Skip to main content

Single Nucleotide Polymorphism (SNP) Marker for Abiotic Stress Tolerance in Crop Plants

  • Chapter
Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits

Abstract

Agricultural crop production has been seriously hampered by various detrimental environmental conditions all over the world. Such conditions modify the growth and development of plants and ultimately reduce the economic yield enormously. These detrimental effects can be overcome by developing better stress-tolerance plants utilizing different genetic techniques. Therefore, there is a need to develop a marker system for the identification of stress responsive genes in order to combat the losses. Single nucleotide polymorphisms (SNPs) have become a more preferable marker over microsatellites because of their frequent occurrence in the genome and low rate of mutations. The discovery of SNPs in many crop species facilitates the availability and identification of many genes or quantitative trait loci (QTLs) associated with traits related to abiotic stress. Hence, identification of SNP flanking the genomic regions containing QTLs for aspects of abiotic stress tolerance would strongly expedite the targeted integration of this trait into another susceptible germplasm. Such identification of SNPs will not only promote marker-assisted breeding for abiotic stress tolerance but also open a vista for cloning and evaluation of primary genetic factors suitable for engineering improved abiotic stress tolerant plants. This review presents the present status of SNP marker technologies for abiotic stress tolerance in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arcade A, Labourdette A, Falque M et al (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20(14):2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Assenov B, Andjelkovic V, Ignjatovic-Micic D et al (2013) Identification of SNP mutations in MYBЕ-1 gene involved in drought stress tolerance in maize. Bulg J Agric Sci 19:181–185

    Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD et al (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bus A, Hecht J, Huettel B et al (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 13:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cattivelli L, Fulvia R, Badeck F-W et al (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Chen J-B, Jing R-L, Yuan H-Y et al (2005) Single nucleotide polymorphism of TaDREB1 gene in wheat germplasm. Sci Agric Sin 38(12):2387–2394

    CAS  Google Scholar 

  • Ching A, Caldwell KS, Jung M et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19. Available at: http://www.biomedcentral.com/1471-2156/3/19

    Article  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durstewitz G, Polley A, Plieske J et al (2010) SNP discovery by amplicon sequencing and multiplex SNP genotyping in the allopolyploid species Brassica napus. Genome 53:948–956

    Article  CAS  PubMed  Google Scholar 

  • Eberle MA, Ng PC, Kuhn K et al (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet 3:1827–1837

    Article  CAS  PubMed  Google Scholar 

  • Feltus FA, Wan J, Schulze SR et al (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    Article  CAS  Google Scholar 

  • Ganal MW, Altmann T, Roder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Garg D, Sareen S, Dalal S et al (2012) Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust J Crop Sci 6(11):1516–1521

    CAS  Google Scholar 

  • Geraldes A, Pang J, Thiessen N et al (2011) SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome re-sequencing. Mol Ecol Resour 1:81–92

    Article  Google Scholar 

  • Hao GP, Wu ZY, Cao MQ et al (2004) Nucleotide polymorphism in the drought induced transcription factor CBF4 region of Arabidopsis thaliana and its molecular evolution analyses. Yi Chuan Xue Bao 31:1415–1425

    CAS  PubMed  Google Scholar 

  • Hao GP, Zhang XH, Wang YQ et al (2008) Nucleotide variation in the NCED3 region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress. J Integr Plant Biol 51:175–183

    Article  Google Scholar 

  • Hao Z, Li X, Xie C et al (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53:641–652

    Article  PubMed  Google Scholar 

  • Hasenmeyer G, Schmutzer T, Seidel M et al (2011) From RNA-seq to large-scale genotyping: genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131

    Article  Google Scholar 

  • Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260

    Article  CAS  PubMed  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  CAS  PubMed  Google Scholar 

  • Hillier LW, Miller RD, Baird SE et al (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol 5:e167

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiremath PJ, Andrew F, Cannon SB et al (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39:1522–1527

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lu T, Han B (2013) Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet 29:225–232

    Article  PubMed  Google Scholar 

  • Hyun DY, Kyung HM, MS Yoon et al (2011) Identification of SNP and analysis of haplotype for the salt tolerant genes in rice mutant lines. In: Abstracts of the international annual meetings fundamentals of life: soil, crop and environmental sciences. 16–19 October, 2011

    Google Scholar 

  • IPCC (2007a) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22

    Google Scholar 

  • Jain M, Moharana KC, Shankar R et al (2014) Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol J 12:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Func Genom Proteomics 9(2):166–177

    Article  CAS  Google Scholar 

  • Jorde LB (1995) Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet 56:11–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorde LB (2000) Linkage disequilibrium and the search for complex disease genes. Genome Res 10:1435–1444

    Article  CAS  PubMed  Google Scholar 

  • Kim CK, Yoon UH, Lee GS et al (2009) Rice genetic marker database: an identification of single nucleotide polymorphism (SNP) and quantitative trait loci (QTL) markers. Afr J Biotechnol 8(13):2963–2967

    CAS  Google Scholar 

  • Krishnakumar S, Zheng J, Wilhelmy J et al (2008) A comprehensive assay for targeted multiplex amplification of human DNA sequences. Proc Natl Acad Sci U S A 105:9296–9301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonforte A, Shimna S, Noel OL et al (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13(161):1–14

    Google Scholar 

  • Li Y, Haseneyer CC, Scheon D et al (2011) High levels of nucleotide diversity and fast decline of linkage disequilibrium in rye (Secale cereale L.) genes involved in frost response. BMC Plant Biol 11:6–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang F, Xin X, Hu Z, Xu J et al (2011) Genetic analysis and fine mapping of a novel semidominant dwarfing gene LB4D in rice. J Integr Plant Biol 53:312–323

    Article  CAS  PubMed  Google Scholar 

  • Lijavetzky D, Cabezas JA, Ibanez A et al (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Huang S, Sun M et al (2012) An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Meth 8:34

    Article  CAS  Google Scholar 

  • Lu Y, Zhang T, Shah C et al (2010) Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci U S A 107:19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas MR, Ehlers JD, Huynh BL et al (2013) Markers for breeding heat-tolerant cowpea. Mol Breed 31(3):529–536

    Article  Google Scholar 

  • Martin WG, Thomas A, Marion SR (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  Google Scholar 

  • Mastrangelo AM, Mazzucotelli E, Guerra D et al (2012) Improvement of drought resistance in crops: from conventional breeding to genomic selection. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management. Springer, Dordrecht, pp 225–229

    Google Scholar 

  • McNally KL, Naredo ME, Cairns J (2009) SNP discovery at candidate genes for drought responsiveness in rice. In: Serraj R, Bennett J, Hardy B (eds) Drought frontiers in rice – crop improvement for increased rainfed. World Scientific Publishing Co., Singapore, pp 311–324

    Chapter  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157:1819–1829

    CAS  Google Scholar 

  • Mondini L, Nachit M, Porceddu E, Pagnotta MA (2012) Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L. var durum). OMICS 16:178–187

    Article  CAS  PubMed  Google Scholar 

  • Nakitandwe J, Trognitz F, Trognitz B (2007) Reliable allele detection using SNP-based PCR primers containing locked nucleic acid: application in genetic mapping. Plant Meth 3:2. doi:101.1186/1746-4811-3-2

  • Novaes E, Drost DR, Farmerie WG et al (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. In: Shanker A (ed) Abiotic stress in plants – mechanisms and adaptations. InTech. doi:10.5772/22248. http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-andadaptations/soil-salinisation-and-salt-stress-in-crop-production

    Google Scholar 

  • Porreca GJ, Zhang K, Li JB et al (2007) Multiplex amplification of large sets of human exons. Nat Methods 4:931–936

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Resende MDV, Resende MRF Jr, Sansaloni CP et al (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194(1):116–128

    Article  PubMed  Google Scholar 

  • Robbins MD, Sim S, Yang W et al (2011) Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot 62:1831–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roorkiwal M, Nayak SN, Thudi M et al (2014) Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using gen e based SNP markers. Front Plant Sci 5:1–11

    Article  Google Scholar 

  • Rostoks N, Mudie S, Cardle L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  CAS  PubMed  Google Scholar 

  • Sebastian W, Kalladan R, Vokkaliga TH et al (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11(1):1–14

    Article  Google Scholar 

  • Setter TL, Yan JB, Warburton M et al (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Exp Bot 62:701–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa K, Isobe S, Hirakawa H et al (2010) SNP discovery and linkage map construction in cultivated tomato. DNA Res 17:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16(6):289–293

    Article  CAS  PubMed  Google Scholar 

  • Solberg TR, Sonesson AK, Woolliams JA, Meuwissen TH (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454

    Article  CAS  PubMed  Google Scholar 

  • Sonia N, Cecília MA, Ines SP et al (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11(1):87–100

    Article  Google Scholar 

  • Stein N, Prasad M, Scholz U et al (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D et al (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11:405–412

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang C, Liu Z (2006) Arabidopsis ribonucleotidereductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiaoqing Y, Guihua B, Shuwei L et al (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64(6):1537–1551

    Article  Google Scholar 

  • Xiong M, Jin L (1999) Comparison of the power and accuracy of biallelic and microsatellite markers in population based gene-mapping methods. Am J Human Genet 62:629–640

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Hu C, Hu H et al (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24(5):721–723

    Article  PubMed  Google Scholar 

  • Ye C, Argayoso MA, Redoña ED et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131(1):33–41

    Article  CAS  Google Scholar 

  • Yu H, Xie W, Wang J et al (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6(3):e17595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Gowda M, Liu W et al (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124(4):769–776

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratan S. Telem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Telem, R.S., Wani, S.H., Singh, N.B., Sadhukhan, R., Mandal, N. (2016). Single Nucleotide Polymorphism (SNP) Marker for Abiotic Stress Tolerance in Crop Plants. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_9

Download citation

Publish with us

Policies and ethics