CAS  Google Scholar 

  188. D. Jaksch, R. Margesin, T. Mikoviny, J.D. Skalny, E. Hartungen, F. Schinner, N.J. Mason, T.D. Märk: The effect of ozone treatment on the microbial contamination of pork meat measured by detecting the emissions using PTR-MS and by enumeration of microorganisms, Int. J. Mass Spectrom. 239, 209–214 (2004)

    Article  CAS  Google Scholar 

  189. M. Bunge, N. Araghipour, T. Mikoviny, J. Dunkl, R. Schnitzhofer, A. Hansel, F. Schinner, A. Wisthaler, R. Margesin, T.D. Mark: On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry, Appl. Environ. Microbiol. 74, 2179–2186 (2008)

    Article  CAS  Google Scholar 

  190. P. Silcock, M. Alothman, E. Zardin, S. Heenan, C. Siefarth, P.J. Bremer, J. Beauchamp: Microbially induced changes in the volatile constituents of fresh chilled pasteurised milk during storage, Food Pack. Shelf Life 2, 81–90 (2014)

    Article  Google Scholar 

  191. J. Beauchamp, E. Zardin, P. Silcock, P.J. Bremer: Monitoring photooxidation-induced dynamic changes in the volatile composition of extended shelf life bovine milk by PTR-MS, J. Mass Spectrom. 49, 952–958 (2014)

    Article  CAS  Google Scholar 

  192. C. Soukoulis, E. Aprea, F. Biasioli, L. Cappellin, E. Schuhfried, T.D. Märk, F. Gasperi: Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk, Rapid Commun. Mass Spectrom. 24, 2127–2134 (2010)

    Article  CAS  Google Scholar 

  193. A. Olivares, K. Dryahina, P. Španěl, M. Flores: Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT-MS, Food Chem. 135, 1801–1808 (2012)

    Article  CAS  Google Scholar 

  194. V. Pothakos, C. Nyambi, B.-Y. Zhang, A. Papastergiadis, B. De Meulenaer, F. Devlieghere: Spoilage potential of psychrotrophic lactic acid bacteria (LAB) species: Leuconostoc gelidum subsp. gasicomitatum and Lactococcus piscium, on sweet bell pepper (SBP) simulation medium under different gas compositions, Int. J. Food Micobiol. 178, 120–129 (2014)

    Article  CAS  Google Scholar 

  195. B. Noseda, M.T. Islam, M. Eriksson, M. Heyndrickx, K. De Reu, H. Van Langenhove, F. Devlieghere: Microbiological spoilage of vacuum and modified atmosphere packaged Vietnamese Pangasius hypophthalmus fillets, Food Microbiol. 30, 408–419 (2012)

    Article  CAS  Google Scholar 

  196. B. Noseda, P. Ragaert, J. Dewulf, F. Devlieghere: Fast quantification of total volatile bases and other volatile microbial spoilage metabolites formed in cod fillets using SIFT-MS technology, Commun. Agric. Appl. Biol. Sci. 73, 185–188 (2008)

    CAS  Google Scholar 

  197. K. Broekaert, B. Noseda, M. Heyndrickx, G. Vlaemynck, F. Devlieghere: Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage, Int. J. Food Micobiol. 166, 487–493 (2013)

    Article  CAS  Google Scholar 

  198. B.M. Davis, M.J. McEwan: Determination of olive oil oxidative status by selected ion flow tube mass spectrometry, J. Agric. Food Chem. 55, 3334–3338 (2007)

    Article  CAS  Google Scholar 

  199. B. Davis, S. Senthilmohan, M. McEwan: Direct determination of antioxidants in whole olive oil using the SIFT-MS-TOSC assay, J. Am. Oil Chem. Soc. 88, 785–792 (2011)

    Article  CAS  Google Scholar 

  200. A. Buettner, J. Beauchamp: Chemical input – sensory output: Diverse modes of physiology-flavour interaction, Food Qual. Prefer. 21, 915–924 (2010)

    Article  Google Scholar 

  201. B. Schilling, T. Granier, G. Frater, A. Hanhart: Organic compounds and compositions having the ability to modulate fragrance compositions, Patent, Vol. PCT/CH2008/000128 (2008)

    Google Scholar 

  202. J.M. Davidson, R.S.T. Linforth, T.A. Hollowood, A.J. Taylor: Effect of sucrose on the perceived flavor intensity of chewing gum, J. Agric. Food Chem. 47, 4336–4340 (1999)

    Article  CAS  Google Scholar 

  203. J.B. Mei, G.A. Reineccius, W.B. Knighton, E.P. Grimsrud: Influence of strawberry yogurt composition on aroma release, J. Agric. Food Chem. 52, 6267–6270 (2004)

    Article  CAS  Google Scholar 

  204. R. Linforth, A.J. Taylor: Persistence of volatile compounds in the breath after their consumption in aqueous solutions, J. Agric. Food Chem. 48, 5419–5423 (2000)

    Article  CAS  Google Scholar 

  205. M. Repoux, E. Sémon, G. Feron, E. Guichard, H. Labouré: Inter-individual variability in aroma release during sweet mint consumption, Flavour Frag. J. 27, 40–46 (2012)

    Article  CAS  Google Scholar 

  206. V. Normand, S. Avison, A. Parker: Modeling the kinetics of flavour release during drinking, Chem. Senses 29, 235–245 (2004)

    Article  CAS  Google Scholar 

  207. S. Rabe, R.S. Linforth, U. Krings, A.J. Taylor, R.G. Berger: Volatile release from liquids: A comparison of in vivo APCI-MS, in-mouth headspace trapping and in vitro mouth model data, Chem. Senses 29, 163–173 (2004)

    Article  Google Scholar 

  208. L. Hewson, T. Hollowood, S. Chandra, J. Hort: Taste – Aroma interactions in a citrus flavoured model beverage system: Similarities and differences between acid and sugar type, Food Qual. Prefer. 19, 323–334 (2008)

    Article  Google Scholar 

  209. R.M.A.J. Ruijschop, M.J.M. Burgering, M.A. Jacobs, A.E.M. Boelrijk: Retro-nasal aroma release depends on both subject and product differences: A link to food intake regulation?, Chem. Senses 34, 395–403 (2009)

    Article  CAS  Google Scholar 

  210. R.M.A.J. Ruijschop, A.E.M. Boelrijk, C. de Graaf, M.S. Westerterp-Plantenga: Retronasal aroma release and satiation: A review, J. Agric. Food Chem. 57, 9888–9894 (2009)

    Article  CAS  Google Scholar 

  211. M. Mestres, R. Kieffer, A. Buettner: Release and perception of ethyl butanoate during and after consumption of whey protein gels: Relation between textural and physiological parameters, J. Agric. Food Chem. 54, 1814–1821 (2006)

    Article  CAS  Google Scholar 

  212. M. Mestres, N. Moran, A. Jordan, A. Buettner: Aroma release and retronasal perception during and after consumption of flavored whey protein gels with different textures. 1. in vivo release analysis, J. Agric. Food Chem. 53, 403–409 (2005)

    Article  CAS  Google Scholar 

  213. A. Saint-Eve, I. Déléris, E. Aubin, E. Semon, G. Feron, J.-M. Rabillier, D. Ibarra, E. Guichard, I. Souchon: Influence of composition (CO\({}_{2}\) and sugar) on aroma release and perception of mint-flavored carbonated beverages, J. Agric. Food Chem. 57, 5891–5898 (2009)

    Article  CAS  Google Scholar 

  214. A. Saint-Eve, I. Déléris, G. Feron, D. Ibarra, E. Guichard, I. Souchon: How trigeminal, taste and aroma perceptions are affected in mint-flavored carbonated beverages, Food Qual. Prefer. 21, 1026–1033 (2010)

    Article  Google Scholar 

  215. E. Aprea, F. Biasioli, F. Gasperi, T.D. Märk, S. van Ruth: In vivo monitoring of strawberry flavour release from model custards: effect of texture and oral processing, Flavour Frag. J. 21, 53–58 (2006)

    Article  CAS  Google Scholar 

  216. D. Mayr, T. Märk, W. Lindinger, H. Brevard, C. Yeretzian: Breath-by-breath analysis of banana aroma by proton transfer reaction mass spectrometry, Int. J. Mass Spectrom. 223/224, 743–756 (2003)

    Article  Google Scholar 

  217. M. Charles, A. Romano, S. Yener, M. Barnabà, L. Navarini, T.D. Märk, F. Biasoli, F. Gasperi: Understanding flavour perception of espresso coffee by the combination of a dynamic sensory method and in-vivo nosespace analysis, Food Res. Int. 69, 9–20 (2015)

    Article  CAS  Google Scholar 

  218. D. Frank, I. Appelqvist, U. Piyasiri, T.J. Wooster, C. Delahunty: Proton transfer reaction mass spectrometry and time intensity perceptual measurement of flavor release from lipid emulsions using trained human subjects, J. Agric. Food Chem. 59, 4891–4903 (2011)

    Article  CAS  Google Scholar 

  219. Y. Xu, S. Barringer: Comparison of volatile release in tomatillo and different varieties of tomato during chewing, J. Food Sci. 75, C352–C358 (2010)

    Article  CAS  Google Scholar 

  220. National Research Council Committee on Odours: Odors from Stationary and Mobile Sources (Office of publications, National Academy of Sciences, Washinghton 1979)

    Google Scholar 

  221. D. Shusterman: Critical review: The health significance of environmental odor pollution, Arch. Environ. Health 47, 76–87 (1992)

    Article  CAS  Google Scholar 

  222. J.A. Nicell: Assessment and regulation of odour impacts, Atmos. Environ. 43, 196–206 (2009)

    Article  CAS  Google Scholar 

  223. C. Van Thriel, E. Kiesswetter, M. Schäper, S.A. Juran, M. Blaszkewicz, S. Kleinbeck: Odor annoyance of environmental chemicals: Sensory and cognitive influences, J. Toxicol. Environ. Health A Curr, Issues 71, 776–785 (2008)

    Google Scholar 

  224. H.S. Rosenkranz, A.R. Cunningham: Environmental odors and health hazards, Sci. Total Environ. 313, 15–24 (2003)

    Article  CAS  Google Scholar 

  225. P. Dalton: Upper airway irritation, odor perception and health risk due to airborne chemicals, Toxicol. Lett. 140/141, 239–248 (2003)

    Article  CAS  Google Scholar 

  226. K. Sucker, R. Both, G. Winneke: Adverse effects of environmental odours: Reviewing studies on annoyance responses and symptom reporting, Water Sci. Technol. 44, 43–51 (2001)

    CAS  Google Scholar 

  227. R. Both, K. Sucker, G. Winneke, E. Koch: Odour intensity and hedonic tone-important parameters to describe odour annoyance to residents?, Water Sci. Technol. 50, 83–92 (2004)

    CAS  Google Scholar 

  228. A. Godayol, R.M. Marcé, F. Borrull, E. Anticõ, J.M. Sanchez: Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants, J. Sep. Sci. 36, 1621–1628 (2013)

    Article  CAS  Google Scholar 

  229. P. Bruno, M. Caselli, G. de Gennaro, M. Solito, M. Tutino: Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers, Waste Manage. 27, 539–544 (2007)

    Article  CAS  Google Scholar 

  230. K.K. Kleeberg, Y. Liu, M. Jans, M. Schlegelmilch, J. Streese, R. Stegmann: Development of a simple and sensitive method for the characterization of odorous waste gas emissions by means of solid-phase microextraction (SPME) and GC–MS/olfactometry, Waste Manage. 25, 872–879 (2005)

    Article  CAS  Google Scholar 

  231. J.A. Koziel, J.P. Spinhirne, J.D. Lloyd, D.B. Parker, D.W. Wright, F.W. Kuhrt: Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters, J. Air Waste Manage. Assoc. 55, 1147–1157 (2005)

    Article  CAS  Google Scholar 

  232. J. Campbell, M. Tuday, K.J. Chen: Comparison of four methods used to characterize odorous compounds, Symp. Air Qual. Meas. Methods Technol. (2005)

    Google Scholar 

  233. J. Beauchamp, J. Herbig, R. Gutmann, A. Hansel: On the use of Tedlar bags for breath-gas sampling and analysis, J. Breath Res. 2, 046001 (2008)

    Article  CAS  Google Scholar 

  234. US EPA: Compendium of methods for the determination of toxic organic compounds in ambient air (U.S. Environmental Protection Agency, Cincinnati 1999)

    Google Scholar 

  235. A. Ribes, G. Carrera, E. Gallego, X. Roca, M.J. Berenguer, X. Guardino: Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system, J. Chromatogr. A 1140, 44–55 (2007)

    Article  CAS  Google Scholar 

  236. P. Boeker, J. Leppert, P. Schulze Lammers: Comparison of odorant losses at the ppb-level from sampling bags of Nalophan and Tedlar and from adsorption tubes. In: Chemical Engineering Transactions, Vol. 40, ed. by R. del Rosso (AIDIC The Italian Association of Chemical Engineering, Milan 2014)

    Google Scholar 

  237. J.R. Kastner, K.C. Das: Wet scrubber analysis of volatile organic compound removal in the rendering industry, J. Air Waste Manage. Assoc. 52, 459–469 (2002)

    Article  CAS  Google Scholar 

  238. A.C. Romain, J. Nicolas: Monitoring an odour in the environment with an electronic nose: Requirements for the signal processing. In: Biologically Inspired Signal Processing for Chemical Sensing, ed. by A. Gutiérrez, S. Marco (Springer, Berlin, Heidelberg 2009)

    Google Scholar 

  239. R.H. Kagann, R.A. Hashmonay, A. Barnack, R. Jones, J. Smith: Measurement of chemical vapors emitted from industrial sources in an urban environment using open-path FTIR, Proc. Air Waste Manag. Assoc. Ann. Conf. Exhib., AWMA, Indianapolis (2004)

    Google Scholar 

  240. Y.C. Tsao, C.F. Wu, P.E. Chang, S.Y. Chen, Y.H. Hwang: Efficacy of using multiple open-path Fourier transform infrared (OP-FTIR) spectrometers in an odor emission episode investigation at a semiconductor manufacturing plant, Sci. Total Environ. 409, 3158–3165 (2011)

    Article  CAS  Google Scholar 

  241. M.H. Chen, C.S. Yuan, L.C. Wang: Source identification of VOCs in a petrochemical complex by applying open-path Fourier transform infrared spectrometry, Aerosol Air Qual. Res. 14, 1630–1638 (2014)

    CAS  Google Scholar 

  242. P. Wolkoff, C.K. Wilkins, P.A. Clausen, G.D. Nielsen: Organic compounds in office environments – Sensory irritation, odor, measurements and the role of reactive chemistry, Indoor Air 16, 7–19 (2006)

    Article  CAS  Google Scholar 

  243. J.E. Cone, D. Shusterman: Health effects of indoor odorants, Environ. Health Perspect. 95, 53–59 (1991)

    Article  CAS  Google Scholar 

  244. C.J. Weschler: Changes in indoor pollutants since the 1950s, Atmos. Environ. 43, 153–169 (2009)

    Article  CAS  Google Scholar 

  245. P. Wolkoff, P.A. Clausen, B. Jensen, G.D. Nielsen, C.K. Wilkins: Are we measuring the relevant indoor pollutants?, Indoor Air 7, 92–106 (1997)

    Article  CAS  Google Scholar 

  246. J.E. Cometto-Muniz, W.S. Cain: Sensory irritation: Relation to indoor air pollution, Ann. NY Acad. Sci. 641, 137–151 (1992)

    Article  CAS  Google Scholar 

  247. A.C. Rohr: The health significance of gas- and particle-phase terpene oxidation products: A review, Environ. Int. 60, 145–162 (2013)

    Article  CAS  Google Scholar 

  248. L. Morawska, A. Afshari, G.N. Bae, G. Buonanno, C.Y.H. Chao, O. Hänninen, W. Hofmann, C. Isaxon, E.R. Jayaratne, P. Pasanen, T. Salthammer, M. Waring, A. Wierzbicka: Indoor aerosols: From personal exposure to risk assessment, Indoor Air 23, 462–487 (2013)

    Article  CAS  Google Scholar 

  249. M.S. Waring: Secondary organic aerosol in residences: Predicting its fraction of fine particle mass and determinants of formation strength, Indoor Air 24, 376–389 (2014)

    Article  CAS  Google Scholar 

  250. P. Wolkoff, G.D. Nielsen: Organic compounds in indoor air – Their relevance for perceived indoor air quality?, Atmos. Environ. 35, 4407–4417 (2001)

    Article  CAS  Google Scholar 

  251. J.E. Cometto-Muñniz, S. Hernández: Odorous and pungent attributes of mixed and unmixed odorants, Percept. Psychophys. 47, 391–399 (1990)

    Article  Google Scholar 

  252. S. Inomata, H. Tanimoto, S. Kameyama, U. Tsunogai, H. Irie, Y. Kanaya, Z. Wang: Technical Note: Determination of formaldehyde mixing ratios in air with PTR-MS: Laboratory experiments and field measurements, Atmos. Chem. Phys. 8, 273–284 (2008)

    Article  CAS  Google Scholar 

  253. A. Wisthaler, E.C. Apel, J. Bossmeyer, A. Hansel, W. Junkermann, R. Koppmann, R. Meier, K. Müller, S.J. Solomon, R. Steinbrecher, R. Tillmann, T. Brauers: Technical note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys. 8, 2189–2200 (2008)

    Article  CAS  Google Scholar 

  254. P. Wolkoff, P.A. Clausen, C.K. Wilkins, K.S. Hougaard, G.D. Nielsen: Formation of strong airway irritants in a model mixture of \((+)-\alpha\)-pinene/ozone, Atmos. Environ. 33, 693–698 (1999)

    Article  CAS  Google Scholar 

  255. W.W. Nazaroff, C.J. Weschler: Cleaning products and air fresheners: Exposure to primary and secondary air pollutants, Atmos. Environ. 38, 2841–2865 (2004)

    Article  CAS  Google Scholar 

  256. P. Wolkoff: Indoor air pollutants in office environments: Assessment of comfort, health, and performance, Int. J. Hyg. Environ. Health 216, 371–394 (2013)

    Article  CAS  Google Scholar 

  257. A. Lee, A.H. Goldstein, M.D. Keywood, S. Gao, V. Varutbangkul, R. Bahreini, N.L. Ng, R.C. Flagan, J.H. Seinfeld: Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes, J. Geophys. Res.-Atmos. 111(D7) (2006)

    Google Scholar 

  258. Y. Ishizuka, M. Tokumura, A. Mizukoshi, M. Noguchi, Y. Yanagisawa: Measurement of secondary products during oxidation reactions of terpenes and ozone based on the PTR-MS analysis: Effects of coexistent carbonyl compounds, Int. J. Environ. Res. Public Heal. 7, 3853–3870 (2010)

    Article  CAS  Google Scholar 

  259. A. van Eijck, T. Opatz, D. Taraborrelli, R. Sander, T. Hoffmann: New tracer compounds for secondary organic aerosol formation from β-caryophyllene oxidation, Atmos. Environ. 80, 122–130 (2013)

    Article  CAS  Google Scholar 

  260. N. Schoon, C. Amelynck, L. Vereecken, E. Arijs: A selected ion flow tube study of the reactions of H\({}_{3}\)O\(+\), NO\({}^{+}\) and O\({}_{2}^{+}\) with a series of monoterpenes, Int. J. Mass Spectrom. 229, 231–240 (2003)

    Article  CAS  Google Scholar 

  261. F. Mayer, K. Breuer, K. Sedlbauer: Material and indoor odors and odorants. In: Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation, 2nd Edition, ed. by T. Salthammer, E. Uhde (Wiley, Weinheim 2009)

    Google Scholar 

  262. Y. Zhang, J. Mo: Real-time monitoring of indoor organic compounds. In: Organic Indoor Air Pollutants: Occurrence, Measurement, Evaluation: 2nd Edition, ed. by T. Salthammer, E. Uhde (Wiley, Weinheim 2009)

    Google Scholar 

  263. K.H. Han, J.S. Zhang, P. Wargocki, H.N. Knudsen, B. Guo: Determination of material emission signatures by PTR-MS and their correlations with odor assessments by human subjects, Indoor Air 20, 341–354 (2010)

    Article  CAS  Google Scholar 

  264. T. Schripp, S. Etienne, C. Fauck, F. Fuhrmann, L. Märk, T. Salthammer: Application of proton-transfer-reaction-mass-spectrometry for indoor air quality research, Indoor Air 24, 178–189 (2014)

    Article  CAS  Google Scholar 

  265. A. Manoukian, B. Temime-Roussel, M. Nicolas, F. Maupetit, E. Quivet, H. Wortham: Characteristics of emissions of air pollutants from incense and candle burning in an experimental house, 12th Int. Conf. Indoor Air Qual. Clim., Vol. 1 (2011) pp. 764–769

    Google Scholar 

  266. C.-Y. Jiang, S.-H. Sun, Q.-D. Zhang, Y.-P. Ma, H. Wang, J.-X. Zhang, Y.-L. Zong, J.-P. Xie: Application of direct atmospheric pressure chemical ionization tandem mass spectrometry for on-line analysis of gas phase of cigarette mainstream smoke, Int. J. Mass Spectrom. 353, 42–48 (2013)

    Article  CAS  Google Scholar 

  267. A. Feilberg, N. Dorno, T. Nyord: Odour emissions following land spreading of animal slurry assessed by proton-transfer-reaction mass spectrometry (PTR-MS), Chem. Eng. Trans. 23, 111–116 (2010)

    Google Scholar 

  268. S. Sironi, L. Capelli, P. Céntola, R. Del Rosso, S. Pierucci: Odour impact assessment by means of dynamic olfactometry, dispersion modelling and social participation, Atmos. Environ. 44, 354–360 (2010)

    Article  CAS  Google Scholar 

  269. S. Revah, J. Morgan-Sagastume: Methods of odor and VOC control. In: Biotechnology for Odor and Air Pollution Control, ed. by Z. Shareefdeen, A. Singh (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  270. J.-Q. Ni, W.P. Robarge, C. Xiao, A.J. Heber: Volatile organic compounds at swine facilities: A critical review, Chemosphere 89, 769–788 (2012)

    Article  CAS  Google Scholar 

  271. A. Feilberg, T. Nyord, M.N. Hansen, S. Lindholst: Chemical evaluation of odor reduction by soil injection of animal manure, J. Environ. Qual. 40, 1674–1682 (2011)

    Article  CAS  Google Scholar 

  272. A. Feilberg, D. Liu, A.P.S. Adamsen, M.J. Hansen, K.E.N. Jonassen: Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry, Environ. Sci. Technol. 44, 5894–5900 (2010)

    Article  CAS  Google Scholar 

  273. M.J. Hansen, D. Liu, L.B. Guldberg, A. Feilberg: Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production, J. Agric. Food Chem. 60, 2599–2606 (2012)

    Article  CAS  Google Scholar 

  274. D. Liu, A. Feilberg, A.P.S. Adamsen, K.E.N. Jonassen: The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS, Atmos. Environ. 45, 3786–3793 (2011)

    Article  CAS  Google Scholar 

  275. E. House: Refinement of PTR-MS Methodology and Application to the Measurement of (O)VOCS from Cattle Slurry, Ph.D. Thesis (The University of Edinburgh, Edinburgh 2009)

    Google Scholar 

  276. S.L. Shaw, F.M. Mitloehner, W. Jackson, E.J. DePeters, J.G. Fadel, P.H. Robinson, R. Holzinger, A.H. Goldstein: Volatile organic compound emissions from dairy cows and their waste as measured by proton-transfer-reaction mass spectrometry, Environ. Sci. Technol. 41, 1310–1316 (2007)

    Article  CAS  Google Scholar 

  277. D. Smith, P. Španěl, J.B. Jones: Analysis of volatile emissions from porcine faeces and urine using selected ion flow tube mass spectrometry, Bioresource Technol. 75, 27–33 (2000)

    Article  CAS  Google Scholar 

  278. F. Biasioli, E. Aprea, F. Gasperi, T.D. Märk: Measuring odour emission and biofilter efficiency in composting plants by proton transfer reaction-mass spectrometry, Water Sci. Technol. 59, 1263–1269 (2009)

    Article  CAS  Google Scholar 

  279. F. Biasioli, F. Gasperi, G. Odorizzi, E. Aprea, D. Mott, F. Marini, G. Autiero, G. Rotondo, T.D. Märk: PTR-MS monitoring of odour emissions from composting plants, Int. J. Mass Spectrom. 239, 103–109 (2004)

    Article  CAS  Google Scholar 

  280. P.M. Heynderickx, K. Van Huffel, J. Dewulf, H. Van Langenhove: Application of similarity coefficients to SIFT-MS data for livestock emission characterization, Biosyst. Eng. 114, 44–54 (2013)

    Article  Google Scholar 

  281. P.M. Heynderickx, K. Van Huffel, J. Dewulf, H.V. Langenhove: SIFT-MS for livestock emission characterization: Application of similarity coefficients, Chem. Eng. Trans. 30, 157–162 (2012)

    Google Scholar 

  282. L. Cappellin, F. Loreto, E. Aprea, A. Romano, J. Sánchez del Pulgar, F. Gasperi, F. Biasioli: PTR-MS in Italy: A multipurpose sensor with applications in environmental, agri-food and health science, Sensors 13, 11923–11955 (2013)

    Article  CAS  Google Scholar 

  283. C. Amelynck, N. Schoon, F. Dhooghe: SIFT ion chemistry studies underpinning the measurement of volatile organic compound emissions by vegetation, Curr. Anal. Chem. 9, 540–549 (2013)

    Article  CAS  Google Scholar 

  284. G.J. Francis, P.F. Wilson, D.B. Milligan, V.S. Langford, M.J. McEwan: GeoVOC: A SIFT-MS method for the analysis of small linear hydrocarbons of relevance to oil exploration, Int. J. Mass Spectrom. 268, 38–46 (2007)

    Article  CAS  Google Scholar 

  285. A. Amann, B. de Lacy Costello, W. Miekisch, J. Schubert, B. Buszewski, J. Pleil, N. Ratcliffe, T. Risby: The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva, J. Breath Res. 8, 034001 (2014)

    Article  CAS  Google Scholar 

  286. B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, N.M. Ratcliffe: A review of the volatiles from the healthy human body, J. Breath Res. 8, 014001 (2014)

    Article  CAS  Google Scholar 

  287. A. Amann, W. Miekisch, J. Schubert, B. Buszewski, T. Ligor, T. Jezierski, J. Pleil, T. Risby: Analysis of exhaled breath for disease detection, Annu. Rev. Anal. Chem. 7, 455–482 (2014)

    Article  CAS  Google Scholar 

  288. J.D. Beauchamp, J.D. Pleil: Breath: An often overlooked medium in biomarker discovery. In: Biomarker Validation. Technological, Clinical and Commercial Aspects, ed. by H. Seitz, S. Schumacher (Wiley, Weinheim 2015)

    Google Scholar 

  289. P.J. Martínez-Lozano: Fernández de la Mora: Direct analysis of fatty acid vapors in breath by electrospray ionization and atmospheric pressure ionization-mass spectrometry, Anal. Chem. 80, 8210–8215 (2008)

    Article  CAS  Google Scholar 

  290. V. Kapishon, G.K. Koyanagi, V. Blagojevic, D.K. Bohme: Atmospheric pressure chemical ionization mass spectrometry of pyridine and isoprene: Potential breath exposure and disease biomarkers, J. Breath Res. 7, 026005 (2013)

    Article  CAS  Google Scholar 

  291. G.K. Koyanagi, V. Kapishon, V. Blagojevic, D.K. Bohme: Monitoring hydrogen sulfide in simulated breath of anesthetized subjects, Int. J. Mass Spectrom. 354/355, 139–143 (2013)

    Article  CAS  Google Scholar 

  292. C. Turner, P. Španěl, D. Smith: A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS, Physiol. Meas. 27, 637 (2006)

    Article  Google Scholar 

  293. D. Smith, P. Španěl, B. Enderby, W. Lenney, C. Turner, S.J. Davies: Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7–18 years studied using SIFT-MS, J. Breath Res. 4, 017101 (2010)

    Article  CAS  Google Scholar 

  294. C. Turner, P. Španěl, D. Smith: A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry, Rapid Commun. Mass Spectrom. 20, 61–68 (2006)

    Article  CAS  Google Scholar 

  295. J. Huang, S. Kumar, G.B. Hanna: Investigation of C\({}_{3}\)–C\({}_{10}\) aldehydes in the exhaled breath of healthy subjects using selected ion flow tube-mass spectrometry (SIFT-MS), J. Breath Res. 8, 037104 (2014)

    Article  CAS  Google Scholar 

  296. D. Smith, A. Pysanenko, P. Španěl: The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 23, 1419–1425 (2009)

    Article  CAS  Google Scholar 

  297. K. Dryahina, P. Spanel, V. Pospisilova, K. Sovova, L. Hrdlicka, N. Machkova, M. Lukas, D. Smith: Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 27, 1983–1992 (2013)

    Article  CAS  Google Scholar 

  298. P.F. Wilson, C.G. Freeman, M.J. McEwan, D.B. Milligan, R.A. Allardyce, G.M. Shaw: In situ analysis of solvents on breath and blood: A selected ion flow tube mass spectrometric study, Rapid Commun. Mass Spectrom. 16, 427–432 (2002)

    Article  CAS  Google Scholar 

  299. M. Storer, J. Salmond, K.N. Dirks, S. Kingham, M. Epton: Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air–pilot study, J. Breath Res. 8, 037106 (2014)

    Article  CAS  Google Scholar 

  300. J. King, A. Kupferthaler, B. Frauscher, H. Hackner, K. Unterkofler, G. Teschl, H. Hinterhuber, A. Amann, B. Högl: Measurement of endogenous acetone and isoprene in exhaled breath during sleep, Physiol. Meas. 33, 413 (2012)

    Article  Google Scholar 

  301. J. King, A. Kupferthaler, K. Unterkofler, H. Koc, S. Teschl, G. Teschl, W. Miekisch, J. Schubert, H. Hinterhuber, A. Amann: Isoprene and acetone concentration profiles during exercise on an ergometer, J. Breath Res. 3, 027006 (2009)

    Article  CAS  Google Scholar 

  302. J. King, P. Mochalski, A. Kupferthaler, K. Unterkofler, H. Koc, W. Filipiak, S. Teschl, H. Hinterhuber, A. Amann: Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study, Physiol. Meas. 31, 1169 (2010)

    Google Scholar 

  303. J. King, K. Unterkofler, G. Teschl, S. Teschl, P. Mochalski, H. Koç, H. Hinterhuber, A. Amann: A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds, J. Breath Res. 6, 016005 (2012)

    Article  CAS  Google Scholar 

  304. A. Jordan, A. Hansel, R. Holzinger, W. Lindinger: Acetonitrile and benzene in the breath of smokers and non-smokers investigated by proton transfer reaction mass spectrometry (PTR-MS), Int. J. Mass Spectrom. Ion Proc. 148, L1–L3 (1995)

    Article  CAS  Google Scholar 

  305. T. Karl, A. Jordan, A. Hansel, R. Holzinger, W. Lindinger: Benzene and acetontrile in smokers and nonsmokers, Ber. Nat.-Med. Verein Innsbruck 85, 7–15 (1998)

    Google Scholar 

  306. I. Kushch, K. Schwarz, L. Schwentner, B. Baumann, A. Dzien, A. Schmid, K. Unterkofler, G. Gastl, P. Spanel, D. Smith, A. Amann: Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath versus non-smokers as determined in a pilot study using PTR-MS, J. Breath Res. 2, 026002 (2008)

    Article  CAS  Google Scholar 

  307. J. Beauchamp, F. Kirsch, A. Buettner: Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol-containing capsules, J. Breath Res. 4, 026006 (2010)

    Article  CAS  Google Scholar 

  308. I. Kohl, J. Beauchamp, F. Cakar-Beck, J. Herbig, J. Dunkl, O. Tietje, M. Tiefenthaler, C. Boesmueller, A. Wisthaler, M. Breitenlechner, S. Langebner, A. Zabernigg, F. Reinstaller, K. Winkler, R. Gutmann, A. Hansel: First observation of a potential non-invasive breath gas biomarker for kidney function, J. Breath Res. 7, 017110 (2013)

    Article  CAS  Google Scholar 

  309. R. Fernández del Río, M.E. O’Hara, A. Holt, P. Pemberton, T. Shah, T. Whitehouse, C.A. Mayhew: Volatile biomarkers in breath associated with liver cirrhosis – comparisons of pre- and post-liver transplant breath samples, EBioMedicine 2(9), 1243–1250 (2015)

    Article  Google Scholar 

  310. F. Morisco, E. Aprea, V. Lembo, V. Fogliano, P. Vitaglione, G. Mazzone, L. Cappellin, F. Gasperi, S. Masone, G.D. De Palma, R. Marmo, N. Caporaso, F. Biasioli: Rapid ’breath-print’ of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study, PLoS ONE 8, e59658 (2013)

    Article  CAS  Google Scholar 

  311. E. Aprea, L. Cappellin, F. Gasperi, F. Morisco, V. Lembo, A. Rispo, R. Tortora, P. Vitaglione, N. Caporaso, F. Biasioli: Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet, J. Chromatogr. B 966, 208–213 (2014)

    Article  CAS  Google Scholar 

  312. S. Halbritter, M. Fedrigo, V. Höllriegl, W. Szymczak, J.M. Maier, A.-G. Ziegler, M. Hummel: Human breath gas analysis in the screening of gestational diabetes mellitus, Diabetes Technol. Ther. 14, 917–925 (2012)

    Article  CAS  Google Scholar 

  313. M.E. O’Hara, S. O’Hehir, S. Green, C.A. Mayhew: Development of a protocol to measure volatile organic compounds in human breath: A comparison of rebreathing and on-line single exhalations using proton transfer reaction mass spectrometry, Physiol. Meas. 29, 309–330 (2008)

    Article  Google Scholar 

  314. B. Thekedar, U. Oeh, W. Szymczak, C. Hoeschen, H.G. Paretzke: Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations, J. Breath Res. 5, 016001 (2011)

    Article  CAS  Google Scholar 

  315. B. Thekedar, W. Szymczak, V. Hollriegl, C. Hoeschen, U. Oeh: Investigations on the variability of breath gas sampling using PTR-MS, J. Breath Res. 3, 027007 (2009)

    Article  CAS  Google Scholar 

  316. M.M.L. Steeghs, S.M. Cristescu, F.J.M. Harren: The suitability of Tedlar bags for breath sampling in medical diagnostic research, Physiol. Meas. 28, 73 (2007)

    Article  Google Scholar 

  317. T. Wang, A. Pysanenko, K. Dryahina, P. Spanel, D. Smith: Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity, J. Breath Res. 3, 037013 (2008)

    Article  CAS  Google Scholar 

  318. P. Čáp, K. Dryahina, F. Pehal, P. Španěl: Selected ion flow tube mass spectrometry of exhaled breath condensate headspace, Rapid Commun. Mass Spectrom. 22, 2844–2850 (2008)

    Article  CAS  Google Scholar 

  319. J. Herbig, A. Amann: Proton transfer reaction-mass spectrometry applications in medical research, J. Breath Res. 3, 020201 (2009)

    Article  Google Scholar 

  320. P. Spanel, D. Smith: Selected ion flow tube mass spectrometry, SIFT-MS, Curr. Anal. Chem. 9, 523–524 (2013)

    Article  CAS  Google Scholar 

  321. Y.P. Krespi, M.G. Shrime, A. Kacker: The relationship between oral malodor and volatile sulfur compound – Producing bacteria, Otolaryngol. – Head Neck Surg. 135, 671–676 (2006)

    Article  Google Scholar 

  322. J. Greenman, P. Lenton, R. Seemann, S. Nachnani: Organoleptic assessment of halitosis for dental professionals – General recommendations, J. Breath Res. 8, 017102 (2014)

    Article  CAS  Google Scholar 

  323. B.M. Ross, A. Esarik: The analysis of oral air by selected ion flow tube mass spectrometry using indole and methylindole as examples. In: Volatile Biomarkers, ed. by A. Amann, D. Smith (Elsevier, Boston 2013)

    Google Scholar 

  324. B.M. Ross, S. Babay, C. Ladouceur: The use of selected ion flow tube mass spectrometry to detect and quantify polyamines in headspace gas and oral air, Rapid Commun. Mass Spectrom. 23, 3973–3982 (2009)

    Article  CAS  Google Scholar 

  325. S. Saad, K. Hewett, J. Greenman: Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model, J. Breath Res. 6, 016001 (2012)

    Article  CAS  Google Scholar 

  326. D. Smith, T.S. Wang, A. Pysanenko, P. Španěl: A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity, Rapid Commun. Mass Spectrom. 22, 783–789 (2008)

    Article  CAS  Google Scholar 

  327. A. Pysanenko, P. Španěl, D. Smith: A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry, J. Breath Res. 2, 046004 (2008)

    Article  CAS  Google Scholar 

  328. A. Hansanugrum, S.A. Barringer: Effect of milk on the deodorization of malodorous breath after garlic ingestion, J. Food Sci. 75, C549–C558 (2010)

    Article  CAS  Google Scholar 

  329. R. Munch, S.A. Barringer: Deodorization of garlic breath volatiles by food and food components, J. Food Sci. 79, C526–C533 (2014)

    Article  CAS  Google Scholar 

  330. J. Taucher, A. Hansel, A. Jordan, W. Lindinger: Analysis of compounds in human breath after ingestion of garlic using proton-transfer-reaction mass spectrometry, J. Agric. Food Chem. 44, 3778–3782 (1996)

    Article  CAS  Google Scholar 

  331. E.V. Hartungen, A. Wisthaler, T. Mikoviny, D. Jaksch, E. Boscaini, P.J. Dunphy, T.D. Märk: Proton-transfer-reaction mass spectrometry (PTR-MS) of carboxylic acids: Determination of Henry’s law constants and axillary odour investigations, Int. J. Mass Spectrom. 239, 243–248 (2004)

    Article  CAS  Google Scholar 

  332. R.H. McQueen, R.M. Laing, C.M. Delahunty, H.J.L. Brooks, B.E. Niven: Retention of axillary odour on apparel fabrics, J. Text. Inst. 99, 515–523 (2008)

    Article  CAS  Google Scholar 

  333. L. Yao, R.M. Laing, P.J. Bremer, P.J. Silcock, M.J. Leus: Measuring textile adsorption of body odor compounds using proton-transfer-reaction mass spectrometry, Text. Res. J. 85(17), 1817–1829 (2015)

    Article  CAS  Google Scholar 

  334. A. Wisthaler, C.J. Weschler: Reactions of ozone with human skin lipids: Sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air, P. Natl. Acad. Sci. USA 107, 6568–6575 (2010)

    Article  CAS  Google Scholar 

  335. M.M.L. Steeghs, B.W.M. Moeskops, K. van Swam, S.M. Cristescu, P.T.J. Scheepers, F.J.M. Harren: On-line monitoring of UV-induced lipid peroxidation products from human skin in vivo using proton-transfer reaction mass spectrometry, Int. J. Mass Spectrom. 253, 58–64 (2006)

    Article  CAS  Google Scholar 

  336. C. Turner, B. Parekh, C. Walton, P. Španěl, D. Smith, M. Evans: An exploratory comparative study of volatile compounds in exhaled breath and emitted by skin using selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 22, 526–532 (2008)

    Article  CAS  Google Scholar 

  337. P.J. Martínez-Lozano: Fernández de la Mora: On-line detection of human skin vapors, J. Am. Soc. Mass Spectr. 20, 1060–1063 (2009)

    Article  CAS  Google Scholar 

  338. M.E. O’Hara, T.H. Clutton-Brock, S. Green, C.A. Mayhew: Endogenous volatile organic compounds in breath and blood of healthy volunteers: examining breath analysis as a surrogate for blood measurements, J. Breath Res. 3, 027005 (2009)

    Article  CAS  Google Scholar 

  339. M.E. O’Hara, T.H. Clutton-Brock, S. Green, S. O’Hehir, C.A. Mayhew: Mass spectrometric investigations to obtain the first direct comparisons of endogenous breath and blood volatile organic compound concentrations in healthy volunteers, Int. J. Mass Spectrom. 281, 92–96 (2009)

    Article  CAS  Google Scholar 

  340. S.M. Abbott, J.B. Elder, P. Spanel, D. Smith: Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry, Int. J. Mass Spectrom. 228, 655–665 (2003)

    Article  CAS  Google Scholar 

  341. A. Pysanenko, T. Wang, P. Španěl, D. Smith: Acetone, butanone, pentanone, hexanone and heptanone in the headspace of aqueous solution and urine studied by selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 23, 1097–1104 (2009)

    Article  CAS  Google Scholar 

  342. T. Wang, P. Španěl, D. Smith: Selected ion flow tube mass spectrometry of 3-hydroxybutyric acid, acetone and other ketones in the headspace of aqueous solution and urine, Int. J. Mass Spectrom. 272, 78–85 (2008)

    Article  CAS  Google Scholar 

  343. J.Z. Huang, S. Kumar, N. Abbassi-Ghadi, P. Španěl, D. Smith, G.B. Hanna: Selected ion flow tube mass spectrometry analysis of volatile metabolites in urine headspace for the profiling of gastro-esophageal cancer, Anal. Chem. 85, 3409–3416 (2013)

    Article  CAS  Google Scholar 

  344. G.-M. Pinggera, P. Lirk, F. Bodogri, R. Herwig, G. Steckel-Berger, G. Bartsch, J. Rieder: Urinary acetonitrile concentrations correlate with recent smoking behaviour, BJU Int. 95, 306–309 (2005)

    Article  CAS  Google Scholar 

  345. D. Samudrala, B. Geurts, P. Brown, E. Szymańska, J. Mandon, J. Jansen, L. Buydens, F.M. Harren, S. Cristescu: Changes in urine headspace composition as an effect of strenuous walking, Metabolomics 11, 1656–1666 (2015)

    Article  CAS  Google Scholar 

  346. S. Stadler, P.-H. Stefanuto, M. Brokl, S.L. Forbes, J.-F. Focant: Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography – Time-of-flight mass spectrometry, Anal. Chem. 85, 998–1005 (2012)

    Article  CAS  Google Scholar 

  347. M. Statheropoulos, C. Spiliopoulou, A. Agapiou: A study of volatile organic compounds evolved from the decaying human body, Forensic Sci. Int. 153, 147–155 (2005)

    Article  CAS  Google Scholar 

  348. P.H. Stefanuto, K. Perrault, S. Stadler, R. Pesesse, M. Brokl, S. Forbes, J.F. Focant: Reading cadaveric decomposition chemistry with a new pair of glasses, ChemPlusChem 79, 786–789 (2014)

    Article  CAS  Google Scholar 

  349. J. Dekeirsschieter, P.H. Stefanuto, C. Brasseur, E. Haubruge, J.F. Focant: Enhanced characterization of the smell of death by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS), PLoS ONE 7, e39005 (2012)

    Article  CAS  Google Scholar 

  350. A.A. Vass: Odor mortis, Forensic Sci. Int. 222, 234–241 (2012)

    Article  Google Scholar 

  351. A.A. Vass, R.R. Smith, C.V. Thompson, M.N. Burnett, N. Dulgerian, B.A. Eckenrode: Odor analysis of decomposing buried human remains, J. Forensic Sci. 53, 384–391 (2008)

    Article  CAS  Google Scholar 

  352. M. Statheropoulos, E. Sianos, A. Agapiou, A. Georgiadou, A. Pappa, N. Tzamtzis, H. Giotaki, C. Papageorgiou, D. Kolostoumbis: Preliminary investigation of using volatile organic compounds from human expired air, blood and urine for locating entrapped people in earthquakes, J. Chromatogr. B 822, 112–117 (2005)

    Article  CAS  Google Scholar 

  353. A. Agapiou, K. Mikedi, S. Karma, Z.K. Giotaki, D. Kolostoumbis, C. Papageorgiou, E. Zorba, C. Spiliopoulou, A. Amann, M. Statheropoulos: Physiology and biochemistry of human subjects during entrapment, J. Breath Res. 7, 016004 (2013)

    Article  CAS  Google Scholar 

  354. S. Stadler, P.H. Stefanuto, J.D. Byer, M. Brokl, S. Forbes, J.F. Focant: Analysis of synthetic canine training aids by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, J. Chromatogr. A 1255, 202–206 (2012)

    Article  CAS  Google Scholar 

  355. C.A. Tipple, P.T. Caldwell, B.M. Kile, D.J. Beussman, B. Rushing, N.J. Mitchell, C.J. Whitchurch, M. Grime, R. Stockham, B.A. Eckenrode: Comprehensive characterization of commercially available canine training aids, Forensic Sci. Int. 242, 242–254 (2014)

    Article  Google Scholar 

  356. J. Rudnicka, P. Mochalski, A. Agapiou, M. Statheropoulos, A. Amann, B. Buszewski: Application of ion mobility spectrometry for the detection of human urine, Anal Bioanal Chem 398, 2031–2038 (2010)

    Article  CAS  Google Scholar 

  357. R. Huo, A. Agapiou, V. Bocos-Bintintan, L.J. Brown, C. Burns, C.S. Creaser, N.A. Devenport, B. Gao-Lau, C. Guallar-Hoyas, L. Hildebrand, A. Malkar, H.J. Martin, V.H. Moll, P. Patel, A. Ratiu, J.C. Reynolds, S. Sielemann, R. Slodzynski, M. Statheropoulos, M.A. Turner, W. Vautz, V.E. Wright, C.L. Thomas: The trapped human experiment, J. Breath Res. 5, 046006 (2011)

    Article  CAS  Google Scholar 

  358. V. Ruzsanyi, P. Mochalski, A. Schmid, H. Wiesenhofer, M. Klieber, H. Hinterhuber, A. Amann: Ion mobility spectrometry for detection of skin volatiles, J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 911, 84–92 (2012)

    Article  CAS  Google Scholar 

  359. P. Mochalski, K. Unterkofler, H. Hinterhuber, A. Amann: Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO\({}^{+}\) mode, Anal. Chem. 86, 3915–3923 (2014)

    Article  CAS  Google Scholar 

  360. L. Sichu: Recent developments in human odor detection technologies, J. Forensic. Sci. Crim. 1, 1–12 (2014)

    Google Scholar 

  361. R.L. Doty, P. Shaman, C.P. Kimmelman, M.S. Dann: University of Pennsylvania smell identification test: A rapid quantitative olfactory function test for the clinic, Laryngoscope 94, 176–178 (1984)

    Article  CAS  Google Scholar 

  362. W.S. Cain, R.B. Goodspeed, J.F. Gent, G. Leonard: Evaluation of olfactory dysfunction in the connecticut chemosensory clinical research center, Laryngoscope 98, 83–88 (1988)

    Article  CAS  Google Scholar 

  363. T. Hummel, B. Sekinger, S.R. Wolf, E. Pauli, G. Kobal: ’Sniffin’ Sticks’: Olfactory performance assessed by the combined testing of odour identification, odor discrimination and olfactory threshold, Chem. Senses 22, 39–52 (1997)

    Article  CAS  Google Scholar 

  364. J. Albrecht, A. Anzinger, R. Kopietz, V. Schopf, A.M. Kleemann, O. Pollatos, M. Wiesmann: Test-retest reliability of the olfactory detection threshold test of the Sniffin’ Sticks, Chem. Senses 33, 461–467 (2008)

    Article  Google Scholar 

  365. G. Kobal, L. Klimek, M. Wolfensberger, H. Gudziol, A. Temmel, C.M. Owen, H. Seeber, E. Pauli, T. Hummel: Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds, Eur. Arch. Oto.-Rhino.-L. 257, 205–211 (2000)

    Article  CAS  Google Scholar 

  366. E.J. Haberland, A. Kraus, K. Pilchowski, H. Gudziol, W. Lorenz, M. Bloching: Kinetics of N-butanol release from the tip of Sniffin’ Sticks, 76. Jahresversammlung der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie e.V., Erfurt (2005)

    Google Scholar 

  367. M. Denzer, S. Gailer, D. Kern, L.P. Schumm, N. Thuerauf, J. Kornhuber, A. Buettner, J. Beauchamp: Quantitative validation of the n-butanol Sniffin’ Sticks threshold pens, Chem. Percept. 7, 91–101 (2014)

    Article  CAS  Google Scholar 

  368. G. Kobal, C. Hummel: Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa, Electroen. Clin. Neuro. 71, 241–250 (1988)

    Article  CAS  Google Scholar 

  369. J.N. Lundström, A.R. Gordon, E.C. Alden, S. Boesveldt, J. Albrecht: Methods for building an inexpensive computer-controlled olfactometer for temporally-precise experiments, Int. J. Psychophysiol. 78, 179–189 (2010)

    Article  Google Scholar 

  370. J. Beauchamp, J. Frasnelli, A. Buettner, M. Scheibe, A. Hansel, T. Hummel: Characterization of an olfactometer by proton-transfer-reaction mass spectrometry, Meas. Sci. Technol. 21, 025801 (2010)

    Article  CAS  Google Scholar 

  371. C. Walgraeve, K. Van Huffel, J. Bruneel, H. Van Langenhove: Evaluation of the performance of field olfactometers by selected ion flow tube mass spectrometry, Biosyst. Eng. 137, 84–94 (2015)

    Article  Google Scholar 

  372. P.M.T. de Kok, A.E.M. Boelrijk, C. de Jong, M.J.M. Burgering, M.A. Jacobs: MS-nose flavour release profile mimic using an olcactometer. In: Flavour Science: Recent Advances and Trends, Developments in Food Science, Vol. 43, ed. by W.L.P. Bredie, M.A. Petersen (Elsevier, Amsterdam 2006)

    Google Scholar 

  373. A.J. Taylor, S. Skelton, L.L. Jones: Measuring odor delivery for sensory testing, Flav. Sci. Proc. XIII Weurman Flav. Res. Symp., Zaragoza (2014)

    Google Scholar 

  374. M. Scheibe, T. Zahnert, T. Hummel: Topographical differences in the trigeminal sensitivity of the human nasal mucosa, Neuroreport 17, 1417–1420 (2006)

    Article  Google Scholar 

  375. S. Heilmann, T. Hummel: A new method for comparing orthonasal and retronasal olfaction, Behav. Neurosci. 118, 412–419 (2004)

    Article  Google Scholar 

  376. J. Frasnelli, S. van Ruth, I. Kriukova, T. Hummel: Intranasal concentrations of orally administered flavors, Chem. Senses 30, 575–582 (2005)

    Article  Google Scholar 

  377. A. Buettner, S. Otto, A. Beer, M. Mestres, P. Schieberle, T. Hummel: Dynamics of retronasal aroma perception during consumption: Cross-linking on-line breath analysis with medico-analytical tools to elucidate a complex process, Food Chem. 108, 1234–1246 (2008)

    Article  CAS  Google Scholar 

  378. A. Buettner, A. Beer, C. Hannig, M. Settles: Observation of the swallowing process by application of videofluoroscopy and real-time magnetic resonance imaging-consequences for retronasal aroma stimulation, Chem. Senses 26, 1211–1219 (2001)

    Article  CAS  Google Scholar 

  379. J. Beauchamp, M. Scheibe, T. Hummel, A. Buettner: Intranasal odorant concentrations in relation to sniff behavior, Chem. Biodivers. 11, 619–638 (2014)

    Article  CAS  Google Scholar 

  380. D.W. Kern, J. Beauchamp, M. Scheibe, T. Hummel, M.K. McClintock, A. Buettner: Odorant measurement at the olfactory cleft using proton-transfer-reaction mass spectrometry, The Assoc. Chemorecept. Sci. 35th Annu. Meet., Huntington Beach (2013)

    Google Scholar 

  381. M. Yabuki, K. Portman, D. Scott, L. Briand, A. Taylor: DyBOBS: A dynamic biomimetic assay for odorant-binding to odor-binding protein, Chem. Percept. 3, 108–117 (2010)

    Article  Google Scholar 

  382. M. Yabuki, D.J. Scott, L. Briand, A.J. Taylor: Dynamics of odorant binding to thin aqueous films of rat-OBP3, Chem. Senses 36, 659–671 (2011)

    Article  CAS  Google Scholar 

  383. L. Marciani, J.C. Pfeiffer, J. Hort, K. Head, D. Bush, A.J. Taylor, R.C. Spiller, S. Francis, P.A. Gowland: Improved methods for fMRI studies of combined taste and aroma stimuli, J. Neurosci. Meth. 158, 186–194 (2006)

    Article  Google Scholar 

  384. Y. Seto: On-site detection of chemical warfare agents. In: Handbook of Toxicology of Chemical Warfare Agents, ed. by R.C. Gupta (Academic Press, San Diego 2009)

    Google Scholar 

  385. R. Sferopoulos: A Review of Chemical Warfare Agent (CWA) Detector Technologies and Commercial-off-the-Shelf Items (Australian Government Department of Defence Human Protection and Performance Division DSTO, Melbourne 2009)

    Google Scholar 

  386. H.H. Hill Jr, S.J. Martin: Conventional analytical methods for chemical warfare agents, Pure Appl. Chem. 74(12), 2281–2291 (2002)

    Article  CAS  Google Scholar 

  387. J. Zheng, T. Shu, J. Jin: Ion mobility spectrometry for monitoring chemical warfare agents, Appl. Mech. Mater. 241-244, 980–983 (2013)

    Article  CAS  Google Scholar 

  388. S. Goetz: The unseen menace, New Electronics 36, 23–24 (2003)

    Google Scholar 

  389. T. Keller, A. Keller, E. Tutsch-Bauer, F. Monticelli: Application of ion mobility spectrometry in cases of forensic interest, Forensic Sci. Int. 161, 130–140 (2006)

    Article  CAS  Google Scholar 

  390. F. Gunzer, S. Zimmermann, W. Baether: Application of a nonradioactive pulsed electron source for ion mobility spectrometry, Anal. Chem. 82, 3756–3763 (2010)

    Article  CAS  Google Scholar 

  391. S. Armenta, M. Alcala, M. Blanco: A review of recent, unconventional applications of ion mobility spectrometry (IMS), Anal. Chim. Acta 703, 114–123 (2011)

    Article  CAS  Google Scholar 

  392. Y. Seto: On-site detection as a countermeasure to chemical warfare/terrorism, Forensic Sci. Rev. 26, 24–48 (2014)

    Google Scholar 

  393. S.W. Lemire, D.H. Ash, R.C. Johnson, J.R. Barr: Mass spectral behavior of the hydrolysis products of sesqui- and oxy-mustard type chemical warfare agents in atmospheric pressure chemical ionization, J. Am. Soc. Mass Spectr. 18, 1364–1374 (2007)

    Article  CAS  Google Scholar 

  394. S.N. Ketkar, S.M. Penn, W.L. Fite: Real-time detection of parts per trillion levels of chemical warfare agents in ambient air using atmospheric pressure ionization tandem quadrupole mass spectrometry, Anal. Chem. 63, 457–459 (1991)

    Article  CAS  Google Scholar 

  395. I. Cotte-Rodriguez, D.R. Justes, S.C. Nanita, R.J. Noll, C.C. Mulligan, N.L. Sanders, R.G. Cooks: Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry, Analyst 131, 579–589 (2006)

    Article  CAS  Google Scholar 

  396. Y. Seto, M. Kanamori-Kataoka, K. Tsuge, I. Ohsawa, K. Iura, T. Itoi, H. Sekiguchi, K. Matsushita, S. Yamashiro, Y. Sano, H. Sekiguchi, H. Maruko, Y. Takayama, R. Sekioka, A. Okumura, Y. Takada, H. Nagano, I. Waki, N. Ezawa, H. Tanimoto, S. Honjo, M. Fukano, H. Okada: Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction, Anal. Chem. 85, 2659–2666 (2013)

    Article  CAS  Google Scholar 

  397. G.J. Francis, D.B. Milligan, M.J. McEwan: Detection and quantification of chemical warfare agent precursors and surrogates by selected ion flow tube mass spectrometry, Anal. Chem. 81, 8892–8899 (2009)

    Article  CAS  Google Scholar 

  398. F. Petersson, P. Sulzer, C.A. Mayhew, P. Watts, A. Jordan, L. Märk, T.D. Mark: Real-time trace detection and identification of chemical warfare agent simulants using recent advances in proton transfer reaction time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 23, 3875–3880 (2009)

    Article  CAS  Google Scholar 

  399. T. Kassebacher, P. Sulzer, S. Jürschik, E. Hartungen, A. Jordan, A. Edtbauer, S. Feil, G. Hanel, S. Jaksch, L. Märk, C.A. Mayhew, T.D. Märk: Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario, Rapid Commun. Mass Spectrom. 27, 325–332 (2013)

    Article  CAS  Google Scholar 

  400. J.M. Ringer: Detection of nerve agents using proton transfer reaction mass spectrometry with ammonia as reagent gas, Eur. J. Mass Spectrom. 19, 175–185 (2013)

    Article  CAS  Google Scholar 

  401. A.J. Midey, T.M. Miller, A.A. Viggiano, N.C. Bera, S. Maeda, K. Morokuma: Ion chemistry of VX surrogates and ion energetics properties of VX: New suggestions for VX chemical ionization mass spectrometry detection, Anal. Chem. 82, 3764–3771 (2010)

    Article  CAS  Google Scholar 

  402. K.D. Cook, K.H. Bennett, M.L. Haddix: On-line mass spectrometry: A faster route to process monitoring and control, Ind. Eng. Chem. Res. 38, 1192–1204 (1999)

    Article  CAS  Google Scholar 

  403. Y.-C. Chen, P.L. Urban: Time-resolved mass spectrometry, TrAC Trend. Anal. Chem. 44, 106–120 (2013)

    Article  CAS  Google Scholar 

  404. W. Singer, R. Gutmann, J. Dunkl, A. Hansel: PTR-MS technology for process monitoring and control in biotechnology, J. Proc. Anal. Chem. 11, 1–4 (2010)

    Google Scholar 

  405. M. Luchner, T. Schmidberger, G. Striedner: Bioprosess monitoring: Real-time approach, Eur. BioPharm. Rev. 50, 52–55 (2014)

    Google Scholar 

  406. T. Schmidberger, R. Gutmann, K. Bayer, J. Kronthaler, R. Huber: Advanced online monitoring of cell ulture off-gas using proton transfer reaction mass spectrometry, Biotechnol. Prog. 30, 496–504 (2014)

    Article  CAS  Google Scholar 

  407. J. Herbig, R. Gutmann, K. Winkler, A. Hansel, G. Sprachmann: Real-time monitoring of trace gas concentrations in syngas, Oil Gas Sci. Technol. 69, 363–372 (2014)

    Article  CAS  Google Scholar 

  408. V.S. Langford, I. Graves, M.J. McEwan: Rapid monitoring of volatile organic compounds: A comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry, Rapid Commun. Mass Spectrom. 28, 10–18 (2014)

    Article  CAS  Google Scholar 

  409. D. Smith, P. Španěl: Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection, TrAC Trend. Anal. Chem. 30, 945–959 (2011)

    Article  CAS  Google Scholar 

  410. M. Yamada, M. Suga, I. Waki, M. Sakamoto, M. Morita: Continuous monitoring of polychlorinated biphenyls in air using direct sampling APCI/ITMS, Int. J. Mass Spectrom. 244, 65–71 (2005)

    Article  CAS  Google Scholar 

  411. S. Barber, R.S. Blake, I.R. White, P.S. Monks, F. Reich, S. Mullock, A.M. Ellis: Increased sensitivity in proton transfer reaction mass spectrometry by incorporation of a radio frequency ion funnel, Anal. Chem. 84, 5387–5391 (2012)

    Article  CAS  Google Scholar 

  412. D. Materić, M. Lanza, P. Sulzer, J. Herbig, D. Bruhn, C. Turner, N. Mason, V. Gauci: Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC, Anal. Bioanal. Chem. 407(25), 7757–7763 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following people for supplying material on the main techniques discussed within this chapter, namely Murray McEwan and Vaughan Langford of Syft Technologies Ltd., Christchurch, New Zealand (SIFT-MS), Jens Herbig and Lukas Märk of IONICON Analytik GmbH, Innsbruck, Austria (PTR-MS), Jean-Luc Le Quéré at INRA, Dijon, France, Andy Taylor of Mars Petcare, Waltham on the Wolds, Leicestershire, UK, Robert Linforth at University of Nottingham, Nottingham, UK and Ed Sprake at Waters Corporation, Wilmslow, UK (APCI-MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Beauchamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beauchamp, J., Zardin, E. (2017). Odorant Detection by On-line Chemical Ionization Mass Spectrometry. In: Buettner, A. (eds) Springer Handbook of Odor. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-26932-0_18

Download citation

Publish with us

Policies and ethics