Skip to main content

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Apart from the basic role of milk fat in delivering energy in the form of fat globules to the suckling calf, there has been an increasing interest in the significance and potential industrial usefulness of different MFG size fractions. On theoretical grounds, it seems reasonable to suggest that significant variations in MFG size might have implications for the processability, physical functionality and nutritional properties of some fat-based dairy foods and ingredients (Argov et al. 2008). Three main approaches have been used in attempting to manipulate MFG size distribution. These are (1) herd management strategies (selection and breeding, modification of cow diet, milking at different stages of lactation, milking frequency); (2) fractionation (gravity- and density-based sedimentation and microfiltration); and (3) shear processing (high pressure homogenisation, microfluidisation and ultrasonication). The scope of these various strategies is summarised in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeni F, Degano L, Calza F, Giangiacomo R, Pirlo G. Milk quality and automatic milking: fat globule size, natural creaming, and lipolysis. J Dairy Sci. 2005;88(10):3519–29.

    Article  CAS  Google Scholar 

  • Argov N, Lemay DG, German JB. Milk fat globule structure and function: nanoscience comes to milk production. Trends Food Sci Technol. 2008;19(12):617–23. doi:10.1016/j.tifs.2008.07.006.

    Article  CAS  Google Scholar 

  • Avramis CA, Wang H, McBride BW, Wright TC, Hill AR. Physical and processing properties of milk, butter, and Cheddar cheese from cows fed supplemental fish meal. J Dairy Sci. 2003;86(8):2568–76. doi:10.3168/jds.S0022-0302(03)73851-X.

    Article  CAS  Google Scholar 

  • Banks JM, Clapperton JL, Muir DD, Girdler AK. The influence of diet and breed of cow on the efficiency of conversion of milk constituents to curd in cheese manufacture. J Sci Food Agric. 1986;37(5):461–8. doi:10.1002/jsfa.2740370505.

    Article  CAS  Google Scholar 

  • Bermudez-Aguirre D, Mawson R, Barbosa-Canovas GV. Microstructure of fat globules in whole milk after thermosonication treatment. J Food Sci. 2008;73(7):E325–32. doi:10.1111/j.1750-3841.2008.00875.x.

    Article  CAS  Google Scholar 

  • Carroll SM, DePeters EJ, Taylor SJ, Rosenberg M, Perez-Monti H, Capps V. Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Anim Feed Sci Technol. 2006;131(3–4):451–73. doi:10.1016/j.anifeedsci.2006.06.019.

    Article  CAS  Google Scholar 

  • Couvreur S, Hurtaud C, Marnet PG, Faverdin P, Peyraud JL. Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. J Dairy Sci. 2007;90(1):392–403.

    Article  CAS  Google Scholar 

  • Czerniewicz M, Kietczewska K, Kruk A. Comparison of some physicochemical properties of milk from Holstein-Friesian and Jersey cows. Pol J Food Nutr Sci. 2006;15(56):61–4.

    CAS  Google Scholar 

  • Dalgleish DG, Tosh SM, West S. Beyond homogenization: the formation of very small emulsion droplets during the processing of milk by a microfluidizer. Neth Milk Dairy J. 1996;50(2): 135–48.

    Google Scholar 

  • Ertugay MF, Sengul M, Sengul M. Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turk J Vet Anim Sci. 2004;28(2):303–8.

    Google Scholar 

  • Fauquant C, Briard V, Leconte N, Michalski MC. Differently sized native milk fat globules separated by microfiltration: fatty acid composition of the milk fat globule membrane and triglyceride core. Eur J Lipid Sci Technol. 2005;107(2):80–6. doi:10.1002/ejlt.200401063.

    Article  CAS  Google Scholar 

  • Goudedranche H, Fauquant J, Maubois JL. Fractionation of globular milk fat by membrane microfiltration. Lait. 2000;80(1):93–8.

    Article  CAS  Google Scholar 

  • Hardham JF, Imison BW, French HM. Effect of homogenisation and microfluidisation on the extent of fat separation during storage of UHT milk. Aust J Dairy Technol. 2000;55(1):16–22.

    CAS  Google Scholar 

  • Hayes MG, Kelly AL. High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. J Dairy Res. 2003;70(3):297–305. doi:10.1017/S0022029903006320.

    Article  CAS  Google Scholar 

  • Hayes MG, Fox PF, Kelly AL. Potential applications of high pressure homogenisation in processing of liquid milk. J Dairy Res. 2005;72(1):25–33. doi:10.1017/S0022029904000524.

    Article  CAS  Google Scholar 

  • Hurtaud C, Faucon F, Couvreur S, Peyraud JL. Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. J Dairy Sci. 2010;93(4):1429–43. doi:10.3168/jds.2009-2839.

    Article  CAS  Google Scholar 

  • Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin MA. Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason Sonochem. 2011;18(5):963–73.

    Article  CAS  Google Scholar 

  • Lee SH, Lefevre T, Subirade M, Paquin P. Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chem. 2009;113(1):191–5. doi:10.1016/j.foodchem.2008.07.067.

    Article  CAS  Google Scholar 

  • Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R. Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason Sonochem. 2014a;21(4):1289–98.

    Article  CAS  Google Scholar 

  • Leong T, Juliano P, Johansson L, Mawson R, McArthur SL, Manasseh R. Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrason Sonochem. 2014b;21(6): 2092–8.

    Article  CAS  Google Scholar 

  • Logan A, Auldist M, Greenwood J, Day L. Natural variation of bovine milk fat globule size within a herd. J Dairy Sci. 2014a;97(7):4072–82. doi:10.3168/jds.2014-8010.

    Article  CAS  Google Scholar 

  • Logan A, Day L, Pin A, Auldist M, Leis A, Puvanenthiran A, Augustin MA. Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food Bioprocess Technol. 2014b;7(3):3175–85.

    Article  CAS  Google Scholar 

  • Lopez C. Focus on the supramolecular structure of milk fat in dairy products. Reprod Nutr Dev. 2005;45(4):497–511. doi:10.1051/Rnd:2005034.

    Article  CAS  Google Scholar 

  • Lopez C, Briard-Bion V, Menard O, Rousseau F, Pradel P, Besle JM. Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. J Agric Food Chem. 2008;56(13):5226–36. doi:10.1021/Jf7036104.

    Article  CAS  Google Scholar 

  • Lopez C, Briard-Bion V, Menard O, Beaucher E, Rousseau F, Fauquant J, Leconte N, Robert B. Fat globules selected from whole milk according to their size: different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011;125(2):355–68. doi:10.1016/j.foodchem.2010.09.005.

    Article  CAS  Google Scholar 

  • Lopez-Fandino R, Carrascosa AV, Olano A. The effects of high pressure on whey protein denaturation and cheese-making properties of raw milk. J Dairy Sci. 1996;79(6):929–36.

    Article  CAS  Google Scholar 

  • Ma Y, Barbano DM. Gravity separation of raw bovine milk: fat globule size distribution and fat content of milk fractions. J Dairy Sci. 2000;83(8):1719–27. doi:10.3168/jds.S0022-0302(00)75041-7.

    Article  CAS  Google Scholar 

  • Martini M, Cecchi F, Scolozzi C, Leotta R, Verita P. Milk fat globules in different dairy cattle breeds part I: morphometric analysis. Ital J Anim Sci. 2003;2:272–4. doi:10.4081/ijas.2003.s1.272.

    Google Scholar 

  • Martini S, Suzuki AH, Hartel RW. Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc. 2008;85(7):621–8.

    Article  CAS  Google Scholar 

  • Martini M, Altomonte I, Pesi R, Tozzi MG, Salari F. Fat globule membranes in ewes’ milk: the main enzyme activities during lactation. Int Dairy J. 2013;28(1):36–9. doi:10.1016/j.idairyj.2012.07.002.

    Article  CAS  Google Scholar 

  • Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. 2006;18(41):R635–66. doi:10.1088/0953-8984/18/41/R01.

    Article  CAS  Google Scholar 

  • Mccrae CH. Homogenization of milk emulsions – use of microfluidizer. J Soc Dairy Technol. 1994;47(1):28–31.

    Article  Google Scholar 

  • Mcpherson AV, Dash MC, Kitchen BJ. Isolation and composition of milk-fat globule-membrane material. 2. From homogenized and ultra heat-treated milks. J Dairy Res. 1984;51(2):289–97.

    Article  CAS  Google Scholar 

  • Menard O, Ahmad S, Rousseau F, Briard-Bion V, Gaucheron F, Lopez C. Buffalo vs. cow milk fat globules: size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010;120(2):544–51. doi:10.1016/j.foodchem.2009.10.053.

    Article  CAS  Google Scholar 

  • Mesilati-Stahy R, Argov-Argaman N. The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chem. 2014;145:562–70. doi:10.1016/j.foodchem.2013.08.077.

    Article  CAS  Google Scholar 

  • Mesilati-Stahy R, Mida K, Argov-Argaman N. Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. J Agric Food Chem. 2011;59(13):7427–35. doi:10.1021/Jf201373j.

    Article  CAS  Google Scholar 

  • Michalski MC, Cariou R, Michel F, Garnier C. Native vs. damaged milk fat globules: membrane properties affect the viscoelasticity of milk gels. J Dairy Sci. 2002a;85(10):2451–61. doi:10.3168/jds.S0022-0302(02)74327-0.

    Article  CAS  Google Scholar 

  • Michalski MC, Michel F, Sainmont D, Briard V. Apparent zeta-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloid Surf B. 2002b;23(1):23–30. doi:10.1016/S0927-7765(01)00203-X.

    Article  CAS  Google Scholar 

  • Michalski MC, Leconte N, Briard-Bion V, Fauquant J, Maubois JL, Goudedranche H. Microfiltration of raw whole milk to select fractions with different fat globule size distributions: process optimization and analysis. J Dairy Sci. 2006;89(10):3778–90.

    Article  CAS  Google Scholar 

  • Microfluidics. M-110P Laboratory Models for Continuous High Shear Fluid Processing. M-110P Microfluidizer® Materials Processors. Westwood: Microfluidics International Corporation; 2010.

    Google Scholar 

  • Mulder H, Walstra P. The fat dispersion. In: Mulder H, Walstra P, editors. The milk fat globule. Emulsion science as applied to milk products and comparable foods. Wageningen: Center for Agricultural Publishing and Documentation; 1974. p. 54–66.

    Google Scholar 

  • Olson DW, White CH, Richter RL. Effect of pressure and fat content on particle sizes in microfluidized milk. J Dairy Sci. 2004;87(10):3217–23.

    Article  CAS  Google Scholar 

  • O’Mahony JA, Auty MAE, McSweeney PLH. The manufacture of miniature Cheddar-type cheeses from milks with different fat globule size distributions. J Dairy Res. 2005;72(3):338–48. doi:10.1017/S0022029905001044.

    Article  Google Scholar 

  • Pandolfe WD. Effect of premix condition, surfactant concentration, and oil level on the formation of oil-in-water emulsions by homogenization. J Dispers Sci Technol. 1995;16(7):633–50.

    Article  CAS  Google Scholar 

  • Paquin P. Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int Dairy J. 1999;9(3–6):329–35. doi:10.1016/S0958-6946(99)00083-7.

    Article  CAS  Google Scholar 

  • Serra M, Trujillo AJ, Quevedo JM, Guamis B, Ferragut V. Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. Int Dairy J. 2007;17(7):782–90. doi:10.1016/j.idairyj.2006.10.001.

    Article  CAS  Google Scholar 

  • Sharma SK, Dalgleish DG. Interactions between milk serum-proteins and synthetic fat globule-membrane during heating of homogenized whole milk. J Agric Food Chem. 1993;41(9):1407–12.

    Article  CAS  Google Scholar 

  • TetraPak. Centrifugal separators and milk fat standardisation. In: Dairy processing handbook. Lund: TetraPak Processing Systems AB; 2009. p. 91–113.

    Google Scholar 

  • Thiebaud M, Dumay E, Picart L, Guiraud JP, Cheftel JC. High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. Int Dairy J. 2003;13(6):427–39. doi:10.1016/S0958-6946(03)00051-7.

    Article  CAS  Google Scholar 

  • Timmen H, Patton S. Milk-fat globules – fatty-acid composition, size and in vivo regulation of fat liquidity. Lipids. 1988;23(7):685–9. doi:10.1007/Bf02535669.

    Article  CAS  Google Scholar 

  • Truong T. Physical properties of milk fats in nanoemulsions. The University of Queensland; 2013.

    Google Scholar 

  • Villamiel M, de Jong P. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk (vol 48, pg 472, 2000). J Agric Food Chem. 2000;48(7):472–8. doi:10.1021/Jf0006224.

    Google Scholar 

  • Wagh A, Walsh MK, Martini S. Effect of lactose monolaurate and high intensity ultrasound on crystallization behavior of anhydrous milk fat. J Am Oil Chem Soc. 2013;90(7):977–87.

    Article  CAS  Google Scholar 

  • Walstra P, Geurts TJ, Noomen A, Jellama A, Van Boekel MAJS. Dairy technology: principles of milk properties and processes. New York: Marcel Dekker, Inc.; 1999.

    Google Scholar 

  • Walstra P, Wouters JTM, Geurts TJ. Dairy science and technology. 2nd ed. Boca Raton: CRC; 2005.

    Google Scholar 

  • Wiking L, Bjorck L, Nielsen JH. Influence of feed composition on stability of fat globules during pumping of raw milk. Int Dairy J. 2003;13(10):797–803. doi:10.1016/S0958-6946(03)00110-9.

    Article  CAS  Google Scholar 

  • Wiking L, Stagsted J, Lennart B, Nielsen JH. Milk fat globule size is affected by fat production in dairy cows. Int Dairy J. 2004;14(10):909–13. doi:10.1016/j.idairyj.2004.03.005.

    Article  CAS  Google Scholar 

  • Wiking L, Nielsen JH, Bavius AK, Edvardsson A, Svennersten-Sjaunja K. Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition. J Dairy Sci. 2006;89(3):1004–9.

    Article  CAS  Google Scholar 

  • Wu H, Hulbert GJ, Mount JR. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Sci Emerg Technol. 2000;1(3):211–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Truong, T., Palmer, M., Bansal, N., Bhandari, B. (2016). Methodologies to Vary Milk Fat Globule Size. In: Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-23877-7_4

Download citation

Publish with us

Policies and ethics