Skip to main content

Electrostatically Driven Assembly of Polyelectrolytes

  • Chapter
  • First Online:
Fluorescence Studies of Polymer Containing Systems

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 16))

Abstract

Screened electrostatic interactions are commonly employed in colloid and polymer science for stabilization in aqueous solutions to avoid macroscopic phase separation, but these are equally versatile as driving force for complexation (or microscopic phase separation) into micelles, vesicles, multilayers and other nanostructured materials. In this introductory chapter, we present an overview of the field of electrostatically driven assembly of polyelectrolytes into nanometre-sized association colloids focusing in particular on the fundamentals followed by a discussion of selected application areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biesheuvel PM, Cohen Stuart MA (2004) Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers. Langmuir 20:2785–2791. doi:10.1021/la0362041

    Article  CAS  Google Scholar 

  2. Borue VY, Erukhimovich IY (1990) A statistical theory of globular polyelectrolyte complexes. Macromolecules 23:3625–3632. doi:10.1021/ma00217a015

    Article  CAS  Google Scholar 

  3. Castelnovo M, Joanny JF (2000) Formation of polyelectrolyte multilayers. Langmuir 16:7524–7532. doi:10.1021/la000211h

    Article  CAS  Google Scholar 

  4. Castelnovo M, Joanny JF (2001) Complexation between oppositely charged polyelectrolytes: beyond the random phase approximation. Eur Phys J E 6:377–386. doi:10.1007/s10189-001-8051-7

    Article  CAS  Google Scholar 

  5. Kramarenko EY, Khokhlov AR (2007) Effect of formation of ion pairs on the stability of stoichiometric block ionomer complexes. Polym Sci Ser A 49:1053–1063. doi:10.1134/s0965545x07090131

    Article  Google Scholar 

  6. Kramarenko EY, Khokhlov AR, Reineker P (2006) Stoichiometric polyelectrolyte complexes of ionic block copolymers and oppositely charged polyions. J Chem Phys 125(19), 194902. doi:10.1063/1.2387173

    Article  CAS  Google Scholar 

  7. Kudlay A, de la Cruz MO (2004) Precipitation of oppositely charged polyelectrolytes in salt solutions. J Chem Phys 120:404–412. doi:10.1063/1.1629271

    Article  CAS  Google Scholar 

  8. Kudlay A, Ermoshkin AV, de la Cruz MO (2004) Complexation of oppositely charged polyelectrolytes: effect of ion pair formation. Macromolecules 37:9231–9241. doi:10.1021/ma048519t

    Article  CAS  Google Scholar 

  9. Oskolkov NN, Potemkin II (2007) Complexation in asymmetric solutions of oppositely charged polyelectrolytes: phase diagram. Macromolecules 40:8423–8429. doi:10.1021/ma0709304CCC:$37.00

    Article  CAS  Google Scholar 

  10. Overbeek GJT, Voorn MJ (1957) Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol 49:7–26. doi:10.1002/jcp.1030490404

    Article  CAS  Google Scholar 

  11. Sindelka K, Limpouchova Z, Lisal M, Prochazka K (2014) Dissipative particle dynamics study of electrostatic self-assembly in aqueous mixtures of copolymers containing one neutral water-soluble block and one either positively or negatively charged polyelectrolyte block. Macromolecules 47:6121–6134. doi:10.1021/ma501018x

    Article  CAS  Google Scholar 

  12. van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interface Sci 361:407–422. doi:10.1016/j.jcis.2011.05.080

    Article  CAS  Google Scholar 

  13. Veis A (2011) A review of the early development of the thermodynamics of the complex coacervation phase separation. Adv Colloid Interface Sci 167:2–11. doi:10.1016/j.cis.2011.01.007

    Article  CAS  Google Scholar 

  14. Voets IK, Leermakers FAM (2008) Self-consistent field theory for obligatory coassembly. Phys Rev E 78(6 Pt 1). doi:10.1103/PhysRevE.78.061801

  15. Harada A, Kataoka K (1995) Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 28:5294–5299

    Article  CAS  Google Scholar 

  16. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A (1996) Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules 29:6797–6802. doi:10.1021/ma960120k

    Article  CAS  Google Scholar 

  17. Cohen Stuart MA, Besseling NAM, Fokkink RG (1998) Formation of micelles with complex coacervate cores. Langmuir 14:6846–6849

    Article  Google Scholar 

  18. Bungenberg de Jong HG, Kruyt HR (1929) Coacervation (Partial miscibility in colloid systems). In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 32, 849–856

    Google Scholar 

  19. Ortony JH et al (2014) Fluidity and water in nanoscale domains define coacervate hydrogels. Chem Sci 5:58–67. doi:10.1039/c3sc52368c

    Article  CAS  Google Scholar 

  20. Pergushov DV, Muller AHE, Schacher FH (2012) Micellar interpolyelectrolyte complexes. Chem Soc Rev 41:6888–6901. doi:10.1039/c2cs35135h

    Article  CAS  Google Scholar 

  21. Synatschke CV et al (2013) Micellar interpolyelectrolyte complexes with a compartmentalized shell. Macromolecules 46:6466–6474. doi:10.1021/ma400934n

    Article  CAS  Google Scholar 

  22. Synatschke CV, Schacher FH, Fortsch M, Drechsler M, Muller AHE (2011) Double-layered micellar interpolyelectrolyte complexes-how many shells to a core? Soft Matter 7:1714–1725. doi:10.1039/c0sm01195a

    Article  CAS  Google Scholar 

  23. Lysenko EA et al (2004) Formation of multilayer polyelectrolyte complexes by using block ionomer micelles as nucleating particles. J Phys Chem B 108:12352–12359

    Article  CAS  Google Scholar 

  24. Pergushov DV et al (2004) Micelles of polyisobutylene-block-poly(methacrylic acid) diblock copolymers and their water-soluble interpolyelectrolyte complexes formed with quaternized poly(4-vinylpyridine). Polymer 45:367–378. doi:10.1016/j.polymer.2003.10.086

    Article  CAS  Google Scholar 

  25. Cai YL, Armes SP (2004) A zwitterionic ABC triblock copolymer that forms a “Trinity” of micellar aggregates in aqueous solution. Macromolecules 37:7116–7122. doi:10.1021/ma048789b

    Article  CAS  Google Scholar 

  26. Jin GW et al (2012) Formation of polyion complex micelles with tunable isoelectric points based on zwitterionic block copolymers. Macromol Res 20:1249–1256. doi:10.1007/s13233-012-0177-0

    Article  CAS  Google Scholar 

  27. van der Burgh S, de Keizer A, Cohen Stuart MA (2004) Complex coacervation core micelles. Colloidal stability and aggregation mechanism. Langmuir 20:1073–1084. doi:10.1021/la035012n

    Article  CAS  Google Scholar 

  28. Zhulina EB, Borisov OV (2012) Theory of block polymer micelles: recent advances and current challenges. Macromolecules 45:4429–4440. doi:10.1021/ma300195n

    Article  CAS  Google Scholar 

  29. Spruijt E, Sprakel J, Cohen Stuart MA, van der Gucht J (2010) Interfacial tension between a complex coacervate phase and its coexisting aqueous phase. Soft Matter 6:172–178. doi:10.1039/b911541b

    Article  CAS  Google Scholar 

  30. van der Kooij HM et al (2012) On the stability and morphology of complex coacervate core micelles: from spherical to wormlike micelles. Langmuir 28:14180–14191. doi:10.1021/la303211b

    Article  CAS  Google Scholar 

  31. Wang J et al (2010) Complex coacervate core micelles from iron-based coordination polymers. J Phys Chem B 114:8313–8319. doi:10.1021/jp1003209

    Article  CAS  Google Scholar 

  32. Ou Z, Muthukumar M (2006) Entropy and enthalpy of polyelectrolyte complexation: Langevin dynamics simulations. J Chem Phys 124:154902

    Article  CAS  Google Scholar 

  33. Laugel N et al (2006) Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy. J Phys Chem B 110:19443–19449. doi:10.1021/jp062264z

    Article  CAS  Google Scholar 

  34. Hofs B, Voets IK, de Keizer A, Cohen Stuart MA (2006) Comparison of complex coacervate core micelles from two diblock copolymers or a single diblock copolymer with a polyelectrolyte. Phys Chem Chem Phys 8:4242–4251. doi:10.1039/b605695d

    Article  CAS  Google Scholar 

  35. Courtois J, Berret J-F (2010) Probing oppositely charged surfactant and copolymer interactions by isothermal titration microcalorimetry. Langmuir 26:11750–11758. doi:10.1021/la101475x

    Article  CAS  Google Scholar 

  36. Uchman M et al (2013) Thermodynamic and kinetic aspects of coassembly of PEO-PMAA block copolymer and DPCl surfactants into ordered nanoparticles in aqueous solutions studied by ITC, NMR, and time-resolved SAXS techniques. Macromolecules 46:2172–2181. doi:10.1021/ma302503w

    Article  CAS  Google Scholar 

  37. Pozar J, Kovacevic D (2014) Complexation between polyallylammonium cations and polystyrenesulfonate anions: the effect of ionic strength and the electrolyte type. Soft Matter 10:6530–6545. doi:10.1039/c4sm00651h

    Article  CAS  Google Scholar 

  38. Nisha CK, Manorama SV, Ganguli M, Maiti S, Kizhakkedathu JN (2004) Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization. Langmuir 20:2386–2396. doi:10.1021/la035737r

    Article  CAS  Google Scholar 

  39. Lindhoud S, Norde W, Cohen Stuart MA (2009) Reversibility and relaxation behavior of polyelectrolyte complex micelle formation. J Phys Chem B 113:5431–5439. doi:10.1021/jp809489f

    Article  CAS  Google Scholar 

  40. Voets IK, de Keizer A, Cohen Stuart MA, Justynska J, Schlaad H (2007) Irreversible structural transitions in mixed micelles of oppositely charged diblock copolymers in aqueous solution. Macromolecules 40:2158–2164. doi:10.1021/ma0614444

    Article  CAS  Google Scholar 

  41. Vitorazi L, Berret JF, Loh W (2013) Self-assembly of complex salts of cationic surfactants and anionic-neutral block copolymers. Dispersions with liquid-crystalline internal structure. Langmuir 29:14024–14033. doi:10.1021/la402624u

    Article  CAS  Google Scholar 

  42. Lemmers M et al (2012) The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft Matter 8:104–117. doi:10.1039/c1sm06281f

    Article  CAS  Google Scholar 

  43. Yan Y et al (2008) Spherocylindrical coacervate core micelles formed by a supramolecular coordination polymer and a diblock copolymer. Soft Matter 4:2207–2212. doi:10.1039/b808151d

    Article  CAS  Google Scholar 

  44. Kabanov VA, Zezin AB (1984) Soluble interpolymeric complexes as a new class of synthetic poly-electrolytes. Pure Appl Chem 56:343–354. doi:10.1351/pac198456030343

    Article  CAS  Google Scholar 

  45. Pothayee N et al (2012) Magnetic block ionomer complexes for potential dual imaging and therapeutic agents. Chem Mater 24:2056–2063. doi:10.1021/cm3004062

    Article  CAS  Google Scholar 

  46. Uchman M et al (2012) Coassembly of poly(ethylene oxide)-block-poly(methacrylic acid) and n-dodecylpyridinium chloride in aqueous solutions leading to ordered micellar assemblies within copolymer aggregates. Macromolecules 45:6471–6480. doi:10.1021/ma301510j

    Article  CAS  Google Scholar 

  47. Zhang JY, Chen SG, Zhu ZY, Liu SY (2014) Stopped-flow kinetic studies of the formation and disintegration of polyion complex micelles in aqueous solution. Phys Chem Chem Phys 16:117–127. doi:10.1039/c3cp53608d

    Article  CAS  Google Scholar 

  48. Voets IK et al (2009) Towards a structural characterization of charge-driven polymer micelles. Eur Phys J E 30:351–359

    Article  CAS  Google Scholar 

  49. Voets IK, de Keizer A, Cohen Stuart MA (2009) Complex coacervate core micelles. Adv Colloid Interface Sci 147–148:300–318

    Article  CAS  Google Scholar 

  50. Wang J, Voets IK, Fokkink R, van der Gucht J, Velders A (2014) Controlling the number of dendrimers in dendrimicelle nanoconjugates from 1 to more than 100. Soft Matter 10(37):7337–4. doi:10.1039/c4sm01143k

    Article  CAS  Google Scholar 

  51. Yan Y, de Keizer A, Cohen Stuart MA, Drechsler M, Besseling NAM (2008) Stability of complex coacervate core micelles containing metal coordination polymer. J Phys Chem B 112:10908–10914. doi:10.1021/jp8044059

    Article  CAS  Google Scholar 

  52. Lemmers M, Voets IK, Cohen Stuart MA, van der Gucht J (2011) Transient network topology of interconnected polyelectrolyte complex micelles. Soft Matter 7:1378–1389

    Article  CAS  Google Scholar 

  53. Lindhoud S et al (2009) Salt-induced disintegration of lysozyme-containing polyelectrolyte complex micelles. Langmuir 25:11425–11430. doi:10.1021/la901591p

    Article  CAS  Google Scholar 

  54. Spruijt E, Westphal AH, Borst JW, Cohen Stuart MA, van der Gucht J (2010) Binodal compositions of polyelectrolyte complexes. Macromolecules 43:6476–6484

    Article  CAS  Google Scholar 

  55. Annaka M, Morishita K, Okabe S (2007) Electrostatic self-assembly of neutral and polyelectrolyte block copolymers and oppositely charged surfactant. J Phys Chem B 111:11700–11707. doi:10.1021/jp074404q

    Article  CAS  Google Scholar 

  56. Warnant J et al (2012) Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines. Anal Bioanal Chem 403:1395–1404. doi:10.1007/s00216-012-5947-1

    Article  CAS  Google Scholar 

  57. Pispas S (2011) Self-assembled nanostructures in mixed anionic-neutral double hydrophilic block copolymer/cationic vesicle-forming surfactant solutions. Soft Matter 7:474–482. doi:10.1039/c0sm00499e

    Article  CAS  Google Scholar 

  58. Voorn MJ (1956) Complex coacervation. Ph.D thesis, University of Utrecht

    Google Scholar 

  59. Plamper FA et al (2013) Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol Rapid Commun 34:855–860. doi:10.1002/marc.201300053

    Article  CAS  Google Scholar 

  60. Sousa-Herves A, Fernandez-Megia E, Riguera R (2008) Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chem Commun (27):3136–3138. doi:10.1039/b805208e

  61. Wang J et al (2012) Stable polymer micelles formed by metal coordination. Macromolecules 45:7179–7185

    Article  CAS  Google Scholar 

  62. Brzozowska AM, de Keizer A, Norde W, Detrembleur C, Cohen Stuart MA (2010) Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene. Colloid Polym Sci 288:1081–1095. doi:10.1007/s00396-010-2228-4

    Article  CAS  Google Scholar 

  63. Serefoglou E, Oberdisse J, Staikos G (2007) Characterization of the soluble nanoparticles formed through coulombic interaction of bovine serum albumin with anionic graft copolymers at low pH. Biomacromolecules 8:1195–1199. doi:10.1021/bm061094t

    Article  CAS  Google Scholar 

  64. Chen W, Chen HR, Hu JH, Yang WL, Wang CC (2006) Synthesis and characterization of polyion complex micelles between poly(ethylene glycol)-grafted poly(aspartic acid) and cetyltrimethyl ammonium bromide. Colloids Surf A Physicochem Eng Asp 278:60–66

    Article  CAS  Google Scholar 

  65. Lemmers M, Sprakel J, Voets IK, van der Gucht J, Cohen Stuart MA (2010) Multiresponsive reversible gels based on charge-driven assembly. Angew Chem Int Ed 49:708–711. doi:10.1002/anie.200905515

    Article  CAS  Google Scholar 

  66. Krogstad DV et al (2013) Effects of polymer and salt concentration on the structure and properties of triblock copolymer coacervate hydrogels. Macromolecules 46:1512–1518. doi:10.1021/ma302299r

    Article  CAS  Google Scholar 

  67. Stapert HR, Nishiyama N, Jiang DL, Aida T, Kataoka K (2000) Polyion complex micelles encapsulating light-harvesting ionic dendrimer zinc porphyrins. Langmuir 16:8182–8188. doi:10.1021/la000423e

    Article  CAS  Google Scholar 

  68. Nishiyama N, Jang WD, Kataoka K (2007) Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene delivery. New J Chem 31:1074–1082. doi:10.1039/b616050f

    Article  CAS  Google Scholar 

  69. Xu L et al (2014) Self-assembly of ultralong polyion nano-ladders facilitated by ionic recognition and molecular stiffness. J Am Chem Soc. doi:10.1021/ja410443n

    Google Scholar 

  70. Yan Y et al (2007) Wormlike aggregates from a supramolecular coordination polymer and a diblock copolymer. J Phys Chem B 111:11662–11669. doi:10.1021/jp0718146

    Article  CAS  Google Scholar 

  71. Lemmers M et al (2012) Physical gels based on charge-driven bridging of nanoparticles by triblock copolymers. Langmuir 28:12311–12318. doi:10.1021/la301917e

    Article  CAS  Google Scholar 

  72. Voets IK, de Keizer A, Frederik PM, Jellema R, Cohen Stuart MA (2009) Environment-sensitive stabilization of silver nanoparticles in aqueous solutions. J Colloid Interface Sci 339:317–324

    Article  CAS  Google Scholar 

  73. Gerardin C et al (2003) Highly stable metal hydrous oxide colloids by inorganic polycondensation in suspension. Angew Chem Int Ed 42:3681–3685. doi:10.1002/anie.200350917

    Article  CAS  Google Scholar 

  74. Sanson N, Bouyer F, Destarac M, In M, Gerardin C (2012) Hybrid polyion complex micelles formed from double hydrophilic block copolymers and multivalent metal ions: size control and nanostructure. Langmuir 28:3773–3782. doi:10.1021/la204562t

    Article  CAS  Google Scholar 

  75. Berret JF (2011) Controlling electrostatic co-assembly using ion-containing copolymers: from surfactants to nanoparticles. Adv Colloid Interface Sci 167:38–48. doi:10.1016/j.cis.2011.01.008

    Article  CAS  Google Scholar 

  76. Shiraishi K, Kawano K, Maitani Y, Yokoyama M (2010) Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(L-lysine) block copolymers having Gd-DOTA; preparations and their control of T-1-relaxivities and blood circulation characteristics. J Control Release 148:160–167. doi:10.1016/j.jconrel.2010.08.018

    Article  CAS  Google Scholar 

  77. Berret JF, Cristobal G, Herve P, Oberdisse J, Grillo I (2002) Structure of colloidal complexes obtained from neutral/polyelectrolyte copolymers and oppositely charged surfactants. Eur Phys J E 9:301–311. doi:10.1140/epje/i2002-10063-7

    Article  CAS  Google Scholar 

  78. Gohy JF, Mores S, Varshney SK, Jerome R (2003) Self-organization of water-soluble complexes of a poly(2-vinylpyridinium)-block-poly(ethylene oxide) diblock with fluorinated anionic surfactants. Macromolecules 36:2579–2581. doi:10.1021/ma025665v

    Article  CAS  Google Scholar 

  79. Oikonomou EK, Bokias G, Iliopoulos I, Kallitsis JK (2013) Sequential association of anionic/thermosensitive diblock copolymers with cationic surfactants. Macromolecules 46:1082–1092. doi:10.1021/ma302535k

    Article  CAS  Google Scholar 

  80. Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574. doi:10.1039/c1cs15258k

    Article  CAS  Google Scholar 

  81. Lee Y et al (2010) Efficient delivery of bioactive antibodies into the cytoplasm of living cells by charge-conversional polyion complex micelles. Angew Chem Int Ed 49:2552–2555. doi:10.1002/anie.200905264

    Article  CAS  Google Scholar 

  82. Harada A, Kataoka K (1999) On-off control of enzymatic activity synchronizing with reversible formation of supramolecular assembly from enzyme and charged block copolymers. J Am Chem Soc 121:9241–9242. doi:10.1021/ja9919175

    Article  CAS  Google Scholar 

  83. Lindhoud S, de Vries R, Schweins R, Cohen Stuart MA, Norde W (2009) Salt-induced release of lipase from polyelectrolyte complex micelles. Soft Matter 5:242–250. doi:10.1039/b811640g

    Article  CAS  Google Scholar 

  84. Harada A, Kataoka K (2003) Switching by pulse electric field of the elevated enzymatic reaction in the core of polyion complex micelles. J Am Chem Soc 125:15306–15307. doi:10.1021/ja038572h

    Article  CAS  Google Scholar 

  85. Li YM, Zhou Y, De B, Li LB (2014) Folate-modified pluronic-polyethylenimine and cholic acid polyion complex micelles as targeted drug delivery system for paclitaxel. J Microencapsul 31:805–814. doi:10.3109/02652048.2014.940010

    Article  CAS  Google Scholar 

  86. Yoon H, Dell EJ, Freyer JL, Campos LM, Jang WD (2014) Polymeric supramolecular assemblies based on multivalent ionic interactions for biomedical applications. Polymer 55:453–464. doi:10.1016/j.polymer.2013.12.038

    Article  CAS  Google Scholar 

  87. Oe Y et al (2014) Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials 35:7887–7895. doi:10.1016/j.biomaterials.2014.05.041

    Article  CAS  Google Scholar 

  88. Bayo-Puxan N, Dufresne MH, Felber AE, Castagner B, Leroux JC (2011) Preparation of polyion complex micelles from poly(ethylene glycol)-block-polyions. J Control Release 156:118–127. doi:10.1016/j.jconrel.2011.07.027

    Article  CAS  Google Scholar 

  89. Voets IK et al (2007) Electrostatically driven coassembly of a diblock copolymer and an oppositely charged homopolymer in aqueous solutions. Macromolecules 40:8476–8482. doi:10.1021/ma071356zCCC:$37.00

    Article  CAS  Google Scholar 

  90. Balomenou I, Bokias G (2005) Water-soluble complexes between cationic surfactants and comb-type copolymers consisting of an anionic backbone and hydrophilic nonionic poly(N, N-dimethylacrylamide) side chains. Langmuir 21:9038–9043. doi:10.1021/la0503505

    Article  CAS  Google Scholar 

  91. Matralis A, Sotiropoulou M, Bokias G, Staikos G (2006) Water-soluble stoichiometric polyelectrolyte complexes based on cationic comb-type copolymers. Macromol Chem Phys 207:1018–1025. doi:10.1002/macp.200600803

    Article  CAS  Google Scholar 

  92. Harada A, Kataoka K (2003) Effect of charged segment length on physicochemical properties of core-shell type polyion complex micelles from block ionomers. Macromolecules 36:4995–5001. doi:10.1021/ma025737i

    Article  CAS  Google Scholar 

  93. Dubruel P et al (2002) Synthetic polyamines as vectors for gene delivery. Polym Int 51:948–957. doi:10.1002/pi.866

    Article  CAS  Google Scholar 

  94. Pispas S (2006) Soluble complexes of sodium poly(isoprene-b-methacrylate) micelles with cationic surfactants in aqueous media. J Phys Chem B 110:2649–2655. doi:10.1021/jp056008i

    Article  CAS  Google Scholar 

  95. Berret JF (2009) Sphere-to-cylinder transition in hierarchical electrostatic complexes. Colloid Polym Sci 287:801–810. doi:10.1007/s00396-009-2032-1

    Article  CAS  Google Scholar 

  96. Liu NJ, Wang BY, Liu WS, Bu WF (2011) Luminescent polymeric hybrids formed by platinum(II) complexes and block copolymers. Chem Commun 47:9336–9338. doi:10.1039/c1cc12192h

    Article  CAS  Google Scholar 

  97. Osada K et al (2010) Quantized folding of plasmid DNA condensed with block catiomer into characteristic rod structures promoting transgene efficacy. J Am Chem Soc 132:12343–12348. doi:10.1021/ja102739b

    Article  CAS  Google Scholar 

  98. Bastardo LA et al (2007) Soluble complexes in aqueous mixtures of low charge density comb polyelectrolyte and oppositely charged surfactant probed by scattering and NMR. J Colloid Interface Sci 312:21–33. doi:10.1016/j.jcis.2006.09.004

    Article  CAS  Google Scholar 

  99. Golinska MD, de Wolf F, Cohen Stuart MA, Hernandez-Garcia A, de Vries R (2013) Pearl-necklace complexes of flexible polyanions with neutral-cationic diblock copolymers. Soft Matter 9:6406–6411. doi:10.1039/c3sm50536g

    Article  CAS  Google Scholar 

  100. Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans Ii 72:1525–1568. doi:10.1039/f29767201525

    Article  Google Scholar 

  101. Zhulina EB, Adam M, LaRue I, Sheiko SS, Rubinstein M (2005) Diblock copolymer micelles in a dilute solution. Macromolecules 38:5330–5351. doi:10.1021/ma048102n

    Article  CAS  Google Scholar 

  102. Voets IK et al (2006) Double-faced micelles from water-soluble polymers. Angew Chem Int Ed 45:6673–6676. doi:10.1002/anie.200601000

    Article  CAS  Google Scholar 

  103. Voets IK et al (2008) On the transition between a heterogeneous and homogeneous corona in mixed polymeric micelles. Langmuir 24:12221–12227. doi:10.1021/la801816p

    Article  CAS  Google Scholar 

  104. Voets IK et al (2009) Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter 5:999–1005

    Article  CAS  Google Scholar 

  105. Bouyer F, Gerardin C, Fajula F, Putaux JL, Chopin T (2003) Role of double-hydrophilic block copolymers in the synthesis of lanthanum-based nanoparticles. Colloids Surf A 217:179–184. doi:10.1016/s0927-7757(02)00574-5

    Article  CAS  Google Scholar 

  106. Bouyer F, Sanson N, Destarac M, Gerardin C (2006) Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles. New J Chem 30:399–408. doi:10.1039/b516368d

    Article  CAS  Google Scholar 

  107. Jiang X et al (2011) String-like micellar nanoparticles formed by complexation of PEG-b-PPA and plasmid DNA and their transfection efficiency. Pharm Res 28:1317–1327. doi:10.1007/s11095-011-0436-3

    Article  CAS  Google Scholar 

  108. Gohy JF, Varshney SK, Jerome R (2001) Morphology of water-soluble interpolyelectrolyte complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide) diblocks and poly(4-styrenesulfonate) polyanions. Macromolecules 34:2745–2747. doi:10.1021/ma002131q

    Article  CAS  Google Scholar 

  109. Fresnais J, Berret JF, Frka Petesic B, Sandre O, Perzynski R (2008) Electrostatic co assembly of iron oxide nanoparticles and polymers: towards the generation of highly persistent superparamagnetic nanorods. Adv Mater 20:3877–3881

    Article  CAS  Google Scholar 

  110. Solomatin SV, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV (2007) Nanomaterials from ionic block copolymers and single-, double-, and triple-tail surfactants. Langmuir 23:2838–2842. doi:10.1021/la062693o

    Article  CAS  Google Scholar 

  111. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K (2007) Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block lonomers: a physiologically available oxygen carrier. Angew Chem Int Ed 46:6085–6088. doi:10.1002/anie.200701776

    Article  CAS  Google Scholar 

  112. Anraku Y, Kishimura A, Oba M, Yamasaki Y, Kataoka K (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132:1631–1636. doi:10.1021/ja908350e

    Article  CAS  Google Scholar 

  113. Anraku Y, Kishimura A, Yamasaki Y, Kataoka K (2013) Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J Am Chem Soc 135:1423–1429. doi:10.1021/ja3096587

    Article  CAS  Google Scholar 

  114. Hu ZJ, Jonas AM, Varshney SK, Gohy JF (2005) Dilution-induced spheres-to-vesicles morphological transition in micelles from block copolymer/surfactant complexes. J Am Chem Soc 127:6526–6527. doi:10.1021/ja050053m

    Article  CAS  Google Scholar 

  115. Bronich TK et al (2002) Synthesis of vesicles on polymer template. J Am Chem Soc 124:11872–11873. doi:10.1021/ja020509p

    Article  CAS  Google Scholar 

  116. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A (1998) Spontaneous formation of vesicles from complexes of block ionomers and surfactants. J Am Chem Soc 120:9941–9942. doi:10.1021/ja981922t

    Article  CAS  Google Scholar 

  117. Koide A et al (2006) Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J Am Chem Soc 128:5988–5989. doi:10.1021/ja057993r

    Article  CAS  Google Scholar 

  118. Korobko AV, Backendorf C, van der Maarel JRC (2006) Plasmid DNA encapsulation within cationic diblock copolymer vesicles for gene delivery. J Phys Chem B 110:14550–14556. doi:10.1021/jp057363b

    Article  CAS  Google Scholar 

  119. Korobko AV, Jesse W, van der Maarel JRC (2005) Encapsulation of DNA by cationic diblock copolymer vesicles. Langmuir 21:34–42. doi:10.1021/la047967r

    Article  CAS  Google Scholar 

  120. Lindhoud S, de Vries R, Norde W, Cohen Stuart MA (2007) Structure and stability of complex coacervate core micelles with lysozyme. Biomacromolecules 8:2219–2227. doi:10.1021/bm0700688

    Article  CAS  Google Scholar 

  121. Lindhoud S, Norde W, Cohen Stuart MA (2010) Effects of polyelectrolyte complex micelles and their components on the enzymatic activity of lipase. Langmuir 26:9802–9808

    Article  CAS  Google Scholar 

  122. Harada A, Kataoka K (1998) Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium. Macromolecules 31:288–294

    Article  CAS  Google Scholar 

  123. Yuan XF, Yamasaki Y, Harada A, Kataoka K (2005) Characterization of stable lysozyme-entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde. Polymer 46:7749–7758. doi:10.1016/j.polymer.2005.02.121

    Article  CAS  Google Scholar 

  124. Harada A, Kataoka K (1999) Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios. Langmuir 15:4208–4212. doi:10.1021/la981087t

    Article  CAS  Google Scholar 

  125. Kawamura A, Harada A, Kono K, Kataoka K (2007) Self-assembled nano-bioreactor from block ionomers with elevated and stabilized enzymatic function. Bioconjug Chem 18:1555–1559. doi:10.1021/bc070029t

    Article  CAS  Google Scholar 

  126. Balasubramanian V, Onaca O, Enea R, Hughes DW, Palivan CG (2010) Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opin Drug Deliv 7:63–78. doi:10.1517/17425240903394520

    Article  CAS  Google Scholar 

  127. Solomatin SV et al (2003) Environmentally responsive nanoparticles from block ionomer complexes: effects of pH and ionic strength. Langmuir 19:8069–8076. doi:10.1021/la0300151

    Article  CAS  Google Scholar 

  128. Solomatin SV, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV (2004) Colloidal stability of aqueous dispersions of block ionomer complexes: effects of temperature and salt. Langmuir 20:2066–2068. doi:10.1021/la034895f

    Article  CAS  Google Scholar 

  129. Sanson N, Bouyer F, Gérardin C, In M (2004) Nanoassemblies formed from hydrophilic block copolymers and multivalent ions. Phys Chem Chem Phys 6:1463–1466

    Article  CAS  Google Scholar 

  130. Herlambang S et al (2011) Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. J Control Release 155:449–457. doi:10.1016/j.jconrel.2011.06.019

    Article  CAS  Google Scholar 

  131. Jaturanpinyo M, Harada A, Yuan XF, Kataoka K (2004) Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjug Chem 15:344–348. doi:10.1021/bc034149m

    Article  CAS  Google Scholar 

  132. Kim JO et al (2013) Cross-linked polymeric micelles based on block ionomer complexes. Mendeleev Commun 23:179–186. doi:10.1016/j.mencom.2013.07.001

    Article  CAS  Google Scholar 

  133. Kakizawa Y, Harada A, Kataoka K (1999) Environment-sensitive stabilization of core-shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J Am Chem Soc 121:11247–11248. doi:10.1021/ja993057y

    Article  CAS  Google Scholar 

  134. Bourouina N, Cohen Stuart MA, Kleijn JM (2014) Complex coacervate core micelles as diffusional nanoprobes. Soft Matter 10:320–331. doi:10.1039/c3sm52245h

    Article  CAS  Google Scholar 

  135. Zhao L, Yan Y, Huang JB (2012) Redox-gated potential micellar carriers based on electrostatic assembly of soft coordination suprapolymers. Langmuir 28:5548–5554. doi:10.1021/la300590t

    Article  CAS  Google Scholar 

  136. Atanase LI, Riess G (2013) Micellization of pH-stimulable poly(2-vinylpyridine)-b-poly(ethylene oxide) copolymers and their complexation with anionic surfactants. J Colloid Interface Sci 395:190–197. doi:10.1016/j.jcis.2012.12.058

    Article  CAS  Google Scholar 

  137. Kataoka K, Harada A, Nagasaki Y (2012) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 64:37–48. doi:10.1016/j.addr.2012.09.013

    Article  Google Scholar 

  138. Lee Y, Kataoka K (2009) Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 5:3810–3817. doi:10.1039/b909934d

    Article  CAS  Google Scholar 

  139. Kovacevic D, van der Burgh S, de Keizer A, Cohen Stuart MA (2002) Kinetics of formation and dissolution of weak polyelectrolyte multilayers: role of salt and free polyions. Langmuir 18:5607–5612

    Article  CAS  Google Scholar 

  140. Spruijt E, Sprakel J, Lemmers M, Cohen Stuart MA, van der Gucht J (2010) Relaxation dynamics at different time scales in electrostatic complexes: time-salt superposition. Phys Rev Lett 105(20). doi:10.1103/PhysRevLett.105.208301

  141. Spruijt E, Cohen Stuart MA, van der Gucht J (2013) Linear viscoelasticity of polyelectrolyte complex coacervates. Macromolecules 46:1633–1641. doi:10.1021/ma301730n

    Article  CAS  Google Scholar 

  142. Spruijt E, van den Berg SA, Cohen Stuart MA, van der Gucht J (2012) Direct measurement of the strength of single ionic bonds between hydrated charges. ACS Nano 6:5297–5303. doi:10.1021/nn301097y

    Article  CAS  Google Scholar 

  143. Weinbreck F, de Vries R, Schrooyen P, de Kruif CG (2003) Complex coacervation of whey proteins and gum arabic. Biomacromolecules 4:293–303. doi:10.1021/bm025667n

    Article  CAS  Google Scholar 

  144. Spruijt E, Cohen Stuart MA, van der Gucht J (2010) Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes. Macromolecules 43:1543–1550

    Article  CAS  Google Scholar 

  145. Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67. doi:10.1126/science.283.5398.65

    Article  CAS  Google Scholar 

  146. Bakeev KN, Izumrudov VA, Kuchanov SI, Zezin AB, Kabanov VA (1992) Kinetics and mechanism of interpolyelectrolyte exchange and addition-reactions. Macromolecules 25:4249–4254. doi:10.1021/ma00043a003

    Article  CAS  Google Scholar 

  147. Dautzenberg H, Rother G (2004) Response of polyelectrolyte complexes to subsequent addition of sodium chloride: time-dependent static light scattering studies. Macromol Chem Phys 205:114–121. doi:10.1002/macp.200350083

    Article  CAS  Google Scholar 

  148. Kabanov AV, Kabanov VA (1998) Interpolyelectrolyte and block ionomer complexes for gene delivery: physicochemical aspects. Adv Drug Deliv Rev 30:49–60. doi:10.1016/s0169-409x(97)00106-3

    Article  CAS  Google Scholar 

  149. Chelushkin PS et al (2008) Polyion complex nanomaterials from block polyelectrolyte micelles and linear polyelectrolytes of opposite charge. 2. Dynamic properties. J Phys Chem B 112:7732–7738. doi:10.1021/jp8012877

    Article  CAS  Google Scholar 

  150. Hofs B, de Keizer A, Cohen Stuart MA (2007) On the stability of (highly aggregated) polyelectrolyte complexes containing a charged-block-neutral diblock copolymer. J Phys Chem B 111:5621–5627. doi:10.1021/jp0714318

    Article  CAS  Google Scholar 

  151. Holappa S, Kantonen L, Andersson T, Winnik F, Tenhu H (2005) Overcharging of polyelectrolyte complexes by the guest polyelectrolyte studied by fluorescence spectroscopy. Langmuir 21:11431–11438. doi:10.1021/la051866r

    Article  CAS  Google Scholar 

  152. Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    Article  CAS  Google Scholar 

  153. Katayose S, Kataoka K (1998) Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol) poly(L-lysine) block copolymer. J Pharm Sci 87:160–163. doi:10.1021/js970304s

    Article  CAS  Google Scholar 

  154. Katayose S, Kataoka K (1997) Water-soluble polyion complex associates of DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer. Bioconjug Chem 8:702–707. doi:10.1021/bc9701306

    Article  CAS  Google Scholar 

  155. Dautzenberg H, Konak C, Reschel T, Zintchenko A, Ulbrich K (2003) Cationic graft copolymers as carriers for delivery of antisense-oligonucleotides. Macromol Biosci 3:425–435

    Article  CAS  Google Scholar 

  156. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131. doi:10.1016/s0169-409x(00)00124-1

    Article  CAS  Google Scholar 

  157. Attia ABE et al (2011) Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 16:182–194. doi:10.1016/j.cocis.2010.10.003

    Article  CAS  Google Scholar 

  158. Osada K, Christie RJ, Kataoka K (2009) Polymeric micelles from poly(ethylene glycol)-poly(amino acid) block copolymer for drug and gene delivery. J R Soc Interface 6:S325–S339. doi:10.1098/rsif.2008.0547.focus

    Article  CAS  Google Scholar 

  159. De Santis S, Diociaiuti M, Cametti C, Masci G (2014) Hyaluronic acid and alginate covalent nanogels by template cross-linking in polyion complex micelle nanoreactors. Carbohydr Polym 101:96–103. doi:10.1016/j.carbpol.2013.09.033

    Article  CAS  Google Scholar 

  160. Colfen H (2001) Double-hydrophilic block copolymers: synthesis and application as novel surfactants and crystal growth modifiers. Macromol Rapid Commun 22:219–252. doi:10.1002/1521-3927(20010201)22:4<219::aid-marc219>3.0.co;2-g

    Article  CAS  Google Scholar 

  161. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211. doi:10.1016/j.progpolymsci.2009.10.004

    Article  CAS  Google Scholar 

  162. Zhang J, Liu Y, Li Y, Zhao HX, Wan XH (2012) Hybrid assemblies of Eu-containing polyoxometalates and hydrophilic block copolymers with enhanced emission in aqueous solution. Angew Chem Int Ed 51:4598–4602. doi:10.1002/anie.201107481

    Article  CAS  Google Scholar 

  163. Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476. doi:10.1021/cm049587x

    Article  CAS  Google Scholar 

  164. Liu B, Bazan GC (2004) Interpolyelectrolyte complexes of conjugated copolymers and DNA: platforms for multicolor biosensors. J Am Chem Soc 126:1942–1943. doi:10.1021/ja038667j

    Article  CAS  Google Scholar 

  165. Yang C-C, Tian Y, Jen AKY, Chen W-C (2006) New environmentally responsive fluorescent N-isopropylacrylamide copolymer and its application to DNA sensing. J Polym Sci Part A Polym Chem 44:5495–5504. doi:10.1002/pola.21629

    Article  CAS  Google Scholar 

  166. Fresnais J, Ishow E, Sandre O, Berret JF (2009) Electrostatic co-assembly of magnetic nanoparticles and fluorescent nanospheres: a versatile approach towards bimodal nanorods. Small 5:2533–2536. doi:10.1002/smll.200900703

    Article  CAS  Google Scholar 

  167. Chevry L, Sampathkumar NK, Cebers A, Berret JF (2013) Magnetic wire-based sensors for the microrheology of complex fluids. Phys Rev E 88(6), 062306. doi:10.1103/PhysRevE.88.062306

    Article  CAS  Google Scholar 

  168. Chevry L, Colin R, Abou B, Berret JF (2013) Intracellular micro-rheology probed by micron-sized wires. Biomaterials 34:6299–6305. doi:10.1016/j.biomaterials.2013.05.002

    Article  CAS  Google Scholar 

  169. Hunt JN et al (2011) Tunable, high modulus hydrogels driven by ionic coacervation. Adv Mater 23:2327. doi:10.1002/adma.201004230

    Article  CAS  Google Scholar 

  170. Tamesue S et al (2013) Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants. J Am Chem Soc 135:15650–15655. doi:10.1021/ja408547g

    Article  CAS  Google Scholar 

  171. Brzozowska AM et al (2009) Reduction of protein adsorption on silica and polystyrene surfaces due to coating with complex coacervate core micelles. Colloids Surf A 347:146–155. doi:10.1016/j.colsurfa.2009.03.036

    Article  CAS  Google Scholar 

  172. Brzozowska AM, Zhang Q, de Keizer A, Norde W, Cohen Stuart MA (2010) Reduction of protein adsorption on silica and polysulfone surfaces coated with complex coacervate core micelles with poly(vinyl alcohol) as a neutral brush forming block. Colloids Surf A 368:96–104. doi:10.1016/j.colsurfa.2010.07.023

    Article  CAS  Google Scholar 

  173. Hofs B, Brzozowska A, de Keizer A, Norde W, Cohen Stuart MA (2008) Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core. J Colloid Interface Sci 325:309–315. doi:10.1016/j.jcis.2008.06.006

    Article  CAS  Google Scholar 

  174. van der Burgh S, Fokkink R, de Keizer A, Cohen Stuart MA (2004) Complex coacervation core micelles as anti-fouling agents on silica and polystyrene surfaces. Colloids Surf A 242:167–174. doi:10.1016/j.colsurfa.2004.04.068

    Article  CAS  Google Scholar 

  175. de Vos WM, Meijer G, de Keizer A, Cohen Stuart MA, Kleijn JM (2010) Charge-driven and reversible assembly of ultra-dense polymer brushes: formation and antifouling properties of a zipper brush. Soft Matter 6:2499–2507. doi:10.1039/b926017j

    Article  CAS  Google Scholar 

  176. Voets IK, de Keizer A, Cohen Stuart MA, de Waard P (2006) Core and corona structure of mixed polymeric micelles. Macromolecules 39:5952–5955. doi:10.1021/ma060965o

    Article  CAS  Google Scholar 

  177. Voets IK et al (2008) Temperature responsive complex coacervate core micelles with a PEO and PNIPAAm corona. J Phys Chem B 112:10833–10840. doi:10.1021/jp8014832

    Article  CAS  Google Scholar 

  178. Voets IK et al (2009) Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. Eur Polym J 45:2913–2925. doi:10.1016/j.eurpolymj.2009.06.020

    Article  CAS  Google Scholar 

  179. Feng J, Ruckenstein E (2006) Self-recognition and aggregation between diblock (charged/neutral) polyelectrolytes by Monte Carlo simulations. J Chem Phys 124(12), 124913. doi:10.1063/1.2177248

    Article  CAS  Google Scholar 

  180. Gus’kova OA, Pavlov AS, Khalatur PG, Khokhlov AR (2007) Molecular bottle brushes in a solution of semiflexible polyelectrolytes and block copolymers with an oppositely charged block: a molecular dynamics simulation. J Phys Chem B 111:8360–8368. doi:10.1021/jp067222p

    Article  CAS  Google Scholar 

  181. Kriz J, Dybal J, Dautzenberg H (2001) Cooperative interactions of unlike macromolecules: 3. NMR and theoretical study of the electrostatic coupling of sodium polyphosphates with diallyl(dimethyl)ammonium chloride-acrylamide copolymers. J Phys Chem A 105:7486–7493. doi:10.1021/jp010185b

    Article  CAS  Google Scholar 

  182. Krotova MK, Vasilevskaya VV, Khokhlov AR (2009) The effect of a low-molecular-mass salt on stoichiometric polyelectrolyte complexes composed of oppositely charged macromolecules with different solvent affinities. Polym Sci Ser A 51:1075–1082. doi:10.1134/s0965545x09100046

    Article  Google Scholar 

  183. Ziebarth J, Wang YM (2010) Coarse-grained molecular dynamics simulations of DNA condensation by block copolymer and formation of core-corona structures. J Phys Chem B 114:6225–6232. doi:10.1021/jp908327q

    Article  CAS  Google Scholar 

  184. Brzozowska AM, Keesman KJ, de Keizer A, Leermakers FAM (2011) Formation and structure of ionomer complexes from grafted polyelectrolytes. Colloid Polym Sci 289:889–902. doi:10.1007/s00396-010-2368-6

    Article  CAS  Google Scholar 

  185. Wang W et al (2012) Complex coacervate micelles formed by a C18-capped cationic triblock thermoresponsive copolymer interacting with SDS. Soft Matter 8:11514–11525. doi:10.1039/c2sm26567b

    Article  CAS  Google Scholar 

  186. Stepanek M et al (2012) Wormlike core-shell nanoparticles formed by co-assembly of double hydrophilic block polyelectrolyte with oppositely charged fluorosurfactant. Soft Matter 8:9412–9417. doi:10.1039/c2sm25588j

    Article  CAS  Google Scholar 

  187. Berret JF et al (2004) Electrostatic self-assembly of oppositely charged copolymers and surfactants: a light, neutron, and X-ray scattering study. Macromolecules 37:4922–4930

    Article  CAS  Google Scholar 

  188. Voets IK, Leermakers FA, de Keizer A, Charlaganov M, Cohen Stuart MA (2011) In: Muller AHE, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers I vol. 241. Advances in polymer science. pp 163–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilja Karina Voets .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voets, I.K. (2016). Electrostatically Driven Assembly of Polyelectrolytes. In: Procházka, K. (eds) Fluorescence Studies of Polymer Containing Systems. Springer Series on Fluorescence, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-26788-3_3

Download citation

Publish with us

Policies and ethics