Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 46))

Abstract

Fungal wilt is caused by four genera of fungi, viz., Fusarium, Verticillium, Ceratocystis, and Ophiostoma. Absence of disease can’t always be accounted for the absence of the pathogen. Many antagonistic, pathogenic, as well as unapparent microorganisms remain in equilibrium proportion in the soil which predominately determines its suppressiveness or conduciveness. Suppressiveness may be intermediate or ideal suppressive soil. Fusarium wilt suppressive soil has been well studied from the four places, viz., in the Salinas Valley, California, United States; the Chateaurenard region, near Cavaillon, France; the Canary Islands and the Broye Valley, Switzerland. Among these, the Chateaurenard soil in France and the Salinas Valley soil in California are known for their natural suppressiveness. Suppressiveness of soil is mainly related to its biological properties; however, physical, chemical, and meteorological factors affect the biological factors and thereby indirectly affect the suppressiveness of the soil. Numerous kinds of antagonistic microorganisms have been found to increase in suppressive soils; most commonly, pathogen and disease suppression is caused by fungi, viz., nonpathogenic F. oxysporum Trichoderma sp., Penicillium sp., and Sporidesmium sp., or by bacteria of the genera Pseudomonas sp., Bacillus sp., and Streptomyces sp. Mechanisms in suppression of fusarium wilt by microorganisms may involve competition for substrate and root surface, antagonism, PGPR activities, and cytological modification of host plant holistically. Less than 1 % of the microorganisms present in soil may be readily isolatable whereas remaining 99 % microorganism viable but nonculturable (VBNC) stage. To overcome the dependence on the culture dependence techniques and expand our understanding, culture-independent techniques to “first identify and then recover” important antagonists are extensively useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Ghalia H, El-Khallal SM (2005) Alleviation of heavy metal stress by arbuscular mycorrhizal fungi and jasmonic acid in maize plants. Egypt J Bot 45:55–77

    CAS  Google Scholar 

  • Adesina MF, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site dependent composition and diversity revealed. Soil Biol Biochem 39:2818–2828

    Article  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Alabouvette C (1986) Fusarium wilt suppressive soils from the Chateaurenard region: review of a 10-year study. Agronomie 6:273–284

    Article  Google Scholar 

  • Alabouvette C (1990) Biological control of Fusarium wilt pathogens in suppressive soils. In: Hornby D (ed) Biological control of soilborne plant pathogens. CAB International, Wallingford, pp 27–43

    Google Scholar 

  • Alabouvette C, Rouxel F, Louvet J (1977) Recherches sur la résistance des sols aux maladies. III. Effets du rayonnement a sur lamicroflore d’un sol et sa resistance a la fusariose vasculaire du melon. Ann Phytopathol 9:467–471

    Google Scholar 

  • Alabouvette C, Couteaudier Y, Louvet J (1982) Comparaison dela réceptivité de différents sols et substrats de culture aux fusarioses vasculaires. Agronomie 2:1–6

    Article  Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Altomare C, Norvll WA, Bjrkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by plant growth promoting and biocontrol Trichoderma harzianum strain 1295–22. Appl Environ Microbiol 65:2926–2933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper E, Hofte M, Tambong LT, Comelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNAI and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 9:847–854

    Article  Google Scholar 

  • Atkinson GF (1892) Some diseases of cotton. Al Agric Exp Stn Bull 41:65

    Google Scholar 

  • Avis TR, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizospheric microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Ayed F, Daami-Remadi M, Jabnoun-Khiareddine H, El-Mahjoub M (2006) Potato vascular Fusarium wilt in Tunisia: incidence and biocontrol by Trichoderma spp. Plant Pathol J 5:92–98

    Article  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. Freeman, San Francisco, p 433

    Google Scholar 

  • Bao JR, Lazarovits G (2001) Differential colonization of tomato roots by non-pathogenic and pathogenic Fusarium oxysporum may influence Fusarium wilt control. Phytopathology 91:449–456

    Article  CAS  PubMed  Google Scholar 

  • Barnett SJ, Alami Y, Singleton I, Ryder MH (1999) Diversification of Pseudomonas corrugata 2140 produces new phenotypes altered in GC-FAME, BIOLOG, and in vitro inhibition profiles and taxonomic identification. Can J Micobiol 45:287–298

    Article  CAS  Google Scholar 

  • Benhamou N, Thériault G (1992) Treatment with chitosan enhances resistance of tomato plants to the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopercisi. Physiol Mol Plant Pathol 41:33–52

    Article  CAS  Google Scholar 

  • Benizri E, Piutti S, Verger S, Pages L, Vercambre G, Poessel JL, Michelot P (2005) Replant diseases: bacterial community structure and diversity in peach rhizosphere as determined by metabolic and genetic fingerprinting. Soil Biol Biochem 37:1738–1746

    Article  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eber L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bigirimana J, De Meyer G, Poppe J, Elad Y, Hӧfte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determinants of soil microbial communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb Ecol 36:1–12

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zhao S, LiaoZ He C, Zhuang X (2003) Effect of fertilization on tomato bacterial wilt biocontrolling and soil health restoration using FAME analysis. Agric Sci China 2:779–785

    Google Scholar 

  • Chen C, Bauske EM, Musson G, Rodríguez-Kábana R, Kloepper JW (1995) Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biol Control 5:83–91

    Article  Google Scholar 

  • Chet I (1987) Innovative approaches to plant disease control, Trichoderma - application, mode of action, and potential as a biocontrol agent of soilborne pathogenic fungi. Wiley, New York, pp 137–160

    Google Scholar 

  • Chowdappa P, Kumar SPM, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65:109–117

    Article  Google Scholar 

  • Cook RJ, Rovira AD (1976) The role of bacteria in the biological control of Gaeumannomyces graminis by suppressive soils. Soil Biol Biochem 8:269–273

    Article  Google Scholar 

  • Daami-Remadi M, Hibar K, Jabnoun- Khiareddine H, Ayed F, El Mahjoub M (2006) Effect of two Trichoderma species on severity of potato tuber dry rot caused by Tunisian Fusarium complex. Int J Agric Res 1:432–441

    Article  Google Scholar 

  • De Boer W, Verheggen P, Klein Gunnewiek PJA, Kowalchuk GA, Van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69:835–844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • De la Cruz J, Hidalgo-Gallego A, Lora JM, Benítez T, Pintor-Toro JA, Llobell A (1992) Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem 206:856–867

    Article  Google Scholar 

  • Deacon JW, Berry LA (1993) Biocontrol of soil-borne plant-pathogens–concepts and their application. Pestic Sci 37:417–426

    Article  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Duijff BJ, Bakker PAHM, Schippers B (1991) Suppression of fusarium wilt of carnation by Pseudomonas in soil: mode of action. In: Keel C, Knoller B, Defago G (eds) Plant growth-promoting rhizobacteria, progress and prospect, vol 14. International Organization for Biological and Integrated Control of Noxious Animals and Plants/West Palaearctic Regional Section, Interlaken, pp 152–157

    Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outermembrane lipopolysaccharides in the endophytic root colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325–334

    Article  CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Duijff BJ, Recorbet G, Bakker PAHM, Loper JE, Lemanceau P (1999) Microbial antagonism at the root level is involve in the suppression of fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89:1073–1979

    Article  CAS  PubMed  Google Scholar 

  • Elad Y, Barak R, Chet I (1984) Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biol Biochem 16:381–386

    Article  CAS  Google Scholar 

  • El-Rahman SSA, Mohamed HI (2014) Application of benzothiadiazole and Trichoderma harzianum to control faba bean chocolate spot disease and their effect on some physiological and biochemical traits. Acta Physiol Plant 36:343–354

    Article  CAS  Google Scholar 

  • Eparvier A, Alabouvette C (1994) Use of ELISA and GUS-transformed strains to study competition between pathogenic and non-pathogenic Fusarium oxysporum for root colonization. Biocontrol Sci Technol 4:35–47

    Article  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Fuchs JG, Moenne-Loccoz Y, Défago G (1997) Non-pathogenic Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496

    Article  Google Scholar 

  • Gao G, Yin D, Chen S, Xia F, Yang J, Qing L, Wang W (2012) Effect of biocontrol agent Pseudomonas fluorescens 2p24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE. PLoS ONE 7(2), e31806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garbeva P, Postma J, Van Veen JA, Van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppressionn of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  CAS  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garrett SD (1934) Factors affecting the pathogenicity of cereal root-rot fungi. Biol Rev 9:351–361

    Article  Google Scholar 

  • Geels FP, Schmidt EDL, Schippers B (1985) The use of 8- hydroxyquinoline for the isolation and prequalification of plant growth-stimulating rhizosphere pseudomonads. Biol Fertil Soils 1:167–173

    Article  CAS  Google Scholar 

  • Gorissen A, Van Overbeek LS, Van Elsas JD (2004) Pig slurry reduces the survival of Ralstonia solanacearum biovar 2 in soil. Can J Microbiol 50:587–593

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamel C, Vujanovic V, Jeannotte R, Nakano-Hylander A, St- Arnaud M (2005) Negative feedback on a perennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbial community structure. Plant Soil 268:75–87

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma spicies.-Opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Henery MD (1932) A study of scab resistance in the potato. J Agric Res 54:305–317

    Google Scholar 

  • Hermosa MR, Keck E, Chamorro I, Rubio B, Sanz L, Vizaino JA, Grondona I, Monte E (2004) Genetic diversity shown in Trichoderma biocontrol isolates. Mycol Res 108:879–906

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hervás A, Trapero-Casas JL, Jiménez-Díaz RM (1995) Induced resistance against Fusarium wilt of chickpea by nonpathogenic races of Fusarium oxysporum f. sp. ciceris and nonpathogenic isolates of F. oxysporum. Plant Dis 79:1110–1116

    Article  Google Scholar 

  • Hibar K (2007) Induction of resistance in tomato plants against Fusarium oxysporum f. sp. radicis-lycopersici by Trichoderma spp. Tunis J Plant Prot 2:47–58

    Google Scholar 

  • Hoffland E, Hakulinen J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and non-pathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Hopkins DL, Larkin RP, Elmstrom GW (1987) Cultivar-specific induction of soil suppressiveness to fusarium wilt of water melon. Phytopathology 77:607–611

    Article  Google Scholar 

  • Ibekwe AM, Kennedy AC (1998) Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol Ecol 26:51–163

    Article  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators. Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger P, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. Station de Pathologie Végétale et de Phytobactériologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth M (1980) Pseudomonas siderophores: a mechanism explaining diseasesuppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kommedahl T, Christensen JJ, Frederickson RA (1970) A half century of research in Minnesota on flax wilt caused by Fusarium oxysporum. Minn Agric Exp Stn Tech Bull 273:35

    Google Scholar 

  • Kowalchuk GA, Van Os GJ, Aartrijk J, Veen JA (2003) Microbial community responses to disease management soil treatments used in flower bulb cultivation. Biol Fertil Soils 37:55–63

    Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kroon BAM, Scheffer RJ, Elgersma DM (1991) Induced resistance in tomato plants against Fusarium wilt invoked by Fusarium oxysporum f. sp. dianthi. Neth J Plant Pathol 97:401–408

    Article  Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Gen Biol 38:310–319

    Article  CAS  Google Scholar 

  • Kuske CR, Barns SM, Busch JD (1997) Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl Environ Microbiol 63:3614–3621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kyselkova M, Kopecky J, Frapolli M, Defago G, Sagova-Mareckova M, Grundmann GL, Moenne-Loccoz Y (2009) Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127–1138

    Article  PubMed  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1993) Effect of successive watermelon plantings on Fusarium oxysporum and other microorganisms in soils suppressive and conducive to fusarium-wilt of watermelon. Phytopathology 83:1097–1105

    Article  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology 86:812–819

    Article  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Cornelissen C, Matamala-Garros A, Bakker PAHM, Schippers B (1996) Suppression of fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31

    Article  Google Scholar 

  • Lelavthi MS, Vani L, Pscal R (2014) Antimcrobial activity of Trichodema harzinum against bacteria and fungi. Int J Curr Micobiol Appl Sci 3:96–103

    Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and nonpathogenic Fusarium. Crop Prot 10:279–286

    Article  Google Scholar 

  • Lemanceau P, Bakker PAHM, Dekogel WJ, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol 58:2978–2982

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lemanceau P, Bakker PAHM, Dekogel WJ, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogenic Fusarium oxysporum f. sp. Diant. Appl Environ Microbiol 59:74–82

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liesack W, Janssen PH, Rainey FA, Ward-Rainey NL, Stackenbrandt E (1997) Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 375–439

    Google Scholar 

  • Lorito M, Woo SL, D’Ambrosio M (1996) Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol Plant Microbe Interact 9:206–213

    Article  CAS  Google Scholar 

  • Louvet J, Rouxel F, Alabouvette C (1976) Recherches sur la resistance des sols aux maladies. I. Mise en evidence de la nature microbiologique de la resistance d’un sol au développement de la fusariose vasculaire du melon. Ann Phytopathol 8:425–436

    Google Scholar 

  • Lu Z, Tombolini R, Woo S et al (2004) In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl Environ Microbiol 70:3073–3081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer Academic/Plenum, New York, pp 403–430

    Chapter  Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanism involved in biological control of fusarium wilt of cucumber with strain of non-pathogenic Fusarium oxysporum. Phytopathology 81:462–469

    Article  Google Scholar 

  • Menzies JD (1959) Occurrence and transfer of a biological factor in soil that suppresses potato scab. Phytopathology 49:648–652

    Google Scholar 

  • Mezaache-Aichour S, Guechi A, Nicklin J, Drider D, Prevost HRN, Strange RN (2012) Isolation, identification and antimicrobial activity of pseudomonads isolated from the rhizosphere of potatoes growing in Algeria. J Plant Pathol 94:89–98

    Google Scholar 

  • Millard WA, Taylor CB (1927) Antagonism of microorganisms as the controlling factor in the inhibition of scab by green manuring. Ann Appl Biol 14:202–215

    Article  Google Scholar 

  • Motlagh MRS, Samimi Z (2013) Evaluation of Trichoderma spp., as biological agents in some of plant pathogens. Ann Biol Res 4:173–179

    Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AC (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes for 16S rRNA. Appl Environ Microbiol 55:695–700

    Google Scholar 

  • Odum EP (1959) Fundamentals of ecology. W.B. Saunders Co, Philadelphia

    Google Scholar 

  • Olivain C, Steinberg C, Alabouvette C (1995) Evidence of induced resistance in tomato inoculated by nonpathogenic strains of Fusarium oxysporum. In: Manta M (ed) Environmental biotic factors in integrated plant disease control 3rd EFPP conference, Poznan, pp 427–430

    Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    Article  CAS  Google Scholar 

  • Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P (2004) Stimulation of the lipoxygenase pathway is associated with systemic resistance induce in bean by a nonpathogenic Pseudomonas strain. Mol Plant Microbe Interact 17:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non-pathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Perelló A, Mónaco C, Sisterna M, Dal Bello G (2003) Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Prot 22:1099–1106

    Article  Google Scholar 

  • Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piotrowska-Seget Z, Mrozik A (2003) Signature lipid biomarker (SLB) analysis in determining changes in community structure of soil microorganisms. Pol J Environ Stud 12:669–675

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonasspp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-Diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63:881–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen PH, Knudsen IMB, Elmholt S, Jensen DF (2002) Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils. Appl Soil Ecol 19:91–96

    Article  Google Scholar 

  • Ros M, Hernandez MT, Garcia C, Bernal A, Pascual JA (2005) Biopesticide effect of green compost against Fusarium wilt on melon plants. J Appl Microbiol 98:845–854

    Article  CAS  PubMed  Google Scholar 

  • Sanford GB (1926) Some factors affecting the pathogenicity of Actinomyces scabies. Phytopathology 16:525–547

    Google Scholar 

  • Scher FM, Baker R (1980) Mechanism of biological control in a Fusarium- suppressive soil. Phytopathology 70:412–417

    Article  Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to fusarium wilt pathogens. Phytopathology 72:1567–1573

    Article  CAS  Google Scholar 

  • Schippers B (1992) Prospects for management ofnatural suppressiveness to control soilborne pathogens. In: Tjarnos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum, New York, pp 21–34

    Chapter  Google Scholar 

  • Schneider RW (1982) Suppressive soils and plant disease. American Phytopathology Society, St. Paul, MN, p 88

    Google Scholar 

  • Schonfeld J, Gelsomino A, Overbeek LSV, Gorissen A, Smalla K, Elsas JDV (2003) Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil. FEMS Microbiol Ecol 43:63–74

    Article  CAS  PubMed  Google Scholar 

  • Shipton PJ, Cook RJ, Sitton JW (1973) Occurrence and transfer of a biological factor in soil that suppresses takeall of wheat in eastern Washington. Phytopathology 63:511–517

    Article  CAS  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  • Steinberg C, Edel-Hermann V, Alabouvette C, Lemanceau P (2007) Soil suppressiveness to plant diseases. In: van Elsas JD, Jansson J, Trevors JT (eds) Modern soil microbiology, 2nd edn. CRC, Boca Raton, pp 455–501

    Google Scholar 

  • Stover RH (1962) Fusarial wilt (Panama disease) of bananas and other Musa species. Commonwealth Mycological Institute, p 117

    Google Scholar 

  • Tanwar A, Aggarwal A, Panwar V (2013) Arbuscular mycorrhizal fungi and Trichoderma viride mediated Fusarium wilt control in tomato. Biocontrol Sci Technol 23:485–498

    Article  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Ind Microbiol 17:170–178

    Article  CAS  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of AAC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lin Y, Lin Y, Chung W (2013) Modified primers for the identification of nonpathogenic Fusarium oxysporum isolates that have biological control potential against fusarium wilt of cucumber in Taiwan. PLoS ONE 8, e65093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Weller DM, Thomashow LS (1993) Microbial metabolites with biological activity. In: Lumsden RD, Vaughn JL (eds) Pest management: biologically based technologies. American Chemical Society, Washington, DC, pp 173–180

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Westphal A, Becker JO (2000) Transfer of biological soil suppressiveness against Heterodera schachtii. Phytopathology 90:401–406

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • Yang C, Crowley DE, Menge JA (2001) 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol Ecol 35:129–136

    Article  CAS  PubMed  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Mahatma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahatma, M.K., Mahatma, L. (2015). Soil Suppressive Microorganisms and Their Impact on Fungal Wilt Pathogens. In: Meghvansi, M., Varma, A. (eds) Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-23075-7_12

Download citation

Publish with us

Policies and ethics