Skip to main content

Particles in Microfluidic Systems: Handling, Characterization, and Applications

  • Chapter
  • First Online:
Microsystems for Pharmatechnology
  • 2124 Accesses

Abstract

This chapter gives a tour of the fascinating opportunities for handling and characterizing solid particles by microfluidic methods. First, attention will be given to the hydrodynamic, electrical, and magnetic forces which may be used to manipulate suspended particles at small scales. Second, important methods for the detection and characterization that have been proposed in the literature are illustrated and discussed. The third and last part of the chapter will give the reader a sense of the exciting applications of these methods in different fields, in particular flow cytometry, particle synthesis, and bioanalytical measurement. These applications exemplify the subtle invasion of particle-based microfluidics into many areas of the life sciences, pharmaceutical technology, chemistry, and materials science. In the future, the trend towards miniaturization will continue, and we are likely to see an increasing number of technologies and products using some of the principles reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  2. Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Guillot P, Laval P, Masselon C, Salmon JB (2006) X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements. Lab Chip 6(4):494–499

    Article  Google Scholar 

  3. Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11(3):407–412

    Article  Google Scholar 

  4. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10)

    Google Scholar 

  5. Bretherton FP (1962) The motion of rigid particles in a shear flow at low Reynolds number. J Fluid Mech 14(2):284–304

    Article  MathSciNet  MATH  Google Scholar 

  6. Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700

    Article  Google Scholar 

  7. Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069

    Article  Google Scholar 

  8. Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie Int Ed 50(10):2289–2293

    Article  Google Scholar 

  9. Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481

    Article  MATH  Google Scholar 

  10. Chastek TQ, Beers KL, Amis EJ (2007) Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Rev Sci Instr 78(7)

    Google Scholar 

  11. Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A(7):648–666

    Article  Google Scholar 

  12. Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18(3):031704

    Article  Google Scholar 

  13. Cox RG, Mason SG (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3:291–316

    Article  Google Scholar 

  14. Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA (2014) Multiplex single particle analysis in microfluidics. Analyst 139(20):5239–5246

    Article  Google Scholar 

  15. Destremaut F, Salmon JB, Qi L, Chapel JP (2009) Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9(22):3289–3296

    Article  Google Scholar 

  16. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897

    Article  Google Scholar 

  17. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  18. Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313

    Article  Google Scholar 

  19. Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121

    Article  Google Scholar 

  20. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635

    Article  Google Scholar 

  21. Gouy M (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Theor Appl 9(1):457–468

    Article  MATH  Google Scholar 

  22. Greaves ED, Manz A (2005) Toward on-chip X-ray analysis. Lab Chip 5(4):382–391

    Article  Google Scholar 

  23. Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143

    Article  Google Scholar 

  24. Henry DC (1931) The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc R Soc Lond Contain Papers Math Phys Char 133(821):106–129

    Article  MATH  Google Scholar 

  25. Ho BP, Leal LG (1974) Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J Fluid Mech 65(2):365–400

    Article  MATH  Google Scholar 

  26. Irimajir A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269

    Article  Google Scholar 

  27. Jackson JD (1998) Classical electrodynamics. Wiley, New York

    Google Scholar 

  28. Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, Techert S (2013) X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E 36(9):109

    Article  Google Scholar 

  29. Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25(21–22):3513–3527

    Article  Google Scholar 

  30. Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrostat 37(1–2):121–134

    Article  Google Scholar 

  31. Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42

    Article  Google Scholar 

  32. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912

    Article  Google Scholar 

  34. Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg TP, Manalis SR (2011) Suspended microchannel resonators with piezoresistive sensors. Lab Chip 11(4):645–651

    Article  Google Scholar 

  35. Lee J, Shen WJ, Payer K, Burg TP, Manalis SR (2010) Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10(7):2537–2542

    Article  Google Scholar 

  36. LesliePelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Article  Google Scholar 

  37. Modena MM, Wang Y, Riedel D, Burg TP (2014) Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab Chip 14(2):342–350

    Article  Google Scholar 

  38. Moschou P, de Croon MHJM, van der Schaaf J, Schouten JC (2014) Advances in continuous crystallization: toward microfluidic systems. Rev Chem Eng 30(2):127–138

    Article  Google Scholar 

  39. Olcum S, Cermak N, Wasserman SC, Christine KS, Atsumi H, Payer KR, Shen WJ, Lee JC, Belcher AM, Bhatia SN, Manalis SR (2014) Weighing nanoparticles in solution at the attogram scale. Proc Natl Acad Sci U S A 111(4):1310–1315

    Article  Google Scholar 

  40. Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3(3):187–192

    Article  Google Scholar 

  41. Pierzchalski A, Hebeisen M, Mittag A, Di Berardino M, Tarnok A (2010) Label-free single cell analysis with a chip-based impedance flow cytometer. Imaging Manipulation Analys Biomol Cells Tissues VIII 7568

    Google Scholar 

  42. Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6):1044–1059

    Article  Google Scholar 

  43. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871

    Article  Google Scholar 

  44. Probstein RF (1989) Solutions of charged macromolecules and particles. In: Probstein RF (ed) Physicochemical hydrodynamics. Butterworth-Heinemann, Boston, pp 201–225

    Chapter  Google Scholar 

  45. Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41(5):830–840

    Article  Google Scholar 

  46. Schiro PG, Gadd JC, Yen GS, Chiu DT (2012) High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 116(35):10490–10495

    Article  Google Scholar 

  47. Scholten PC (1995) Which Si. J Magn Magn Mater 149(1–2):57–59

    Article  Google Scholar 

  48. Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210

    Article  Google Scholar 

  49. Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302

    Article  Google Scholar 

  50. Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Meth 9(9):910–912

    Article  Google Scholar 

  51. Staben ME, Davis RH (2005) Particle transport in Poiseuille flow in narrow channels. Int J Multiphase Flow 31(5):529–547

    Article  MATH  Google Scholar 

  52. Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733

    Article  Google Scholar 

  53. Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285

    Article  MathSciNet  Google Scholar 

  54. Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654

    Article  Google Scholar 

  55. Vig AL, Haldrup K, Enevoldsen N, Thilsted AH, Eriksen J, Kristensen A, Feidenhans’l R, Nielsen MM (2009) Windowless microfluidic platform based on capillary burst valves for high intensity X-ray measurements. Rev Sci Instr 80(11):115114-1–6

    Article  Google Scholar 

  56. Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometry. Recent Adv Cytom Part A 102:105–125

    Google Scholar 

  57. Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chemie Int Ed 43(19):2508–2511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Burg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burg, T.P. (2016). Particles in Microfluidic Systems: Handling, Characterization, and Applications. In: Dietzel, A. (eds) Microsystems for Pharmatechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-26920-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26920-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26918-4

  • Online ISBN: 978-3-319-26920-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics