Skip to main content

Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria

  • Chapter
  • First Online:
Bacterial Metabolites in Sustainable Agroecosystem

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 12))

Abstract

Majority of plants harbor a diverse community of bacteria, which can positively affect host plant growth. Plant-associated bacteria have various plant growth-promoting (PGP) traits. Rhizobacteria are PGP bacteria within rhizosphere that can enhance plant growth by a wide variety of mechanisms like production of phytohormones, siderophore, 1-aminocyclopropane-1-carboxylate (ACC) deaminase and volatile organic compounds, phosphate solubilization, biological nitrogen fixation, rhizosphere engineering, quorum sensing signal interference and inhibition of biofilm formation, exhibiting antifungal activity, induction of systemic resistance, promoting beneficial plant–microbe symbioses and interference with pathogen toxin production. In recent years, interest in the use of plant growth-promoting rhizobacteria (PGPRs) to promote plant growth has increased. The use of PGPRs has steadily increased in agriculture and offers an attractive alternative to replace chemical fertilizers, pesticides and supplements. To act as PGPRs, any bacteria should be able to colonize and survive in the rhizosphere of plants. A competent colonization is essential for PGP effects produced by the bacteria and the important first step in the interaction of bacteria with plants. The purpose of this review was to give an overview on the most important PGP traits involved in plant more colonization. It seems that PGP traits of production of IAA and ACC deaminase may be required for endophytic and rhizosphere competence by PGPRs. In addition, this review indicates that the selected bacterial isolates based on their IAA and ACC deaminase-producing traits have the potential for more colonization of plants. Such bacteria may be used for a sustainable crop management under field conditions. Bacterial IAA together with ACC deaminase increase root surface area and length, and thereby provide the plant to have greater access to soil nutrients under different environmental conditions including stress situations. Therefore, proper screening of PGPRs can be useful for future agricultural applications, providing higher production yields, reduced input costs and negative environmental impact due to the use of chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, New York

    Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–189

    Article  CAS  Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of l-aminocyclopropanecarboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Adhikari T, Joseph C, Yang G, Phillips D, Nelson L (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47(10):916–924

    Article  CAS  PubMed  Google Scholar 

  • Adriano-Anaya ML, Salvador-Figueroa M, Ocampo JA, Garcia Romero I (2006) Hydrolytic enzyme activities in maize (Zea mays) and sorghum (Sorghum bicolor) roots inoculated with Gluconacetobacter diazotrophicus and Glomus intraradices. Soil Biol Biochem 38:879–886

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ait bakra E, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:410–417

    Article  Google Scholar 

  • Alagawadi AR, Gaur AC (1992) Inoculation of Azospirillum brasilense and phosphate solubilizing bacteria on yield of sorghum (Sorghum bicolor L. Moench) in dry land. Trop Agric 69:347–350

    Google Scholar 

  • Ali S, Charles TC, Glick BR (2012) Delay of carnation flower senescence by bacterial endo-phytes expressing ACC deaminase. J Appl Microbiol 113:1139–1144

    Article  CAS  PubMed  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez R, Nissen SJ, Sutter EG (1989) Relationship between indole-3-acetic acid levels in apple (Malus pumila Mill.) rootstocks cultured in vitro and adventitious root formation in the presence of indole-3-butyric acid. Plant Physiol 89:439–443

    Google Scholar 

  • Amhad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  Google Scholar 

  • Amir H, Pineau R (2003) Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Can J Microbiol 49:288–293

    Article  CAS  PubMed  Google Scholar 

  • Amir HG, Shamsuddin ZH, Halimi MS, Marziah M, Ramlan MF (2005) Enhancement in nutrient accumulation and growth of oil palm seedlings caused by PGPR under field nursery conditions. Commun Soil Sci Plant Anal 36:2059–2066

    Article  CAS  Google Scholar 

  • Andrews J, Harris R (2000) The ecology and biogeography of microorganisms on plant surface. Ann Rev Phytopathol 38:145–180

    Article  Google Scholar 

  • Araujo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  CAS  PubMed  Google Scholar 

  • Araujo WL, Marcon J, Macceroni Junior W, van Elsas JD, van Vuured JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315

    Article  CAS  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots. Ecol 88:541–549

    Article  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PG during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Arshad M (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosph 18:611–620

    Article  Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117:130–135

    Article  Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khaliq A (2002) Relationship between in ritro production of auxins by rhizobacteria and their growth-promoting activities in brassicajunceal. Biol Fertil Soils 35:231–237

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Ayala S, Rao EVSP (2002) Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Azevedo JL, Maccheroni JJ, Pereira JO, Ara WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Glick BR (2012) Indigenous African agriculture and plant associated microbes: current practice and future transgenic prospects. Sci Res Essays 7(28):2431–2439

    Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field grown wheat (Triticum aestivum L.) in Mali. Plant Soil 28:51–58

    Article  CAS  Google Scholar 

  • Bacilio-Jimenez M (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  CAS  Google Scholar 

  • Badenochjones J, Rolfe BG, Letham DS (1983) Phytohormones, Rhizobium mutants, and nodulation in legumes. 3. Auxin metabolism in effective and ineffective pea root nodules. Plant Physiol 73:347–352

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant, Cell Environ 32:666–681

    Article  CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM (2001) Root specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol Plant 37:730–741

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baldani VLD, Dobereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12:439–443

    Article  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351

    Article  CAS  PubMed  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbiosis. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kaira A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimumsanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C et al (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1986) Inoculation of rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J Gen Microbiol 132:3407–3414

    Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:102–121

    Article  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Puente ME, Rodriguez-Mendoza MN, Toledo G, Holguin G, Ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellin A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 1–56

    Chapter  Google Scholar 

  • Begonia MFT, Kremer RJ (1994) Chemotaxis of deleterious rhizobacteria to velvet leaf (Abutilon theophrasti Medik.) seeds and seedlings. FEMS Microbiol Ecol 15:227–236

    Article  CAS  Google Scholar 

  • Belimov AA (2012) Interactions between associative bacteria and plants: the role of biotic and abiotic factors. Palmarium Academic Publishers, Moscow

    Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyea CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Belimov AA, Safronova VI, Mimura T (2002) Response of spring rape to inoculation with plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48:189–199

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Belimov A, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am 3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009a) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Davies WJ (2009b) ACC deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water-limited conditions. Aspects Appl Biol 98:163–169

    Google Scholar 

  • Bellis P, Ercolani GL (2001) Growth interactions during bacterial colonization of seedling rootlets. Appl Environ Microbiol 67:1945–1948

    Article  PubMed  PubMed Central  Google Scholar 

  • Bender C, Alarcón-Chaidez F, Gross D (1999) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benizri E, Courtade A, Picard C, Guckert A (1998) Role of maize root exudates in the production of auxins by Pseudomonas fluorescens M.3.1. Soil Biol Biochem 30:1481–1484

    Article  CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Article  Google Scholar 

  • Benjamin P, Sergio S, Benoit L, Florence A, Carole S, Patrick D, Laurent LA (2008) Role for auxin during actinorhizal symbioses formation? Plant Signal Behav 3(1):34–35

    Article  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhusan Bal H, Das S, Tushar K, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 00:1–13

    Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Env Microbiol 76:4626–4632

    Article  CAS  Google Scholar 

  • Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R (2006) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiol-Sgm 152:2421–2431

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000a) Rhizobial inoculation improves uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Bjorkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295-22: effect of environmental stress. J Am Soc Hortic Sci 123:35–40

    Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, De Olivera OC, Urquaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Böhm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533

    Article  PubMed  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Bonaterra A, Ruz L, Badosa E, Pinochet J, Montesinos E (2003) Growth promotion of Prunus root stocks by root treatment with specific bacterial strains. Plant Soil 255:555–569

    Article  CAS  Google Scholar 

  • Bottini R, Cassan F, Picolli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion. Appl Microbiol Biotechnol 65:497–503

    Article  CAS  PubMed  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) The hidden half plant roots. Marcel Dekker, New York, pp 641–649

    Google Scholar 

  • Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3- acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl MT, Lindow SE (1997) Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol Plant Microbe Interact 10:450–499

    Article  Google Scholar 

  • Brandl MT, Lindow SE (1998) Contribution of indole- 3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl M, Clark EM, Lindow SE (1996) Characterization of theindole-3-acetic acid (IAA) biosynthetic pathway in an epiphytic strain of Erwinia herbicola and IAA production in vitro. Can J Microbiol 42:586–592

    Article  CAS  Google Scholar 

  • Brandl MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98:3454–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Ann Rev Phytopathol 12:181–197

    Article  CAS  Google Scholar 

  • Buell CR, Joardar V, Lindeberg M et al (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. triciti by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cakmacki R, Kantar F, Algur OF (1999) Sugar beet and barley yields in relation to Bacillus polymyxa and Bacillus megaterium var. phosphaticum inoculation. J Plant Nutr Soil Sci 162:437–442

    Article  Google Scholar 

  • Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

    Article  CAS  PubMed  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Carrillo-Castañeda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea-Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26:1801–1814

    Article  CAS  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophores of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartela PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling of Indian mustard (Brassica compestris). Braz J Microbiol 38:124–130

    Article  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanway CP, Holl FB (1993) First year yield performance of spruce seedlings inoculated with plant growth promoting rhizobacteria. Can J Microbiol 39:1084–1088

    Article  Google Scholar 

  • Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ (2013) The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot 64(6):1565–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZY, McConkey BJ, Glick BR (2010) Proteomic studies of plant–bacterial interactions. Soil Biol Biochem. doi:10.1016/j.soilbio.2010.05.033

  • Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl Soil Ecol 61:255–263

    Article  Google Scholar 

  • Chet I, Zilberstein Y, Henis Y (1973) Chemotaxis of Pseudomonas lachrymans to plant extracts and to water droplets collected from the leaf surface of resistant and susceptible plants. Physiol Plant Pathol 3:473–479

    Article  CAS  Google Scholar 

  • Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31:30–36

    CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka A (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Cle´ ment C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Czarny JC, Grichko VP, Glick BR (2006) Genetic modulation of ethylene biosynthesis and signaling in plants. Biotechnol Adv 24:410–419

    Article  CAS  PubMed  Google Scholar 

  • Czarny JC, Shah S, Glick BR (2007) Response of canola plants at the transcriptional levelto expression of a bacterial ACC deaminase in the roots. In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in plant ethylene research. Springer, Dordrecht, pp 377–382

    Chapter  Google Scholar 

  • Dakora FD, Philips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb. var. mungo. Biol Plant 29:350–354

    Article  CAS  Google Scholar 

  • Datta M, Banish S, Gupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:365–373

    Article  CAS  Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones, biosynthesis, signal transduction, action. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • de Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, The Netherlands, pp 173–195

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasiliense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    Article  CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Anguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Palnt growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dodd IC, Ruiz-Lozano JM (2012) Microbial enhancement of crop resource use efficiency. Currt Opinion Biotechnol 23:236–242

    Article  CAS  Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th international crop science congress

    Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Domka J, Lee J, Wood TK (2006) YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol 72:2449–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donate-Correa J, Leon-Barrios M, Perez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272

    Article  Google Scholar 

  • Dörr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plantemicrobe and fungusemicrobe interactions. Mol Microbiol 30:7–17

    Article  PubMed  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Duineveld BM, Rosado AS, Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the Chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soil. doi:10.1007/s00374-009-0366-y

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato Y, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Article  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  CAS  Google Scholar 

  • Elliot LF, Lynch JM (1984) Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol Biochem 16:69–71

    Article  Google Scholar 

  • Elvira-Recuenco M, Van Vuurde JW (2000) Natural incidence of endophytic bacteria in pea cultivars under field conditions. Can J Microbiol 46:1036–1041

    Article  CAS  PubMed  Google Scholar 

  • Etesami H, Mirseyedhosseini H, Alikhani HA (2013) Rapid screening of berseem clover (Trifolium alexandrinum) endophytic bacteria for rice plant seedlings growth-promoting agents. ISRN Soil Sci

    Google Scholar 

  • Etesami H, Mirseyedhosseini H, Alikhani HA (2014a) Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiol Mol Biol Plants 20(4):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Mirsyed Hosseini H, Alikhani HA, Mohammadi L (2014b) Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670

    Article  CAS  Google Scholar 

  • Etesami H, Alikhani HA, Mirsyed Hosseini H (2015) Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. Methodsx. doi:10.1016/j.mex.2015.02.008

  • Evans ML, Ishikawa H, Estelle MA (1994) Responses of arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194:215–222

    Article  CAS  Google Scholar 

  • Fallik E, Okon Y, Fisher M (1988) Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem 20:45–49

    Article  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Article  Google Scholar 

  • Farzana Y, Radziah O, Kamaruza-man S, Saad MS (2007) Effect of PGPR inoculation on growth and yield of sweet potato. J Biol Sci 7:421–424

    Article  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Fett WF, Osman SG, Dunn MF (1987) Auxin production by plant-pathogenic pseudomonads and xanthomonads. Appl Environ Microbiol 53:1839–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fokkema NJ, Lorbeer JW (1974) Interactions between Alternariaporri and the saprophytic mycoflora of onion leaves. Phytopathology 64:1128–1133

    Article  Google Scholar 

  • Foster RC, Rovira AD (1978) The ultrastructure of the rhizosphere of Trifolium subterraneum L. In: Loutit MW, Miles JAR (eds) Microbial Ecol. Springer, Berlin, pp 278–290

    Chapter  Google Scholar 

  • Fouts DE, Abramovitch RB, Alfano JR (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci USA 99:2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil: microbial production and function. Dekker, New York

    Google Scholar 

  • Fromin N, Achouak W, Thiery JM, Heulin T (2001) The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microb Ecol 37:21–29

    Article  CAS  Google Scholar 

  • Fry SC (1989) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiol Plant 75:532–536

    Article  CAS  Google Scholar 

  • Fuentes-Ramirez LE, Bustillos-Cristales R, Tapia-Hernandez A, Jimenez-Salgado T, Wang ET, Martinez-Romero E, Caballero-Mellado J (2001) Novel nitrogen fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formations. FEMS Microbiol Ecol 56:195–206

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35:1261–1265

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop

    Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions. J Appl Microbiol 108:236–245

    Article  CAS  PubMed  Google Scholar 

  • García de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growthpromoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  PubMed  Google Scholar 

  • Garcia Lucas JA, Probanza A, Ramos B, Colon Flores JJ, Gutierrez Manero FJ (2004) Effects of plant growth promoting rhizobacteria (PGPRs) on the biological nitrogen fixation, nodulation and growth of Lupinus albus L. cv. Multolupa. Eng Life Sci 4(1):71–77

    Article  CAS  Google Scholar 

  • Ghanem ME, Hichri I, Smigocki AC, Albacete A, Fauconnier ML, Diatloff E, Martinez-Andujar C, Lutts S, Dodd IC, Perez-Alfocea F (2011) Root-targeted biotechnology to mediate hormonal signaling and improve crop stress tolerance. Plant Cell Rep 30:807–823

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growthpromoting bacilli facilitate the seedling growth of canola Brassica campestris. Plant Physiol Biochem 41:277–281

    Article  CAS  Google Scholar 

  • Ghosh S, Sengupta C, Maiti TK, Basu PS (2008) Production of 3-indolylacetic acid in root nodules and culture by a Rhizobium species isolated from root nodules of the leguminous pulse Phaseolus mungo. Folia Microbiol 53:351–355

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett Publishers, Boston, p 234

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 4:109–117

    Article  Google Scholar 

  • Glick BR (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR (2013) Bacteria with ACC deaminase can promote plant growthand help to feed the world. Microbiol Res 169(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant-growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaux Y (1998) Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant Microbe Interact 11:156–162

    Article  CAS  PubMed  Google Scholar 

  • Gnanamanickam SS (2006) Plant-associated bacteria. Springer wwwspringercom, pp 195–218

    Google Scholar 

  • Goldberg R (1980) Cell wall polysaccharidase activities and growth processes: a possible relationship. Physiol Plant 50:261–264

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC-deaminase containing plant growth promoting bacteria. Plant Physiol Bioch 39:11–17

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35 S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25

    Article  CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53

    Article  CAS  PubMed  Google Scholar 

  • Grimes HD, Mount MS (1987) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 6:27–30

    Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under ironlimited conditions. Appl Environ Microbiol 67:1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guinel FC, Geil RD (2002) A model for the development of the rhizobial and arbuscular mycorrhizal symbioses in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Gulati A, Sharma N, Vyas P, Sood S, Rahi P, Pathania V, Prasad R (2010) Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch Microbiol 192:975–983

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo Francisco R, Talon M FR (2001) The plant growth-promoting rhizobacteria Bacillus pumilus and Bacillis licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Halda-Alija L (2003) Identification of indole-3- acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L. Can J Microbiol 49:781–787

    Article  CAS  PubMed  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Isr J Plant Sci 44:37–42

    Article  Google Scholar 

  • Hallmann J (1997) Bacterial endophytes in agricultural crops bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach AM (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth promoting bacteriaaffects crown gall development. Can J Microbiol 53:1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Charles TC, Glick BR (2011) An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Can J Microbiol 57:278–286

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316:13–24

    Article  CAS  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interaction between Trichoderma harzianum strain T-22 and maize inbred line Mo17 and effects of these interactions on disease caused by Phytium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  PubMed  Google Scholar 

  • Hartman A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184–196

    Article  CAS  PubMed  Google Scholar 

  • He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. BBA-Mol Cell Res 1694:181–206

    CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howie WJ, Cook RJ, Weller DM (1987) Effects of soil matrix potential and cell motility on wheat root colonization by fluorescent pseudomonads suppressive to take-all. Phytopathology 77:286–292

    Article  Google Scholar 

  • Hunter WJ (1989) Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant 76:31–36

    Article  CAS  Google Scholar 

  • Idris EES, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

    Article  CAS  PubMed  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD, Ahmer BMM, Stone JM, Triplett EW (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB (1991) Ethylene in root growth and development. In: Matoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 159–181

    Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from PGPR, Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025

    Article  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR et al (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  PubMed  Google Scholar 

  • James EK, Gyaneshwar P, Manthan N, Barraquio WL, Reddy PM, Ianetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Jameson PE (2000) Cytokinins and auxins in plant-pathogen interactions—an overview. Plant Growth Reg 32:369–380

    Article  CAS  Google Scholar 

  • Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Chen L, Belimov AA, Shaposhnikov AI et al (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63(18):6421–6430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin QL, Thilmony R, Zwiesler-Vollick J, He SY (2003) Type III protein secretion in Pseudomonas syringae. Microbes Infect 5:301–310

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere e a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Joshi FR, Dhwani KD, Archana G, Desai AJ (2009) Enhanced survival of and nodule occupancy of Pigeon pea nodulating Rhizobium sp ST1 expressing fegA gene of Bradyrhizobium japonicum 61A152. On line J Boil Sci 9(2):40–51

    Article  CAS  Google Scholar 

  • Jouanneau JP, Lapous D, Guern J (1991) In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96:459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungk A (2001) Root hair and acquisition of plant nutrients from soils. J Plant Nutr Soil Sci 164:121–129

    Article  CAS  Google Scholar 

  • Kaldorf M, Ludwig-Muller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    Article  CAS  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7(11):1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kaneshiro T, Kwolek WF (1985) Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci 42:141–146

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophicendophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86

    Article  CAS  Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agri Social Sciences 2:216–218

    Google Scholar 

  • Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilchrist K, Katupitiya S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growthpromoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Arshad M, Zahir Z (2005) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. In: Lichtfouse E, Navarrete M, Debaeke P, Veronique S, Alberola C (eds) Sustainable agriculture, vol 5. Springer, The Netherlands, pp 551–570

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kinkel LL, Wilson M, Lindow SE (2000) Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb Ecol 39:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowich RK (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Gutierrez-Estrada A, McInroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can J Microbiol 53:159–167

    Article  CAS  PubMed  Google Scholar 

  • Knoester M, van Loon LC, van den Heuvel J, Hennig J, Bol JF, Linthorst HJM (1998) Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. U. S. A. 95:1933–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraffczyk I, Trolldeiner G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  CAS  Google Scholar 

  • Kravchenko LV, Leonava EI, Tikhonovich IA (1994) Effect of root exudates of non-legame plants on the response of auxin production by associated diazotrophs. Microb Release 2:267–271

    CAS  Google Scholar 

  • Kucera B (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani- Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Trivedi P, Pandey A (2007a) Pseudomonas corrugata: a suitable bioinoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol Biochem 39:3093–3100

    Article  CAS  Google Scholar 

  • Kumar R, Bhatia R, Kukreja K, Behl RK, Dudeja SS, Narula N (2007b) Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol 47:436–439

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Pandey P, Maheshwari DK (2009) Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. Eur J Soil Biol 45:334–340

    Article  CAS  Google Scholar 

  • Lacava PT, Li WB, Araujo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393

    CAS  PubMed  Google Scholar 

  • Lalonde M, Knowles R (1975) Ultrastructure, composition, and biogenesis of the encapsulation material surrounding the endophyte in Alnus crispa var. mollis root nodules. Can J Bot 53:1951–1971

    Article  Google Scholar 

  • Lambrecht M, Vande Broek A, Dosselaere F, Vanderleyden J (1999) The ipdC promoter auxin-responsive element of Azospirillum brasilense, a prokaryotic ancestral form of the plant AuxRE. Mol Microbiol 32:889–890

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden-Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol producing Pseudomonas fluorescens to colonize the roots of pea. Appl Environ Microbiol 68:3226–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landa BB, Mavrodi DM, Thomashow LS, Weller DM (2003) Interactions between strains of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens in the rhizosphere of wheat. Phytopathol 93:982–994

    Article  CAS  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla J, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  PubMed  Google Scholar 

  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW41-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:359–367

    Article  CAS  PubMed  Google Scholar 

  • Li JP, Daniel H, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ye Z, Wong M (2009) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    Article  CAS  Google Scholar 

  • Lim HS, Kim SD (1995) The role and characterization of β-1, 3-glucanase in biocontrol of Fusarium solani by Pseudomonas stutzeri YLP-1. Curr Microbiol 33(4):295–301

    Google Scholar 

  • Lindberg T, Granhall U, Tomenius H (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fert Soils 1:123–129

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindow SE, Desurmont C, Elkins R, McGourty G, Clark E, Brandl MT (1998) Occurrence of indole-3-acetic acid-producing bacteria on pear trees and their association with fruit russet. Phytopathology 88:1149–1157

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Nester EW (2006) Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proc Natl Acad Sci USA 103:4658–4662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Loper JE, Schroth MN (1986) Influence of bacterial sources of indole-3-acetic acid biosynthetic on root elongation of sugar beet. Phytopathology 76:386–389

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2004) From auxin homeostasis to understanding plant pathogen and plant symbiont interaction: editor’s research interests. J Plant Growth Regul 23:1–8

    Article  CAS  Google Scholar 

  • Ludwig-Muller J, Güther M (2007) Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav 3:194–196

    Article  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GB (2004) In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer, Academic Publishers, New York, pp 403–430

    Chapter  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Chin-A-Woeng T, Bloemberg G (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester

    Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. J Hazard Mater 166:1154–1161

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Vicente J, Freitas H (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediation 13:126–139

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MN, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake. J Hazard Mater 196:230–237

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268–278

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK (2010) Plant growth and health promoting bacteria. Springer-Berlin Heidelberg, Germany, p 448

    Google Scholar 

  • Maheshwari DK, Aeron A, Dubey RC, Agarwal M, Dheeman S, Shukla S (2014) Multifaceted beneficial associations with Pseudomonas and Rhizobia on growth promotion of Mucuna pruriens L. J Pure Appl Microbiol 8(6):4657–4667

    Google Scholar 

  • Mahmoud ALE, Abd-Alla MH (2001) Siderophore production by some microorganisms and their effect on Bradyrhizobium-Mung Bean symbiosis. Int J Agric Biol 03(2):157–162

    CAS  Google Scholar 

  • Malakoff D (1998) Coastal ecology: death by suffocation in the Gulf of Mexico. Science 281:190–192

    Article  CAS  Google Scholar 

  • Malboobi M, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Heravi KM (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477

    Article  CAS  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT, Lindow SE, Barash I (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11:634–642

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner P, Yang CH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Martínez-Morales LJ, Soto-Urzúa L, Baca BE, Sánchez-Ahédo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Viveros O, Jorquera M, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mathesius U, Schlaman HR, Spaink HP, Of Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  CAS  PubMed  Google Scholar 

  • Mattos KA, Vania LM, Pádua, Alexandre R, Hallack LF, Bianca C et al (2008) Endophytic colonization of rice (Oryza sativa L.) by the diazotrophic bacterium Burkholderia kururiensis and its ability to enhance plant growth. Anais da Academia Brasileira de Ciências 80(3):477–493

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mazzola M, White FF (1994) A mutation in the indole-3-aceticacid biosynthesis pathway of Pseudomonas syringae pv syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol 176:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990

    Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwley P, Pilet PE (1991) Local treatment with indole-3-acetic acid induces differential growth responses in Zea mays L. roots. Planta 185:58–64

    Google Scholar 

  • Miché L, Battistoni F, Gemmer S, Belghazi M, Reinhold-Hurek B (2006) Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol Plant Microbe Interact 19:502–511

    Article  PubMed  CAS  Google Scholar 

  • Mills HA, Jones JB (1996) Plant analysis handbook II: a practical sampling, preparation, analysis, and interpretation guide. Micro-macro Publishing, Athens, pp 6–18, 69, 81

    Google Scholar 

  • Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated fromelm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114

    Article  PubMed  Google Scholar 

  • Mohnen D, Shinshi H, Felix G, Meins F (1985) Hormonal regulation of β-1,3-glucanase messenger RNA levels in cultured tobacco tissues. EMBO J 4:1631–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mole BM, Baltrus DA, Dangl JL, Grant SR (2007) Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol 15:363–371

    Article  CAS  PubMed  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Morgan PW, Drew CD (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    Article  CAS  Google Scholar 

  • Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, pp 318–339

    Google Scholar 

  • Müller M, Deigele C, Ziegler H (1989) Hormonal interactions in the rhizosphere of maize (Zea mays L.) and their effects on plant development. Z Pflanzenernähr Bodenk 152:247–254

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahair ZA, Naveed M, Asghar HN, Asghar M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, De´fago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Obertello M, Sy MO, Laplaze L, Santi C, Svistoonoff S, Auguy F, Bogusz D, Franche C (2003) Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. Afr J Biotechnol 2:528–538

    Article  CAS  Google Scholar 

  • Okon Y, Itzigsohn R (1995) The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol Adv 13:415–424

    Article  CAS  PubMed  Google Scholar 

  • Okon Y, Vanderleyden J (1997) Root-associated Azospirillum species can stimulate plants. Am Soc Microbiol News 63:366–370

    Google Scholar 

  • Omar SA, Abd-Alla MH (1994) Enhancement of faba bean nodulation, nitrogen fixation, and growth by different microorganisms. Biol Plant 36:295–300

    Article  CAS  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Maheshwari DK (2007a) Bioformulation of Burkholderia sp. MSSP multispecies consortium growth promotion Cajanus cajan. Can J Microbiol 53:213–222

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Maheshwari DK (2007b) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180

    Google Scholar 

  • Parke JL (1991) Root colonization by indigenous and introduced microorganisms. In: Keister DL, Gregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 33–42

    Chapter  Google Scholar 

  • Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoids like compounds by rhizobacteria. J Appl Microbiol 86:36–44

    Article  CAS  Google Scholar 

  • Parmar N, Dadarwal KR (2000) Stimulation of plant growth of chickpea by inoculation of fluorescent Pseudomonads. J Appl Microbiol 86:36–44

    Article  Google Scholar 

  • Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 51:1449–1457

    Google Scholar 

  • Paterson E, Gebbing T, Abel C et al (2006) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  Google Scholar 

  • Patten C, Glick B (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microb 68:3795–3801

    Article  CAS  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbioses: what are the shared features. Plant Cell 8:1899–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthetic enzymes by indole- 3-acetic acid in etiolated peas. Plant Mol Biol 28:293–301

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growthpromoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacterial interactions. Plant, Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  CAS  PubMed  Google Scholar 

  • Petrini LE, Petrini O, Laflamme G (1989) Recovery of endophytes of Abiens balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection 70:97–103

    Google Scholar 

  • Phi QT, Park YM, Ryu CM, Park SH, Ghim SY (2008) Functional identification 1 and expression of indole-3-pyruvate decarboxylase from Paenibacillus polymyxa E681. J Microbiol Biotechnol 18:1235–1244

    CAS  PubMed  Google Scholar 

  • Pielach CA, Roberts DP, Kobayashi DY (2008) Metabolic behavior of bacterial biological control agents in soil and plant rhizospheres. In: Laskin AI, Sariaslani S, Gadd GM (eds) Applied microbiology, vol 65. Academic, New York, pp 199–215

    Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrits N, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van Der Ent S, Van Pelt JA, Van Loon LC (2002) The role of ethylene in rhizobacteria- induced systemic resistance (ISR). In: Ramina A, Chang C, Giovannoni J, Klee H, Perata P, Woltering E (eds) Advances in ethylene research. Springer, The Netherlands, pp 325–331

    Google Scholar 

  • Pilet PE, Saugy M (l987) Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol 83:33–38

    Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    Article  CAS  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The rhizosphere. In: Biochemistry and organic substances at the soil plant interface, 2nd edn. CRC, Taylor and Francis, Boca Raton

    Google Scholar 

  • Pirlak M, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184

    Article  CAS  Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142:168–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto P, Schilirò E, Maldonado-González MM, Valderrama R, Barroso-Albarracín JB, Mercado-Blanco J (2011) Root hairs play a key role in the endophytic colonization of olive roots by Pseudomonas spp. with biocontrol activity. Microb Ecol 62:435–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Degreef J, Schell J, Vanonckelen H (1991) Stimulation of indole-3- acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    Article  CAS  PubMed  Google Scholar 

  • Prusty R, Grisafi P, Fink GR (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 101:4153–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadt-Hallman A, Benhamou N, Kloepper JW (1997) Bacterial endophytes in cotton: mechanisms of entering the plant. Can J Microbiol 43:577–582

    Article  Google Scholar 

  • Raja P, Uma S, Gopal H, Govindarajan K (2006) Impact of bioinoculants on rice root exudates, biological nitrogen fixation and plant growth. J Biol Sci 6(5):815–823

    Article  Google Scholar 

  • Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr (VI) on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer-Plus 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Randy OC, Angel Contreras-Cornejo H, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  Google Scholar 

  • Rasche F, Marco-Noales E, Velvis H, Overbeek LS, Lo’pez MM, Elsas JD, Sessitsch A (2006) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 298:123–140

    Article  CAS  Google Scholar 

  • Raupach GS, Kloepper JW (2000) Biocontrol of cucumber diseases in the field by plant growth-promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis 84:1073–1075

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: 1 bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Remans R, Spaepen S, Vanderleyden J (2006) Auxin signaling in plant defense. Science 313:171

    Article  PubMed  Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  CAS  PubMed  Google Scholar 

  • Rezzonico E, Flury MJ, Beffa R (1998) Transcriptional down-regulation by abscisic acid of pathogenesis-related β-1,3-glucanase genes in tobacco cell cultures. Plant Physiolo 117:585–592

    Article  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE (ed) Soil biota. Management in sustainable farming systems. CSIRO, Melbourne, pp 50–62

    Google Scholar 

  • Riov J, Yang SF (1989) Ethylene and auxin-ethylene interaction in adventitious root formation in mung bean (Vigna radiata) cuttings. J Plant Growth Regul 8:131–141

    Article  CAS  Google Scholar 

  • Rodelas B, Gonza’lez-Lo’pez J, Martı’nez-Toledo MV, Pozo C, Salmero’n V (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L). Biol Fertil Soils 29(2):165–169

    Article  CAS  Google Scholar 

  • Rodrıguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez H, Vessely S, Shah S, Glick BR (2008) Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr Microbiol 57:170–174

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    Article  CAS  PubMed  Google Scholar 

  • Rokhzadi A, Asgazadeh A, Darvish F, Nour-Mohammed G, Majidi E (2008) Influence of plant growth promoting rhizobacteria on dry matter accumulation and yield of chick pea (Cicer arietinium L.) under filed conditions. American-Eurasian J Agric Environ Sci 3:253–257

    Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interaction with hosts. Mol Plant Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rothballer M, Schmid M, Fekete A, Hartmann A (2005) Comparative in situ analysis of ipdC-gfpmut3 promoter fusions of Azospirillum brasilense strains Sp7 and Sp245. Environ Microbiol l7:1839–1846

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endopHytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Maxwell Dow J (2009) The versatility and adaptation of bacteria from the genus StenotropHomonas. Nature Rev Microbiol 7:514–525

    Article  CAS  Google Scholar 

  • Sadrnia M, Maksimava N, Khromsova E, Stanislavich S, Arjomandzadegan M (2011) Study the effect of bacterial 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) on resistance to salt stress in tomato plant. Anal Univ Oradea 18:120–123

    Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2006) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) Effects of 1-aminocyclopropane- 1-carboxylic acid (ACC) deaminase from Pseudomonas fluorescence against saline stress under in vitro and field conditions in groundnut (Arachis hypogea L.) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Saubidet MI, Fatta N, Barneix AJ (2002) The effect of inoculation with Azospirillum brasilense on growth and nitrogen utilization by wheat plants. Plant Soil 245:215–222

    Article  CAS  Google Scholar 

  • Schippers B, Baker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schroth MN, Weinhold AR (1986) Root-colonizing bacteria and plant health. Horts 21:1295–1298

    Google Scholar 

  • Schulz B, Boyle C, Sieber N (2006) Microbial root endophytes. Springer, Berrlin

    Book  Google Scholar 

  • Senthilkumar M, Anandham R, Madhaiyan M, Venkateswaran V (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin Heidelberg, pp 61–96

    Chapter  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Mol Plant Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  CAS  PubMed  Google Scholar 

  • Shaharooma B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir Z (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Shakir MA, Asghari B, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112

    CAS  Google Scholar 

  • Sharp RG, Chen L, Davies WJ (2011) Inoculation of growing media with the rhizobacterium Variovorax paradoxus 5C-2 reduces unwanted stress responses in hardy ornamental species. Sci Hortic 129(4):804–811

    Article  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  PubMed  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1999) Kinetics of iron complexing and metal exchange in solution by rhioferrin, a fungal siderophore. Soil Sci Soc Am J 63:1681–1687

    Article  CAS  Google Scholar 

  • Shinshi H, Mohnen D, Meins F Jr (1987) Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci Am 84:89–93

    Article  CAS  Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774

    Article  CAS  Google Scholar 

  • Siciliano SD, Goldie H, Germida JJ (1998) Enzymatic activity in root exudates of dahurian wild rye (Elymus dauricus) that degrades 2-chlorobenzoic acid. J Agric Food Chem 46:5–7

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress eth-ylene synthesis with halotolerant bacteria containing ACC deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Silva HSA, Silva RDS, Mounteer A (2003) Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. J Phytopathol 151:42–46

    Article  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smidt M, Kosuge T (1978) The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol 13:203–214

    Article  CAS  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant associated microbes. Annu Rev Phytopathol 37:473–491

    Article  CAS  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Sanjua’n J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole- 3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Okon Y (2009) Plant growth-promoting actions of rhizobacteria. In: van Loon LC (ed) Plant innate immunity book series: advances in botanical research, vol 51. Academic, San Diego, pp 283–320

    Google Scholar 

  • Stearns JC, Woody OZ, McConkey BJ, Glick BR (2012) Effects of bacterial ACC deaminase on Brassica napus gene expression measured with an Arabidopsis thaliana microarray. Mol Plant Microb Interact 25:668–676

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Sturz AV, Cristie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Suzuki S, He YX, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  CAS  PubMed  Google Scholar 

  • Swain M, Naskar S, Ray R (2007) Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisets by Bacillus subtilis isolated from culturable cow dung microflora. Pol. J Microbiol 56(2):103–110

    CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang WH (1994) Yield increasing bacteria (YIB) and biological control of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Commonwealth Scientific and Industrial Research Organization, Adelaide, pp 267–278

    Google Scholar 

  • Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    Article  CAS  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Ludueña L, Pena D et al (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Teaumroong N, Teamtaisong K, Sooksa-ngun T, Boonkerd N (2001) The dizotrophic endophytic bacteria in Thai rice. In: Suriyaphan O, Hansakdi E, Jongruaysup S, Simons R (eds) Proceeding of the fifth ESAFS international conference on rice environments and rice products. Krabi, Thailand, pp 147–160

    Google Scholar 

  • Theunis M (2005) IAA biosynthesis in rhizobia and its potential role in symbiosis. In: Ph.D. thesis, Universiteit Antwerpen

    Google Scholar 

  • Thomas FC, Woeng CA, Lugtenberg BJJ (2008) Root colonisation following seed inoculation. Springer,

    Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilak KV, Ranganayaki N (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  CAS  PubMed  Google Scholar 

  • Toklikishvili N, Dandurishvili N, Tediashvili M, Giorgobiani N, Szegedi E, Glick BR et al (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall for-mation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030

    Article  Google Scholar 

  • Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ (2001) The Arabidopsis isr1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala A, Metraux JP, Van Loon LC, Pieterse CMJ (2002) Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11–21

    Article  CAS  PubMed  Google Scholar 

  • Tsakelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162:69–76

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • van Elsas JD, van Overbeek LS (1993) Bacterial responses to soil stimuli. In: Kjelleberg S (ed) Starvation in bacteria. Plenum, New York, pp 55–79

    Chapter  Google Scholar 

  • van Loon LC (2007) Plant responses to plant-growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long distance auxin transport regulation in the Medicago truncatula super numerary nodules mutant. Plant Physiol 140:1494–1506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Puyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61:723–728

    Article  PubMed  CAS  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed  PubMed Central  Google Scholar 

  • Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte O, Oden S, Mol A, Vereecke D, Goethals K, El Jaziri M, Prinsen E (2005) Biosynthesis of auxin by the Gram positive phytopathogen Rhodococcans fascians is controlled by compounds specific to infect plant tissues. Appl Environ Microbiol 71:1169–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderhoff LN, Dute RR (1981) Auxin-regulated wall loosening and sustained growth in elongation. Plant Physiol 67:146–149

    Article  Google Scholar 

  • Varvaro L, Martella L (1993) Virulent and avirulent isolates of Pseudomonas syringae subsp. savastanoi as colonizers of olive leaves: evaluation of possible biological control of the olive knot pathogen. EPPO Bull 23:423–427

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Vivas A, Barea JM, Azcón R (2005) Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn Concentrations. Microb Ecol 49:416–442

    Article  CAS  PubMed  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrobial 3:34–40

    Google Scholar 

  • Walker R, Rossall S, Asher MJ (2002) Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agents applied as seed treatments. J Appl Microbiol 92:228

    Article  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Ramette A, Punjasamamwong P, Zala M, Natsch A, Moenne-Loccoz Y, Defago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    Article  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: planteendophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Wheeler CT, Henson IE, MacLaughlin ME (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz 140:52–57

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–512

    Article  CAS  PubMed  Google Scholar 

  • Wiehe W, Flich HG (1995) Establishment of plant growth promoting bacteria in the rhizosphere of subsequent plants after harvest of the inoculated precrops. Microbiol Res 150:331–336

    Article  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci 11:1935–1939

    Article  CAS  PubMed  Google Scholar 

  • Yamada T (1993) The role of auxin in plant-disease development. Annu Rev Phytopathol 31:253–273

    Article  CAS  PubMed  Google Scholar 

  • Yang SH, Zhang Q, Guo JH, Charkowski AO, Glick BR, Ibekwe AM (2007) Global effect of indole-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Appl Environ Microbiol 73:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Holingsworth S, Orgambide G, de Bruijn FJ, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • You CB, Lin M, Fang XJ, Song W (1995) Attachment of Alcaligenes to rice roots. Soil Biol Biochem 7:463–466

    Article  Google Scholar 

  • Yuan Z, Haudecoeur E, Faure D, Kerr K, Nester E (2008) Comparative transcriptome 1 analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signaling cross talk and Agrobacterium-plant co-evolution. Cell Microbiol 10:2339–2354

    Article  CAS  PubMed  Google Scholar 

  • Zahir AZ, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2007) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009a) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009b) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin-Heidelberg, pp 23–51

    Chapter  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M et al (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:720–725

    Google Scholar 

  • Zhender GW, Yao C, Murphy JF, Sikora ER, Kloepper JW, Schuster DJ, Polston JE (1999) Microbeinduced resistance against pathogens and herbivores: evidence of effectiveness in agriculture. In: Agarwal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. APS Press, St Paul, p 33

    Google Scholar 

Download references

Acknowledgments

We wish to thank the head of the Soil Science Department, the Vice-Chanceller for research at University of Tehran for providing the necessary facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Etesami, H., Alikhani, H.A., Mirseyed Hosseini, H. (2015). Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. In: Maheshwari, D. (eds) Bacterial Metabolites in Sustainable Agroecosystem. Sustainable Development and Biodiversity, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-24654-3_8

Download citation

Publish with us

Policies and ethics