Skip to main content

On-Surface Synthesis of Single Conjugated Polymer Chains for Single-Molecule Devices

  • Conference paper
  • First Online:
  • 1481 Accesses

Part of the book series: Advances in Atom and Single Molecule Machines ((AASMM))

Abstract

Although single-molecule electronic devices have been of great interest for several decades, the fabrication of practical circuits remains challenging due to the lack of reliable ways to wire individual molecules. On-surface synthesis of single conductive polymer chains will be a key technology to solve this problem. We already found that stimulating a molecular layer of diacetylene compound by the tip of scanning tunneling microscope (STM) could initiate chain polymerization. As a result, we could systematically fabricate a single conjugated polydiacetylene chain at designated positions. Subsequently, we developed a novel method (‘chemical soldering’) for connecting the conjugated polymer chains to single organic molecules. The connection of two polydiacetylene chains to a single phthalocyanine molecule was demonstrated. Nanoscale characteristics of the connection were also experimentally and theoretically investigated. Here, we briefly review tip-induced chain polymerization and the chemical soldering methods. This work will help to advance single-molecule electronics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277 (1974)

    Article  CAS  Google Scholar 

  2. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541 (2000)

    Article  CAS  Google Scholar 

  3. Wada, Y., Tsukada, M., Fujihira, M., Matsushige, K., Ogawa, T., Haga, M., Tanaka, S.: Prospects and problems of single molecule information devices. Jpn. J. Appl. Phys. 39, 3835 (2000)

    Article  CAS  Google Scholar 

  4. Kwok, K.S., Ellenbogen, J.C.: Moletronics: future electronics. Mater. Today 5, 28 (2002)

    Article  CAS  Google Scholar 

  5. Joachim, C., Ratner, M.A.: Molecular electronics: some views on transport junctions and beyond. Proc. Natl. Acad. Sci. U.S.A. 102, 8801 (2005)

    Article  CAS  Google Scholar 

  6. Natelson, D., Yu, L.H., Ciszek, J.W., Keane, Z.K., Tour, J.M.: Single-molecule transistors: electron transfer in the solid state. Chem. Phys. 324, 267 (2006)

    Article  CAS  Google Scholar 

  7. Tao, N.J.: Electron transport in molecular junctions. Nat. Nanotechnol. 1, 173 (2006)

    Article  CAS  Google Scholar 

  8. Choi, H., Mody, C.C.M.: The long history of molecular electronics. Microelectronics origins of nanotechnology. Social Stud. Sci. 39, 11 (2009)

    Article  Google Scholar 

  9. Scott, G.D., Natelson, D.: Kondo resonances in molecular devices. ACS Nano 4, 3560 (2010)

    Article  CAS  Google Scholar 

  10. Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23, 1583 (2011)

    Article  CAS  Google Scholar 

  11. de Ruiter, G., van der Boom, M.E.: Sequential logic and random access memory (RAM): a molecular approach. J. Mater. Chem. 21, 17575 (2011)

    Article  Google Scholar 

  12. Fuentes, N., Martín-Lasanta, A., De Cienfuegos, L.Á., Ribagorda, M., Parra, A., Cuerva, J.M.: Organic-based molecular switches for molecular electronics. Nanoscale 3, 4003 (2011)

    Article  CAS  Google Scholar 

  13. Prauzner-Bechcicki, J.S., Godlewski, S., Szymonski, M.: Atomic- and molecular-scale devices and systems for single-molecule electronics. Phys. Status Solidi A 209, 603 (2012)

    Article  CAS  Google Scholar 

  14. Pathem, B.K., Claridge, S.A., Zheng, Y.B., Weiss, P.S.: Molecular switches and motors on surfaces. Annu. Rev. Phys. Chem. 64, 605 (2013)

    Article  CAS  Google Scholar 

  15. Ratner, M.: A brief history of molecular electronics. Nat. Nanotechnol. 8, 378 (2013)

    Article  CAS  Google Scholar 

  16. Okawa, Y., Aono, M.: Nanoscale control of chain polymerization. Nature 409, 683 (2001)

    Article  CAS  Google Scholar 

  17. Okawa, Y., Aono, M.: Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115, 2317 (2001)

    Article  CAS  Google Scholar 

  18. Okawa, Y., Mandal, S.K., Hu, C., Tateyama, Y., Goedecker, S., Tsukamoto, S., Hasegawa, T., Gimzewski, J.K., Aono, M.: Chemical wiring and soldering toward all-molecule electronic circuitry. J. Am. Chem. Soc. 133, 8227 (2011)

    Article  CAS  Google Scholar 

  19. Okawa, Y., Akai-Kasaya, M., Kuwahara, Y., Mandal, S.K., Aono, M.: Controlled chain polymerisation and chemical soldering for single-molecule electronics. Nanoscale 4, 3013 (2012)

    Article  CAS  Google Scholar 

  20. Wegner, G.: Topochemical polymerization of monomers with conjugated triple bonds. Macromol. Chem. Phys. 154, 35 (1972)

    Article  CAS  Google Scholar 

  21. Tieke, B., Lieser, G., Wegner, G.: Polymerization of diacetylenes in multilayers. J. Polym. Sci. Pol. Chem. 17, 1631 (1979)

    Article  CAS  Google Scholar 

  22. Mandal, S.K., Okawa, Y., Hasegawa, T., Aono, M.: Rate-determining factors in the chain polymerization of molecules initiated by local single-molecule excitation. ACS Nano 5, 2779 (2011)

    Article  CAS  Google Scholar 

  23. Sullivan, S.P., Schnieders, A., Mbugua, S.K., Beebe Jr, T.P.: Controlled polymerization of substituted diacetylene self-organized monolayers confined in molecule corrals. Langmuir 21, 1322 (2005)

    Article  CAS  Google Scholar 

  24. Takajo, D., Okawa, Y., Hasegawa, T., Aono, M.: Chain polymerization of diacetylene compound multilayer films on the topmost surface initiated by a scanning tunneling microscope tip. Langmuir 23, 5247 (2007)

    Article  CAS  Google Scholar 

  25. Okawa, Y., Takajo, D., Tsukamoto, S., Hasegawa, T., Aono, M.: Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate. Soft Matter 4, 1041 (2008)

    Article  CAS  Google Scholar 

  26. Bertault, M., Fave, J.L., Schott, M.: The lowest triplet state of a diacetylene. Chem. Phys. Lett. 62, 161 (1979)

    Article  CAS  Google Scholar 

  27. Neumann, W., Sixl, H.: The mechanism of the low temperature polymerization reaction in diacetylene crystals. Chem. Phys. 58, 303 (1981)

    Article  CAS  Google Scholar 

  28. Makarova, M., Okawa, Y., Verveniotis, E., Taniguchi, T., Joachim, C., Aono, M.: Self-assembled diacetylene molecular wires polymerization on an insulating hexagonal boron nitride (0001) surface. (in preparation)

    Google Scholar 

  29. Watanabe, K., Taniguchi, T., Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404 (2004)

    Article  CAS  Google Scholar 

  30. de la Torre, G., Claessens, C.G., Torres, T.: Phthalocyanines: old dyes, new materials. Putting color in nanotechnology. Chem. Commun. 2000 (2007)

    Google Scholar 

  31. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R.: Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129, 014109 (2008)

    Article  Google Scholar 

  32. Nakaya, M., Okawa, Y., Joachim, C., Aono, M., Nakayama, T.: Nanojunction between fullerene and one-dimensional conductive polymer on solid surfaces. ACS Nano 8, 12259 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our collaborators, Prof. J.K. Gimzewski (UCLA), Prof. C. Joachim (CNRS), Prof. S. Goedecker (Univ. of Basel), Prof. T. Hasegawa (Waseda Univ.), Dr. C. Hu (Tokyo Univ. of Science), Dr. S. Tsukamoto (Forschungszentrum Jülich and JARA), Dr. D. Takajo (Osaka Univ.), Prof. M. Nakaya (Nagoya Univ.), Dr. Y. Tateyama, Dr. J.P. Hill, Dr. K. Ariga, Dr. T. Taniguchi, and Dr. T. Nakayama (NIMS). This work was supported by World Premier International Research Center Initiative (WPI), the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and partially supported by JSPS KAKENHI Grant Numbers 21310078 and 24241047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Okawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Okawa, Y., Mandal, S.K., Makarova, M., Verveniotis, E., Aono, M. (2016). On-Surface Synthesis of Single Conjugated Polymer Chains for Single-Molecule Devices. In: Gourdon, A. (eds) On-Surface Synthesis. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-26600-8_8

Download citation

Publish with us

Policies and ethics