Skip to main content

Interplay Between DNA-Binding/Catalytic Functions and Oligomerization of Retroviral Integrases Studied by a Combination of Time-Resolved Fluorescence Anisotropy, Fluorescence Correlation Spectroscopy and Resonance Energy Transfer

  • Chapter
  • First Online:
Reviews in Fluorescence 2015

Part of the book series: Reviews in Fluorescence ((RFLU,volume 8))

Abstract

Fluorescence based technologies are widely used to study enzyme properties and to understand their mode of action. In particular, fluorescence anisotropy (including both steady-state and time-resolved approaches), fluorescence correlation spectroscopy (FCS) and resonance energy transfer (FRET) were used for monitoring the DNA-binding and enzymatic activities of retroviral integrases. This protein is involved in the integration step of the viral genome that is crucial for retroviral replication. Thanks to these methodologies, important information has been obtained regarding the oligomeric status responsible for integrase catalytic activities as well as the positioning of integrase onto its DNA substrate. We present in this chapter a steady-state fluorescent anisotropy-based assay which monitors, in the same sample, both the DNA-binding step and the subsequent reaction catalysed by integrase allowing the separation of binding and catalytic parameters. The combination of this approach with the analysis of time-resolved fluorescence anisotropy decays is also particularly suitable for studying the relationship between the overall size of integrase-DNA complexes and the catalytic activity. The characterization of catalytically competent complexes by time-resolved fluorescence anisotropy led to the identification of the dimeric form of HIV-1 integrase as the optimal active form for catalytic activity. The protein:DNA ratio determines the aggregative properties of HIV-1 integrase, and high ratios led to aggregative and inactive forms. The better solubility of prototype foamy virus (PFV-1) integrase compared to HIV-1 integrase was compatible with protein labeling using an extrinsic fluorophore, allowing the study of the integrase/DNA interaction specificity by FRET between the fluorescently-labeled PFV-1 integrase and viral DNA ends. It has also been possible to investigate, by a combined approach of FCS and time-resolved fluorescence anisotropy, the oligomeric state of PFV-1 integrase. The results show a monomer-dimer equilibrium of PFV-1 integrase in solution and that DNA promotes protein dimerization although high protein:DNA ratios led to aggregated complexes, confirming results obtained with HIV-1 integrase. The use of fluorescence-based assays for the study of the mechanism of action of anti-integrase compounds is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF (2008) Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5:114

    Article  PubMed  PubMed Central  Google Scholar 

  2. Craigie R, Bushman FD (2012) HIV DNA integration. Cold Spring Harb Perspect Med 2:a006890

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heuer TS, Brown PO (1998) Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex. Biochemistry-Us 37:6667–6678

    Article  CAS  Google Scholar 

  5. Lutzke RAP, Plasterk RHA (1998) Structure-based mutational analysis of the C-terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: critical residues for protein oligomerization and DNA binding. J Virol 72:4841–4848

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vink C, Lutzke RAP, Plasterk RHA (1994) Formation of a stable complex between the human-immunodeficiency-virus integrase protein and viral-DNA. Nucleic Acids Res 22:4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engelman A, Hickman AB, Craigie R (1994) The core and carboxyl-terminal domains of the integrase protein of human-immunodeficiency-virus type-1 each contribute to nonspecific DNA-binding. J Virol 68:5911–5917

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Esposito D, Craigie R (1998) Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J 17:5832–5843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jenkins TM, Esposito D, Engelman A, Craigie R (1997) Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J 16:6849–6859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC (2000) Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry-Us 39:9275–9284

    Article  CAS  Google Scholar 

  11. Lee SP, Xiao JM, Knutson JR, Lewis MS, Han MK (1997) Zn2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36:173–180

    Article  CAS  PubMed  Google Scholar 

  12. Zheng RL, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 93:13659–13664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan E, Mack JP, Katz RA, Kulkosky J, Skalka AM (1991) Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baranova S, Tuzikov FV, Zakharova OD, Tuzikova NA, Calmels C, Litvak S, Tarrago-Litvak L, Parissi V, Nevinsky GA (2007) Small-angle X-ray characterization of the nucleoprotein complexes resulting from DNA-induced oligomerization of HIV-1 integrase. Nucleic Acids Res 35:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, Mouscadet JF, Deprez E (2008) Insight into the integrase-DNA recognition mechanism – a specific DNA-binding mode revealed by an enzymatically labeled integrase. J Biol Chem 283:27838–27849

    Article  CAS  PubMed  Google Scholar 

  16. Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont-Sarcos A, Tarrago-Litvak L, Litvak S, Parissi V (2005) HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 33:977–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, Gottikh M, Mouscadet JF, Brochon JC, Deprez E (2006) Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem 281:22707–22719

    Article  CAS  PubMed  Google Scholar 

  18. Li M, Mizuuchi M, Burke TR, Craigie R (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25:1295–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li M, Jurado KA, Lin S, Engelman A, Craigie R (2014) Engineered hyperactive integrase for concerted HIV-1 DNA integration. PLoS One 9:e105078

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chow SA, Vincent KA, Ellison V, Brown PO (1992) Reversal of integration and DNA splicing mediated by integrase of human-immunodeficiency-virus. Science 255:723–726

    Article  CAS  PubMed  Google Scholar 

  21. Delelis O, Parissi V, Leh H, Mbemba G, Petit C, Sonigo P, Deprez E, Mouscadet JF (2007) Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase. PLoS One 2:e608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Delelis O, Petit C, Leh H, Mbemba G, Mouscadet JF, Sonigo P (2005) A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology 2:31

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang DW, He HQ, Guo SX (2014) Hairpin DNA probe-based fluorescence assay for detecting palindrome cleavage activity of HIV-1 integrase. Anal Biochem 460C:36–38

    Article  Google Scholar 

  24. Gerton JL, Brown PO (1997) The core domain of HIV-1 integrase recognizes key features of its DNA substrates. J Biol Chem 272:25809–25815

    Article  CAS  PubMed  Google Scholar 

  25. Laboulais C, Deprez E, Leh H, Mouscadet JF, Brochon JC, Le Bret M (2001) HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays. Biophys J 81:473–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agapkina J, Smolov M, Barbe S, Zubin E, Zatsepin T, Deprez E, Le Bret M, Mouscadet JF, Gottikh M (2006) Probing of HIV-1 integrase/DNA interactions using novel analogs of viral DNA. J Biol Chem 281:11530–11540

    Article  CAS  PubMed  Google Scholar 

  27. Engelman A, Craigie R (1995) Efficient magnesium-dependent human-immunodeficiency-virus type-1 integrase activity. J Virol 69:5908–5911

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Skinner LM, Sudol M, Harper AL, Katzman M (2001) Nucleophile selection for the endonuclease activities of human, ovine, and avian retroviral integrases. J Biol Chem 276:114–124

    Article  CAS  PubMed  Google Scholar 

  29. Leh H, Brodin P, Bischerour J, Deprez E, Tauc P, Brochon JC, LeCam E, Coulaud D, Auclair C, Mouscadet JF (2000) Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase. Biochemistry 39:9285–9294

    Article  CAS  PubMed  Google Scholar 

  30. Molteni V, Rhodes D, Rubins K, Hansen M, Bushman FD, Siegel JS (2000) A new class of HIV-1 integrase inhibitors: The 3,3,3′,3′-tetramethyl-1,1′-spirobi(indan)-5,5′,6,6′-tetrol family. J Med Chem 43:2031–2039

    Article  CAS  PubMed  Google Scholar 

  31. Mazumder A, Neamati N, Pilon AA, Sunder S, Pommier Y (1996) Chemical trapping of ternary complexes of human immunodeficiency virus type I integrase, divalent metal, and DNA substrates containing an abasic site – implications for the role of lysine 136 in DNA binding. J Biol Chem 271:27330–27338

    Article  CAS  PubMed  Google Scholar 

  32. Marchand C, Johnson AA, Karki RG, Pais GC, Zhang X, Cowansage K, Patel TA, Nicklaus MC, Burke TR Jr, Pommier Y (2003) Metal-dependent inhibition of HIV-1 integrase by beta-diketo acids and resistance of the soluble double-mutant (F185K/C280S). Mol Pharmacol 64:600–609

    Article  CAS  PubMed  Google Scholar 

  33. Lee HS, Kang SY, Shin CG (2005) Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol Cell 19:246–255

    Article  CAS  Google Scholar 

  34. Oh YT, Shin CG (1999) Comparison of enzymatic activities of the HIV-1 and HFV integrases to their U5 LTR substrates. Biochem Mol Biol Int 47:621–629

    CAS  PubMed  Google Scholar 

  35. Pahl A, Flugel RM (1995) Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc-finger domain of Hiv-1. J Biol Chem 270:2957–2966

    Article  CAS  PubMed  Google Scholar 

  36. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468:326–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hare S, Smith SJ, Metifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, Cherepanov P (2011) Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol 80:565–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107:20057–20062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T, Engelman A (2005) Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci U S A 102:17308–17313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR (1998) Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc Natl Acad Sci U S A 95:9150–9154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20:7333–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen JCH, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM (2000) Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A 97:8233–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maignan S, Guilloteau JP, Zhou-Liu Q, Clement-Mella C, Mikol V (1998) Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J Mol Biol 282:359–368

    Article  CAS  PubMed  Google Scholar 

  44. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME, Brochon JC (2001) DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Proc Natl Acad Sci U S A 98:10090–10095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bloom LB, Turner J, Kelman Z, Beechem JM, O’Donnell M, Goodman MF (1996) Dynamics of loading the beta sliding clamp of DNA polymerase III onto DNA. J Biol Chem 271:30699–30708

    Article  CAS  PubMed  Google Scholar 

  46. Ciubotaru M, Ptaszek LM, Baker GA, Baker SN, Bright FV, Schatz DG (2003) RAG1-DNA binding in V(D)J recombination – specificity and DNA-induced conformational changes revealed by fluorescence and CD spectroscopy. J Biol Chem 278:5584–5596

    Article  CAS  PubMed  Google Scholar 

  47. Perez-Howard GM, Weil PA, Beechem JM (1995) Yeast TATA binding protein interaction with DNA: fluorescence determination of oligomeric state, equilibrium binding, on-rate, and dissociation kinetics. Biochemistry 34:8005–8017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  49. Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF (2004) Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol Pharmacol 65:85–98

    Article  CAS  PubMed  Google Scholar 

  50. Pinskaya M, Romanova E, Volkov E, Deprez E, Leh H, Brochon JC, Mouscadet JF, Gottikh M (2004) HIV-1 integrase complexes with DNA dissociate in the presence of short oligonucleotides conjugated to acridine. Biochemistry 43:8735–8743

    Article  CAS  PubMed  Google Scholar 

  51. Hazuda DJ, Wolfe AL, Hastings JC, Robbins HL, Graham PL, Lafemina RL, Emini EA (1994) Viral long terminal repeat substrate-binding characteristics of the human-immunodeficiency-virus type-1 integrase. J Biol Chem 269:3999–4004

    CAS  PubMed  Google Scholar 

  52. Smolov M, Gottikh M, Tashlitskii V, Korolev S, Demidyuk I, Brochon JC, Mouscadet JF, Deprez E (2006) Kinetic study of the HIV-1 DNA 3′-end processing – single-turnover property of integrase. FEBS J 273:1137–1151

    Article  CAS  PubMed  Google Scholar 

  53. Carayon K, Leh H, Henry E, Simon F, Mouscadet JF, Deprez E (2010) A cooperative and specific DNA-binding mode of HIV-1 integrase depends on the nature of the metallic cofactor and involves the zinc-containing N-terminal domain. Nucleic Acids Res 38:3692–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee SP, Han MK (1996) Zinc stimulates Mg2+-dependent 3′-processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry 35:3838–3844

    Google Scholar 

  55. van den Ent FMI, Vos A, Plasterk RHA (1999) Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans-complementation analysis. J Virol 73:3176–3183

    PubMed  PubMed Central  Google Scholar 

  56. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P (2009) A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5:e1000259

    Article  PubMed  PubMed Central  Google Scholar 

  57. Michel F, Crucifix C, Granger F, Eiler S, Mouscadet JF, Korolev S, Agapkina J, Ziganshin R, Gottikh M, Nazabal A, Emiliani S, Benarous R, Moras D, Schultz P, Ruff M (2009) Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J 28:980–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao Z, Mckee CJ, Kessl JJ, Santos WL, Daigle JE, Engelman A, Verdine G, Kvaratskhelia M (2008) Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 integrase during viral DNA binding. J Biol Chem 283:5632–5641

    Article  CAS  PubMed  Google Scholar 

  59. Asante-Appiah E, Seeholzer SH, Skalka AM (1998) Structural determinants of metal-induced conformational changes in HIV-1 integrase. J Biol Chem 273:35078–35087

    Article  CAS  PubMed  Google Scholar 

  60. AsanteAppiah E, Skalka AM (1997) A metal-induced conformational change and activation of HIV-1 integrase. J Biol Chem 272:16196–16205

    Article  CAS  Google Scholar 

  61. Taki M, Shiota M, Taira K (2004) Transglutaminase-mediated N- and C-terminal fluorescein labeling of a protein can support the native activity of the modified protein. Protein Eng Des Sel 17:119–126

    Article  CAS  PubMed  Google Scholar 

  62. Dicker IB, Samanta HK, Li ZF, Hong Y, Tian Y, Banville J, Remillard RR, Walker MA, Langley DR, Krystal M (2007) Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors. J Biol Chem 282:31186–31196

    Article  CAS  PubMed  Google Scholar 

  63. Johnson AA, Santos W, Pais GC, Marchand C, Amin R, Burke TR Jr, Verdine G, Pommier Y (2006) Integration requires a specific interaction of the donor DNA terminal 5′-cytosine with glutamine 148 of the HIV-1 integrase flexible loop. J Biol Chem 281:461–467

    Article  CAS  PubMed  Google Scholar 

  64. Semenova EA, Marchand C, Pommier Y (2008) HIV-1 integrase inhibitors: update and perspectives. Adv Pharmacol 56:199–228

    Article  CAS  PubMed  Google Scholar 

  65. Mesplede T, Wainberg MA (2014) Is resistance to dolutegravir possible when this drug is used in first-line therapy? Viruses 6:3377–3385

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bonnenfant S, Thomas CM, Vita C, Subra F, Deprez E, Zouhiri F, Desmaele D, d’Angelo J, Mouscadet JF, Leh H (2004) Styrylquinolines, integrase inhibitors acting prior to integration: a new mechanism of action for anti-integrase agents. J Virol 78:5728–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mekouar K, Mouscadet JF, Desmaele D, Subra F, Leh H, Savoure D, Auclair C, d’Angelo J (1998) Styrylquinoline derivatives: a new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J Med Chem 41:2846–2857

    Article  CAS  PubMed  Google Scholar 

  68. Zouhiri F, Mouscadet JF, Mekouar K, Desmaele D, Savoure D, Leh H, Subra F, Le Bret M, Auclair C, d’Angelo J (2000) Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J Med Chem 43:1533–1540

    Article  CAS  PubMed  Google Scholar 

  69. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T, Cole JL, Hazuda DJ (2000) HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci U S A 97:11244–11249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD (2000) Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650

    Article  CAS  PubMed  Google Scholar 

  71. Munir S, Thierry S, Subra F, Deprez E, Delelis O (2013) Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology 10:87

    Article  PubMed  PubMed Central  Google Scholar 

  72. Demeulemeester J, Chaltin P, Marchand A, De Maeyer M, Debyser Z, Christ F (2014) LEDGINs, non-catalytic site inhibitors of HIV-1 integrase: a patent review (2006–2014). Expert Opin Ther Pat 24:609–632

    Article  CAS  PubMed  Google Scholar 

  73. Li Y, Xuan S, Feng Y, Yan A (2015) Targeting HIV-1 integrase with strand transfer inhibitors. Drug Discov Today 20:435–449

    Article  CAS  PubMed  Google Scholar 

  74. Engelman A, Cherepanov P (2008) The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog 4:e1000046

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maillot B, Levy N, Eiler S, Crucifix C, Granger F, Richert L, Didier P, Godet J, Pradeau-Aubreton K, Emiliani S, Nazabal A, Lesbats P, Parissi V, Mely Y, Moras D, Schultz P, Ruff M (2013) Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex. PLoS One 8:e60734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Delelis O, Malet I, Na L, Tchertanov L, Calvez V, Marcelin AG, Subra F, Deprez E, Mouscadet JF (2009) The G140S mutation in HIV integrases from raltegravir-resistant patients rescues catalytic defect due to the resistance Q148H mutation. Nucleic Acids Res 37:1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Delelis O, Thierry S, Subra F, Simon F, Malet I, Alloui C, Sayon S, Calvez V, Deprez E, Marcelin AG, Tchertanov L, Mouscadet JF (2010) Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrob Agents Chemother 54:491–501

    Article  CAS  PubMed  Google Scholar 

  78. Munir S, Thierry E, Malet I, Subra F, Calvez V, Marcelin AG, Deprez E, Delelis O (2015) G118R and F121Y mutations identified in patients failing raltegravir treatment confer dolutegravir resistance. J Antimicrob Chemother 70:739–749

    Article  CAS  PubMed  Google Scholar 

  79. Rice WG, Supko JG, Malspeis L, Buckheit RW Jr, Clanton D, Bu M, Graham L, Schaeffer CA, Turpin JA, Domagala J, Gogliotti R, Bader JP, Halliday SM, Coren L, Sowder RC 2nd, Arthur LO, Henderson LE (1995) Inhibitors of HIV nucleocapsid protein zinc fingers as candidates for the treatment of AIDS. Science 270:1194–1197

    Article  CAS  PubMed  Google Scholar 

  80. Bacia K, Haustein E, Schwille P (2014) Fluorescence correlation spectroscopy: principles and applications. Cold Spring Harb Protoc 2014:709–725

    Article  PubMed  Google Scholar 

  81. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  PubMed  Google Scholar 

  82. Kanno DM, Levitus M (2014) Protein oligomerization equilibria and kinetics investigated by fluorescence correlation spectroscopy: a mathematical treatment. J Phys Chem B 118:12404–12415

    Article  CAS  PubMed  Google Scholar 

  83. Paul SS, Sil P, Haldar S, Mitra S, Chattopadhyay K (2015) Subtle change in the charge distribution of surface residues may affect the secondary functions of cytochrome c. J Biol Chem 290:14476–14490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. Bioessays 34:361–368

    Article  PubMed  Google Scholar 

  85. Tipping KW, Karamanos TK, Jakhria T, Iadanza MG, Goodchild SC, Tuma R, Ranson NA, Hewitt EW, Radford SE (2015) pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc Natl Acad Sci U S A 112:5691–5696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vercammen J, Maertens G, Gerard M, De Clercq E, Debyser Z, Engelborghs Y (2002) DNA-induced polymerization of HIV-1 integrase analyzed with fluorescence fluctuation spectroscopy. J Biol Chem 277:38045–38052

    Article  CAS  PubMed  Google Scholar 

  87. Clark TB, Ziolkowski M, Schatz GC, Goodson T 3rd (2014) Two-photon and time-resolved fluorescence spectroscopy as probes for structural determination in amyloid-beta peptides and aggregates. J Phys Chem B 118:2351–2359

    Article  CAS  PubMed  Google Scholar 

  88. Lamprou P, Kempe D, Katranidis A, Buldt G, Fitter J (2014) Nanosecond dynamics of calmodulin and ribosome-bound nascent chains studied by time-resolved fluorescence anisotropy. Chembiochem 15:977–985

    Article  CAS  PubMed  Google Scholar 

  89. Samatanga B, Klostermeier D (2014) DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition. Nucleic Acids Res 42:10644–10654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brochon JC (1994) Maximum-entropy method of data-analysis in time-resolved spectroscopy. Numer Comput Methods Pt B 240:262–311

    Article  CAS  Google Scholar 

  91. Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA (2003) Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Biopolymers 68:110–120

    Article  CAS  PubMed  Google Scholar 

  92. Engelman A, Bushman FD, Craigie R (1993) Identification of discrete functional domains of Hiv-1 integrase and their organization within an active multimeric complex. EMBO J 12:3269–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Bosserman MA, O’Quinn DF, Wong I (2007) Loop(202-208) in avian sarcoma virus integrase mediates tetramer assembly and processing activity. Biochemistry 46:11231–11239

    Article  CAS  PubMed  Google Scholar 

  94. Henry E, Deprez E, Brochon JC (2014) Maximum entropy analysis of data simulations and practical aspects of time-resolved fluorescence measurements in the study of molecular interactions. J Mol Struct 1077:77–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Deprez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delelis, O., Deprez, E. (2016). Interplay Between DNA-Binding/Catalytic Functions and Oligomerization of Retroviral Integrases Studied by a Combination of Time-Resolved Fluorescence Anisotropy, Fluorescence Correlation Spectroscopy and Resonance Energy Transfer. In: Geddes, C. (eds) Reviews in Fluorescence 2015. Reviews in Fluorescence, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-24609-3_12

Download citation

Publish with us

Policies and ethics