Skip to main content

Information-Driven Experimental Design in Materials Science

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 225))

Abstract

Optimal experimental design (OED) aims to maximize the value of experiments and the data they produce. OED ensures efficient allocation of limited resources, especially when numerous repeated experiments cannot be performed. This chapter presents a fully Bayesian and decision theoretic approach to OED—accounting for uncertainties in models, model parameters, and experimental outcomes, and allowing optimality to be defined according to a range of possible experimental goals. We demonstrate this approach on two illustrative problems in materials research. The first example is a parameter inference problem. Its goal is to determine a substrate property from the behavior of a film deposited thereon. We design experiments to yield maximal information about the substrate property using only two measurements. The second example is a model selection problem. We design an experiment that optimally distinguishes between two models for helium trapping at interfaces. In both instances, we provide model-based justifications for why the selected experiments are optimal. Moreover, both examples illustrate the utility of reduced-order or surrogate models in optimal experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A nat is a unit of information, analogous to a bit, but with a natural logarithm rather than a base two logarithm in (2.5).

References

  1. B.L. Adams, S.R. Kalidindi, D.T. Fullwood, Microstructure Sensitive Design for Performance Optimization (Butterworth-Heineman, Newton, 2012)

    Google Scholar 

  2. R. Aggarwal, M. Demkowicz, Y. Marzouk, Bayesian inference of substrate properties from film behavior. Model. Simul. Mater. Sci. Eng. 23, 015009 (2015)

    Article  Google Scholar 

  3. J. Aizenberg, A. Black, G. Whitesides, Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. Nature 394, 868–871 (1998)

    Article  Google Scholar 

  4. S. Atamturktur, J. Hegenderfer, B. Williams, C. Unal, Selection criterion based on an exploration-exploitation approach for optimal design of experiments. J. Eng. Mech. 141 (2014)

    Google Scholar 

  5. A.C. Atkinson, A.N. Donev, Optimum Experimental Designs, Oxford Statistical Science Series (Oxford University Press, Oxford, 1992)

    Google Scholar 

  6. G. Bayraksan, D.P. Morton, Assessing solution quality in stochastic programs via sampling. INFORMS Tutor. Oper. Res. 5, 102–122 (2009)

    Google Scholar 

  7. I. Ben-Gal, M. Caramanis, Sequential doe via dynamic programming. IIE Trans. 34, 1087–1100 (2002)

    Google Scholar 

  8. J. Berger, L. Pericchi, Objective Bayesian methods for model selection: introduction and comparison, in Model Selection, IMS Lecture Notes—Monograph Series, ed. by P. Lahiri (2001), pp. 135–207

    Google Scholar 

  9. D.P. Bertsekas, Dynamic Programming and Optimal Control, 3rd edn. (Athena Scientific, Belmont, 2007)

    Google Scholar 

  10. I. Beyerlein, M. Demkowicz, A. Misra, B. Uberuaga, Defect-interface interactions. Progr. Mater. Sci. (2015)

    Google Scholar 

  11. D. Bhattacharyya, N. Mara, P. Dickerson, R. Hoagland, A. Misra, Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation. J. Mater. Res. 24, 1291–1302 (2009)

    Article  Google Scholar 

  12. D. Bhattacharyya, N. Mara, P. Dickerson, R. Hoagland, A. Misra, Compressive flow behavior of Al-TiN multilayers at nanometer scale layer thickness. Acta Mater. 59, 3804–3816 (2011)

    Article  Google Scholar 

  13. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970)

    Book  Google Scholar 

  14. N. Bowden, S. Brittain, A. Evans, J. Hutchinson, G. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  Google Scholar 

  15. G.E.P. Box, H.L. Lucas, Design of experiments in non-linear situations. Biometrika 46, 77–90 (1959)

    Article  Google Scholar 

  16. T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to global seismic inversion. SIAM J. Sci. Comput. 35, A2494–A2523 (2013)

    Article  Google Scholar 

  17. T. Bui-Thanh, K. Willcox, O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30, 3270–3288 (2008)

    Article  Google Scholar 

  18. J. Cahn, J. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  19. P.R. Cantwell, M. Tang, S.J. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Grain boundary complexions. Acta Mater. 62, 1–48 (2014)

    Article  Google Scholar 

  20. B.P. Carlin, J.B. Kadane, A.E. Gelfand, Approaches for optimal sequential decision analysis in clinical trials. Biometrics, pp. 964–975 (1998)

    Google Scholar 

  21. K. Chaloner, I. Verdinelli, Bayesian experimental design: a review. Stat. Sci. 10, 273–304 (1995)

    Article  Google Scholar 

  22. S. Chaturantabut, D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010)

    Article  Google Scholar 

  23. J.A. Christen, C. Fox, MCMC using an approximation. J. Comput. Graph. Stat. 14, 795–810 (2005)

    Article  Google Scholar 

  24. P. Conrad, Y.M. Marzouk, Adaptive Smolyak pseudospectral approximations. SIAM J. Sci. Comput. 35, A2643–A2670 (2013)

    Article  Google Scholar 

  25. P. Conrad, Y.M. Marzouk, N. Pillai, A. Smith, Accelerating asymptotically exact MCMC for computationally intensive models via local approximations. J. Am. Stat. Assoc. submitted (2014). arXiv:1402.1694

  26. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  27. T. Cui, Y.M. Marzouk, K. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems. Int. J. Numer. Methods Eng. 102, 966–990 (2015)

    Article  Google Scholar 

  28. S. Davis et al., Bayesian inference as a tool for analysis of first-principles calculations of complex materials: an application to the melting point of ti2gan. Model. Simul. Mater. Sci. Eng. 21, 075001 (2013)

    Article  Google Scholar 

  29. M. Demkowicz, D. Bhattacharyya, I. Usov, Y. Wang, M. Nastasi, A. Misra, The effect of excess atomic volume on he bubble formation at fcc-bcc interfaces. Appl. Phys. Lett. 97, 161903–161903 (2010)

    Article  Google Scholar 

  30. M. Demkowicz, R. Hoagland, Structure of kurdjumov-sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45–52 (2008)

    Article  Google Scholar 

  31. M. Demkowicz, R. Hoagland, B. Uberuaga, A. Misra, Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume. Phys. Rev. B 84, 104102 (2011)

    Article  Google Scholar 

  32. M. Demkowicz, A. Misra, A. Caro, The role of interface structure in controlling high Helium concentrations. Current Opin. Solid State Mater. Sci. 16, 101–108 (2012)

    Article  Google Scholar 

  33. M.J. Demkowicz, J. Wang, R.G. Hoagland, Interfaces between dissimilar crystalline solids. Dislocat. Solids 14, 141–205 (2008)

    Article  Google Scholar 

  34. M. Eldred, S. Giunta, S. Collis, Second-order corrections for surrogate-based optimization with model hierarchies, in AIAA Paper 2004-4457, Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2004)

    Google Scholar 

  35. D. Eyre, An unconditionally stable one-step scheme for gradient systems. Unpublished manuscript, University of Utah, Salk Lake City, June (1998)

    Google Scholar 

  36. I. Ford, D.M. Titterington, K. Christos, Recent advances in nonlinear experimental design. Technometrics 31, 49–60 (1989)

    Article  Google Scholar 

  37. E. Fu, N. Li, A. Misra, R. Hoagland, H. Wang, X. Zhang, Mechanical properties of sputtered cu/v and al/nb multilayer films. Mater. Sci. Eng.: A, 493, 283—287 (2008). Mechanical Behavior of Nanostructured Materials, a Symposium Held in Honor of Carl Koch at the TMS Annual Meeting 2007, Orlando, Florida

    Google Scholar 

  38. E. Fu, A. Misra, H. Wang, L. Shao, X. Zhang, Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J. Nucl. Mater. 407, 178–188 (2010)

    Article  Google Scholar 

  39. L.D. Gabbay, S. Senturia, Computer-aided generation of nonlinear reduced-order dynamic macromodels. I. Non-stress-stiffened case, Microelectromech. Syst. J. 9, 262–269 (2000)

    Google Scholar 

  40. T. Gerstner, M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)

    Article  Google Scholar 

  41. R. Ghanem, P. Spanos, Stochastic Finite Elements: A Spectral Approach (Springer, Berlin, 1991)

    Book  Google Scholar 

  42. J. Ginebra, On the measure of the information in a statistical experiment. Bayesian Anal. 2, 167–212 (2007)

    Article  Google Scholar 

  43. M. Grepl, Y. Maday, N. Nguyen, A. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. Math. Model. Numer. Anal. (M2AN) 41, 575–605 (2007)

    Google Scholar 

  44. G.E. Hilley, R. Bürgmann, P.-Z. Zhang, P. Molnar, Bayesian inference of plastosphere viscosities near the kunlun fault, northern tibet, Geophys. Res. Lett. 32, n/a–n/a (2005)

    Google Scholar 

  45. J. Hirth, J. Lothe, Theory of Dislocations (Wiley, New York, 1992)

    Google Scholar 

  46. J.A. Hoeting, D. Madigan, A.E. Raftery, C.T. Volinsky, Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–417 (1999)

    Article  Google Scholar 

  47. P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  48. X. Huan, Y.M. Marzouk, Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys. 232, 288–317 (2013)

    Article  Google Scholar 

  49. X. Huan, Y.M. Marzouk, Gradient-based stochastic optimization methods in Bayesian experimental design. Int. J. Uncertain. Quantif. 4, 479–510 (2014)

    Article  Google Scholar 

  50. H. Jeffreys, An invariant form for the prior probability in estimation problems, in Proceedings of the Royal Society (1946)

    Google Scholar 

  51. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  Google Scholar 

  52. A. Kashinath, A. Misra, M. Demkowicz, Stable storage of helium in nanoscale platelets at semicoherent interfaces. Phys. Rev. Lett. 110, 086101 (2013)

    Article  Google Scholar 

  53. M.C. Kennedy, A. O’Hagan, Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63, 425–464 (2001)

    Article  Google Scholar 

  54. J. Kiefer, J. Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23, 462–466 (1952)

    Article  Google Scholar 

  55. J. Kristensen, N.J. Zabaras, Bayesian uncertainty quantification in the evaluation of alloy properties with the cluster expansion method. Comput. Phys. Commun. 185, 2885–2892 (2014)

    Article  Google Scholar 

  56. H. Kushner, G. Yin, Stochastic Approximation and Recursive Algorithms and Applications, Applications of mathematics (Springer, Berlin, 2003)

    Google Scholar 

  57. O.P. Le Maître, O.M. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics (Springer, Berlin, 2010)

    Book  Google Scholar 

  58. J. Lewandowski, A. Greer, Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15–18 (2006)

    Article  Google Scholar 

  59. J. Li, Y.M. Marzouk, Adaptive construction of surrogates for the Bayesian solution of inverse problems. SIAM J. Sci. Comput. 36, A1163–A1186 (2014)

    Article  Google Scholar 

  60. N. Li, E. Fu, H. Wang, J. Carter, L. Shao, S. Maloy, A. Misra, X. Zhang, He ion irradiation damage in Fe/W nanolayer films. J. Nucl. Mater. 389, 233–238 (2009)

    Article  Google Scholar 

  61. N. Li, M. Martin, O. Anderoglu, A. Misra, L. Shao, H. Wang, X. Zhang, He ion irradiation damage in Al/ Nb multilayers. J. Appl. Phys. 105, 123522 (2009)

    Article  Google Scholar 

  62. N. Li, J. Wang, J. Huang, A. Misra, X. Zhang, In situ tem observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites. Scripta Materialia 63, 363–366 (2010)

    Article  Google Scholar 

  63. D.V. Lindley, Bayesian Statistics, A Review (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1972)

    Book  Google Scholar 

  64. T.J. Loredo, Rotating stars and revolving planets: Bayesian exploration of the pulsating sky, in Bayesian Statistics 9: Proceedings of the Nineth Valencia International Meeting, Oxford University Press (2010), pp. 361–392

    Google Scholar 

  65. T.J. Loredo, D.F. Chernoff, Bayesian adaptive exploration, in Statistical Challenges of Astronomy (Springer, Berlin, 2003), pp. 57–69

    Book  Google Scholar 

  66. D.J. MacKay, Information theory, inference, and learning algorithms, vol. 7, Citeseer (2003)

    Google Scholar 

  67. Y.M. Marzouk, H.N. Najm, Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys. 228, 1862–1902 (2009)

    Article  Google Scholar 

  68. Y.M. Marzouk, H.N. Najm, L.A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560–586 (2007)

    Article  Google Scholar 

  69. Y.M. Marzouk, D. Xiu, A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826–847 (2009)

    Article  Google Scholar 

  70. J.E. Mehner, L.D. Gabbay, S.D. Senturia, Computer-aided generation of nonlinear reduced-order dynamic macromodels. II. Stress-stiffened case. Microelectromech. Syst. J. 9, 270–278 (2000)

    Google Scholar 

  71. Y. Mishin, M. Asta, J. Li, Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Materialia 58, 1117–1151 (2010)

    Article  Google Scholar 

  72. A. Misra, M. Demkowicz, X. Zhang, R. Hoagland, The radiation damage tolerance of ultra-high strength nanolayered composites. Jom 59, 62–65 (2007)

    Article  Google Scholar 

  73. A. Misra, J. Hirth, R. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Materialia 53, 4817–4824 (2005)

    Article  Google Scholar 

  74. T.E. Mitchell, Y.C. Lu, A.J.G. Jr, M. Nastasi, H. Kung, Structure and mechanical properties of copper/niobium multilayers. J. Am. Ceram. Soc. 80, 1673–1676 (1997)

    Article  Google Scholar 

  75. J.I. Myung, M.A. Pitt, Optimal experimental design for model discrimination. Psychol. Rev. 116, 499–518 (2009)

    Article  Google Scholar 

  76. J.A. Nelder, R. Mead, A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  77. A. Noor, J. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 18, 455–462 (1980)

    Article  Google Scholar 

  78. G. Odette, M. Alinger, B. Wirth, Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471–503 (2008)

    Article  Google Scholar 

  79. M. Parno, P. Conrad, A. Davis, Y.M. Marzouk, MIT uncertainty quantification (MUQ) library. http://bitbucket.org/mituq/muq

  80. V. Picheny, D. Ginsbourger, Y. Richet, G. Caplin, Quantile-based optimization of noisy computer experiments with tunable precision. Technometrics 55, 2–13 (2013)

    Article  Google Scholar 

  81. Z.-Q. Qu, Model Order Reduction Techniques with Applications in Finite Element Analysis: With Applications in Finite Element Analysis (Springer Science & Business Media, Berlin, 2004)

    Google Scholar 

  82. C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning (The MIT Press, Cambridge, 2006)

    Google Scholar 

  83. C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, Berlin, 2004)

    Google Scholar 

  84. K.J. Ryan, Estimating expected information gains for experimental designs with application to the random fatigue-limit model. J. Comput. Graph. Stat. 12, 585–603 (2003)

    Article  Google Scholar 

  85. C. Schwab, A.M. Stuart, Sparse deterministic approximation of Bayesian inverse problems. Inv. Prob. 28, 045003 (2012)

    Article  Google Scholar 

  86. S. Shao, H. Zbib, I. Mastorakos, D. Bahr, The void nucleation strengths of the cu-ni-nb-based nanoscale metallic multilayers under high strain rate tensile loadings. Comput. Mater. Sci. 82, 435–441 (2014)

    Article  Google Scholar 

  87. A. Shapiro, Asymptotic analysis of stochastic programs. Ann. Oper. Res. 30, 169–186 (1991)

    Article  Google Scholar 

  88. L. Sirovich, Turbulence and the dynamics of coherent structures. Part 1: coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    Google Scholar 

  89. A. Solonen, H. Haario, M. Laine, Simulation-based optimal design using a response variance criterion. J. Comput. Graph. Stat. 21, 234–252 (2012)

    Article  Google Scholar 

  90. J.C. Spall, An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Tech. Dig. 19, 482–492 (1998)

    Google Scholar 

  91. A. Sutton, R. Balluffi, Interfaces in Crystalline Materials, Monographs on the Physics and Chemistry of Materials (Clarendon Press, Oxford, 1995)

    Google Scholar 

  92. H. Ullmaier, The influence of helium on the bulk properties of fusion reactor structural materials. Nucl. Fus. 24, 1039 (1984)

    Article  Google Scholar 

  93. J. van den Berg, A. Curtis, J. Trampert, Optimal nonlinear Bayesian experimental design: an application to amplitude versus offset experiments. Geophy. J. Int. 155, 411–421 (2003)

    Article  Google Scholar 

  94. A. Vattré, N. Abdolrahim, K. Kolluri, M. Demkowicz, Computational design of patterned interfaces using reduced order models. Sci. Rep. 4 (2014)

    Google Scholar 

  95. Y.-C. Wang, A. Misra, R. Hoagland, Fatigue properties of nanoscale Cu/Nb multilayers. Scripta materialia 54, 1593–1598 (2006)

    Article  Google Scholar 

  96. B.P. Weaver, B.J. Williams, C.M. Anderson-Cook, D.M. Higdon, Computational enhancements to Bayesian design of experiments using Gaussian processes. Bayesian Analysis (2015)

    Google Scholar 

  97. Q. Wei, N. Li, N. Mara, M. Nastasi, A. Misra, Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Materialia 59, 6331–6340 (2011)

    Article  Google Scholar 

  98. Q. Wei, A. Misra, Transmission electron microscopy study of the microstructure and crystallographic orientation relationships in v/ag multilayers. Acta Materialia 58, 4871–4882 (2010)

    Article  Google Scholar 

  99. B. Williams, D. Higdon, J. Gattiker, L. Moore, M. McKay, S. Keller-McNulty, Combining experimental data and computer simulations, with an application to flyer plate experiments. Bayesian Anal. 1, 765–792 (2006)

    Article  Google Scholar 

  100. D. Xiu, Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2, 293–309 (2007)

    Google Scholar 

  101. D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  Google Scholar 

  102. L. Yarin, The Pi-Theorem: Applications to Fluid Mechanics and Heat and Mass Transfer, vol. 1 (Springer, Berlin, 2012)

    Google Scholar 

  103. Y. Yoo, C. Jo, C. Jones, Compositional prediction of creep rupture life of single crystal ni base superalloy by Bayesian neural network, Materials Science and Engineering, pp. 22–29 (2001)

    Google Scholar 

  104. D. Yuryev, M. Demkowicz, Computational design of solid-state interfaces using o-lattice theory: an application to mitigating helium-induced damage. Appl. Phys. Lett. 105, 221601 (2014)

    Article  Google Scholar 

  105. X. Zhang, E. Fu, A. Misra, M. Demkowicz, Interface-enabled defect reduction in he ion irradiated metallic multilayers. Jom 62, 75–78 (2010)

    Article  Google Scholar 

  106. S. Zinkle, N. Ghoniem, Operating temperature windows for fusion reactor structural materials. Fusion Eng. Des. 51, 55–71 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Demkowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aggarwal, R., Demkowicz, M.J., Marzouk, Y.M. (2016). Information-Driven Experimental Design in Materials Science. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_2

Download citation

Publish with us

Policies and ethics