Skip to main content

Microbial Food Spoilage: Control Strategies for Shelf Life Extension

  • Chapter
  • First Online:
Microbes in Food and Health

Abstract

Food spoilage can be defined as any sensory change in food flavor which the consumer considers to be unacceptable. Spoilage may arise from insect damage, physical damage (freezing, drying, etc.), chemical changes (usually involving oxygen), and indigenous enzyme activity in the animal or plant tissue. Spoilage is therefore complex and may occur at any stage along the food chain. Bacteria, fungi, yeast, and insects are the main cause for food spoilage. There are a wide range of metabolites produced during microbial spoilage including alcohols, sulfur compounds, hydrocarbons, fluorescent pigments, as well as organic acids, esters, carbonyls, and diamines. Preservation of food for its safety and long shelf life is dependent on the food type and properties (pH, water activity, nutrient content, antimicrobial constituents, etc.), initial microbial flora, and processing and storage conditions (heating, acidification, reduced water activity, storage atmosphere, chilled storage, etc.). This review deals with food spoilage, microbes causing food contamination, prevention of microbial spoilage, and preservation of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri C, Scrocco C, Sinigaglia M, Del Nobile M (2005) Use of chitosan to prolong mozzarella cheese shelf life. J Dairy Sci 88:2683–2688

    Article  CAS  Google Scholar 

  • Angelini P, Pagiotti R, Menghini A, Vianelli B (2006) Antimicrobial activities of various essential oils against foodborne pathogenic or spoilage moulds. Ann Microbiol 56:65–69

    Article  Google Scholar 

  • Arici M, Sagdic O, Gecgel U (2005) Antibacterial effect of Turkish black cumin (Nigella sativa L.) oils. Grasas Y Aceites 56:259–262

    Article  CAS  Google Scholar 

  • Australian Government (2010) Food poisoning and contamination. Department of Health. www.health.gov.au

  • Baixas-Nogueras S, Bover-Cid S, Veciana-Nogues MT, Marine-Font A, Vidal-Carou MC (2005) Biogenic amine index for freshness evaluation in iced Mediterranean hake (Merluccius merluccius). J Food Prot 68:2433–2438

    CAS  Google Scholar 

  • Balamatsia C, Paleologos E, Kontominas M, Savvaidis I (2006a) Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4°C: possible role of biogenic amines as spoilage indicators. Int J Gen Mol Microbiol 89:9–17

    CAS  Google Scholar 

  • Balamatsia C, Rogga K, Badeka A, Kontominas M, Savvaidis I (2006b) Effect of low-dose radiation on microbiological, chemical, and sensory characteristics of chicken meat stored aerobically at 4°C. J Food Prot 69:1126–1133

    Google Scholar 

  • Balasubramaniam VM, Farkas D, Turek E (2008) Preserving foods through high-pressure processing. Food Technol 62(11):32–38

    Google Scholar 

  • Barry E, Dori Z (2000) Enterobacteriaceae. In Mandell, Douglas, and Bennett’s Principles and practice of infectious diseases, 5th edn, Chap. 206, pp 2294–2310

    Google Scholar 

  • Blum D (2012) Food that lasts forever. TIME Magazine, 12 Mar 2012. Print

    Google Scholar 

  • Bota G, Harrington P (2006) Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 68:629–635

    Article  CAS  Google Scholar 

  • Boyce TG et al (1995) Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med 333:364–368

    Article  CAS  Google Scholar 

  • Casey G, Dobson A (2003) Molecular detection of Candida krusei contamination in fruit juice using the citrate synthase gene cs1 and a potential role for this gene in the adaptive response to acetic acid. J Appl Microbiol 95:13–22

    Article  CAS  Google Scholar 

  • Castro M, Garro O, Gerschenson L, Campos C (2003) Interaction between potassium sorbate, oil and Tween 20: its effect on the growth and inhibition of Z. bailii in model salad dressings. J Food Safety 23:47–59

    Article  CAS  Google Scholar 

  • Cha D, Chinnan M (2003) Emerging role of nisin in food and packaging systems. Food Sci Biotechnol 12:206–212

    CAS  Google Scholar 

  • Chang S, Kang D (2004) Alicyclobacillus spp. in the fruit juice industry: history, characteristics, and current isolation/detection procedures. Crit Rev Microbiol 30:55–74

    Article  Google Scholar 

  • Charles N, Williams S, Rodrick G (2006) Effects of packaging systems on the natural microflora and acceptability of chicken breast meat. Poult Sci 85:1798–1801

    Article  CAS  Google Scholar 

  • Clark M. E. coli food poisoning. www.about-ecoli.com

  • Couto J, Neves F, Campos F, Hogg T (2005) Thermal inactivation of the wine spoilage yeasts Dekkera/Brettanomyces. Int J Food Microbiol 104:337–344

    Article  CAS  Google Scholar 

  • Deegan L, Cotter P, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    Article  CAS  Google Scholar 

  • Desrosier NW (1963) The technology of food preservation. AVI Publications, Westport, Conn

    Google Scholar 

  • Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714

    Article  CAS  Google Scholar 

  • Doyle M (2007) Microbial food spoilage: losses and control strategies. Food Research Institute, University of Wisconsin–Madison, Madison, WI, pp 1–16

    Google Scholar 

  • Ellis DI, Goodacre R (2006) Quantitative detection and identification methods for microbial spoilage. In: Balakburn CW (ed) Food spoilage microorganisms. CRC Press LLC, Boca Raton, FL, pp 3–27

    Chapter  Google Scholar 

  • Ellis DI, Broadhurst D, Goodacre R (2004) Rapid and quantitative detection of the microbial spoilage of beef by Fourier transform infrared spectroscopy and machine learning. Anal Chim Acta 514:193–201

    Article  CAS  Google Scholar 

  • Ercolini D, Russo F, Torrieri E, Masi P, Villani F (2006) Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72:4663–4671

    Article  CAS  Google Scholar 

  • Fan X, Annous B, Sokorai K, Burke A, Mattheis J (2006) Combination of hot-water surface pasteurization of whole fruit and low-dose gamma irradiation of fresh-cut cantaloupe. J Food Prot 69:912–919

    Google Scholar 

  • Feng P, Stephen D, Mechail A, William B (2002) Enumeration of Escherichia coli and the coliform bacteria. In Bacteriological analytical manual, 8th edn

    Google Scholar 

  • Fitzgerald D, Stratford M, Gasson M, Narbad A (2004) The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. J Food Prot 67:391–395

    CAS  Google Scholar 

  • Food Poisoning. A fact of life (2009). www.nutrition.org.uk, www.foodafactoflife.org.uk

  • Freedman DH (2011) The bright, Hi-Tech future of food preservation. Discover Magazine, Sept 2011

    Google Scholar 

  • Frenzen P, Drake A, Anqulo F (2005) Economic cost of illness due to E. coli O157 infections in the United States. J Food Prot 68:2623–2630

    Google Scholar 

  • Garg A, Suri R, Barrowman N, Rehman F, Matsell D, Rosas M, Salvadori M, Haynes R, Clark W (2003) Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. J Am Med Assoc 290:1360

    Article  CAS  Google Scholar 

  • Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M (2002) Food spoilage: interactions between food spoilage bacteria. Int J Food Microbiol 78:79–97

    Article  Google Scholar 

  • Griffin P, Tauxe R (1991) The epidemiology of infections caused by E. coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidem Rev 13:60–98

    CAS  Google Scholar 

  • Harris RS, Von Lesecke H (1973) Nutritional evaluation of food processing. Avi Publishing, Westport, Conn

    Google Scholar 

  • Hocking AD, Begum M, Stewart CM (2006) Inactivation of fruit spoilage yeasts and moulds using high pressure processing. Adv Exp Med Biol 571:239–246

    Article  CAS  Google Scholar 

  • Innocente N, Biasutti M, Padovese M, Moret S (2007) Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem 101:1285–1289

    Article  CAS  Google Scholar 

  • James M (2000) Modern food microbiology at 21, 6th edn. Aspen Publishers, Gaithersburg, MD

    Google Scholar 

  • Jamuna M, Babusha S, Jeevaratnam K (2005) Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiol 22:449–454

    Article  CAS  Google Scholar 

  • Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Annu Rev Food Sci Technol 3:381–403

    Article  CAS  Google Scholar 

  • Kang P, Park K, Eun J, Oh S (2006) Antimicrobial effect of roselle (Hibiscus sabdariffa L.) petal extracts on food-borne microorganisms. Food Sci Biotechnol 15:260–263

    Google Scholar 

  • Kantor LS, Upton K, Manchester A, Oliveira V (1997) Estimating and addressing America’s food losses. Food Rev 20:2–12

    Google Scholar 

  • Kaur J, Kaur S, Mahajan A (2013) Herbal medicines: possible risks and benefits. Am J Phytomed Clin Ther 2:226–239

    Google Scholar 

  • Lin MS, Al-Holy M, Chang SS, Huang YQ, Cavinato AG, Kang DH, Rasco BA (2005) Rapid discrimination of Alicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. Int J Food Microbiol 105:369–376

    Article  CAS  Google Scholar 

  • Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50

    Article  CAS  Google Scholar 

  • Mahapatra A, Muthukumarappan K, Julson J (2005) Applications of ozone, bacteriocins and irradiation in food processing: a review. Crit Rev Food Sci Nutr 45:447–461

    Article  CAS  Google Scholar 

  • Martorell P, Stratford M, Steels H, Fernandez-Espinar MT, Querol A (2007) Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114:234–242

    Article  CAS  Google Scholar 

  • Matan N, Rimkeeree H, Mawson AJ, Chompreeda P, Haruthaithanasan V, Parker M (2006) Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int J Food Microbiol 107:180–185

    Article  CAS  Google Scholar 

  • Mead PM et al (1999) Food-related illness and death in the United States. Emerg Infect Dis 5:607–625

    Article  CAS  Google Scholar 

  • Meyer R, Grant M, Luedecke L, Leung H (1989) Effects of pH and water activity on microbiological stability of salad dressing. J Food Prot 52:477–479

    Google Scholar 

  • Oussalah M, Caillet S, Saucier L, Lacroix M (2006) Antimicrobial effects of selected plant essential oils on the growth of a Pseudomonas putida strain isolated from meat. Meat Sci 73:236–244

    Article  CAS  Google Scholar 

  • Pepe O, Blaiotta G, Moschetti G, Greco T, Villani F (2003) Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Appl Environ Microbiol 69:2321–2329

    Article  CAS  Google Scholar 

  • Pitt J, Hocking A (1997) Fungi and food spoilage. Blackie Academic and Professional, New York

    Book  Google Scholar 

  • Rangel J, Phyllis H, Collen C, Griffin P, David L (2005) Epidemiology of E. coli O157:H7 outbreaks, United States, 1982-2002. Emerg Inf Dis 11:603

    Article  Google Scholar 

  • Rasch M, Andersen J, Nielsen K, Flodgaard L, Christensen H, Givskov M, Gram L (2005) Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Appl Environ Microbiol 71:3321–3330

    Article  CAS  Google Scholar 

  • Rawdkuen S, Phunsiri S, Damrongpol K, Benjakul S (2012) Antimicrobial activity of some potential active compounds against food spoilage microorganisms. Afr J Biotechnol 11:13914–13921

    CAS  Google Scholar 

  • Restuccia C, Randazzo C, Caggia C (2006) Influence of packaging on spoilage yeast population in minimally processed orange slices. Int J Food Microbiol 109:146–150

    Article  CAS  Google Scholar 

  • Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632

    Article  CAS  Google Scholar 

  • Sherratt TN, Wilkinson DM, Bain RS (2006) Why fruits rot, seeds mold and meat spoils: a reappraisal. Ecol Model 192:618–626

    Article  CAS  Google Scholar 

  • Siegler R (1995) The hemolytic uremic syndrome. Pediatr Nepharol 42:1505

    CAS  Google Scholar 

  • Siegmund B, Pollinger-Zierler B (2006) Odor thresholds of microbially induced off-flavor compounds in apple juice. J Agric Food Chem 54:5984–5989

    Article  CAS  Google Scholar 

  • Sivasankar B (2004) Food processing and preservation. Prentice-Hall of India, New Delhi

    Google Scholar 

  • Smith DA (2007) Food preservation, safety, and shelf life extension. University of Nebraska-Lincoln Extension, Institute of Agriculture Natural Resources, Lincoln, NE

    Google Scholar 

  • Smits G, Brul S (2005) Stress tolerance in fungi—to kill a spoilage yeast. Curr Opin Biotechn 16:225–230

    Article  CAS  Google Scholar 

  • Su C, Brandt L (1995) E. coli O157:H7 infection in humans. Ann Internal Med 123:698–707

    Article  CAS  Google Scholar 

  • Tahiri I, Makhlouf J, Paquin P, Fliss I (2006) Inactivation of food spoilage bacteria and E. coli O157:H7 in phosphate buffer and orange juice using dynamic high pressure. Food Res Int 39:98–105

    Article  CAS  Google Scholar 

  • Torres JA, Velazquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67:95–112

    Article  Google Scholar 

  • Tremonte P, Sorrentino E, Succi M, Reale A, Maiorano G, Coppola R (2005) Shelf life of fresh sausages stored under modified atmospheres. J Food Prot 68:2686–2692

    CAS  Google Scholar 

  • Voysey P (2007) Microbiological risk assessment. Campden & Chorleywood Food Research Association. http://www.food.gov.uk

  • World of Microbiology and Immunology (2003) http://www.encyclopedia.com/topic/food_preservation.aspx

  • Yousef A (2013) Natural antimicrobial peptides for food applications and beyond. Food Science and Technology. Ohio State University, Columbus, OH

    Google Scholar 

  • Yousef AE, Balasubramaniam VM (2013) Physical methods of preservation. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4th edn. ASM Press, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer A. Keera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel-Aziz, S.M., Asker, M.M.S., Keera, A.A., Mahmoud, M.G. (2016). Microbial Food Spoilage: Control Strategies for Shelf Life Extension. In: Garg, N., Abdel-Aziz, S., Aeron, A. (eds) Microbes in Food and Health. Springer, Cham. https://doi.org/10.1007/978-3-319-25277-3_13

Download citation

Publish with us

Policies and ethics