Skip to main content

Hepatitis B Virus: Persistence and Clearance

  • Chapter
Hepatitis B Virus in Human Diseases

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hepatitis B virus (HBV) replicates without killing infected hepatocytes or causing a prolonged activation of innate immunity in vivo. Transient infections can be cleared by the adaptive immune response even after infection has spread to the entire hepatocyte population. Resolution of transient infections requires weeks and is associated with killing of a major fraction of infected hepatocytes by cytotoxic T lymphocytes (CTLs). Cytokines also play a major role, clearing viral DNA replication intermediates from the cytoplasm of infected hepatocytes. A major issue concerns the clearance of covalently closed circular (ccc) DNA, the nuclear transcriptional template of the virus. If clearance is not achieved, infections become chronic, resulting in accelerated turnover of hepatocytes due to an ongoing CTL response. Because hepatocytes appear to form a closed self-renewing population, natural and, especially, CTL-stimulated turnover should lead to genetic narrowing of the hepatocyte population as the patient ages. This process will be further accelerated if any hepatocyte mutations facilitate escape from antiviral CTLs, or provide a growth advantage. Finally, the association of genetic narrowing and expansion of cell clones in the context of chronic liver disease may contribute to the development of hepatocellular carcinoma (HCC), the most serious sequela of chronic hepatitis B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moraleda G, Saputelli J, Aldrich CE, Averett D, Condreay L, Mason WS. Lack of effect of antiviral therapy in nondividing hepatocyte cultures on the closed circular DNA of woodchuck hepatitis virus. J Virol. 1997;71:9392–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Lutgehetmann M, Volz T, Kopke A, Broja T, Tigges E, Lohse AW, et al. In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice. Hepatology. 2010;52:16–24.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu Y, Yamamoto T, Cullen J, Saputelli J, Aldrich CE, Miller DS, et al. Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol. 2001;75:311–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Reaiche-Miller GY, Thorpe M, Low HC, Qiao Q, Scougall CA, Mason WS, et al. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver. Virology. 2013;446:357–64.

    Article  CAS  PubMed  Google Scholar 

  5. Stevens CE, Neurath RA, Beasley RP, Szmuness W. HBeAg and anti-HBe detection by radioimmunoassay: correlation with vertical transmission of hepatitis B virus in Taiwan. J Med Virol. 1979;3:237–41.

    Article  CAS  PubMed  Google Scholar 

  6. Hoofnagle JH. Reactivation of hepatitis B. Hepatology. 2009;49(5 Suppl):S156–65.

    Article  CAS  PubMed  Google Scholar 

  7. Menne S, Cote PJ, Butler SD, Toshkov IA, Gerin JL, Tennant BC. Immunosuppression reactivates viral replication long after resolution of woodchuck hepatitis virus infection. Hepatology. 2007;45:614–22.

    Article  CAS  PubMed  Google Scholar 

  8. Rehermann B, Ferrari C, Pasquinelli C, Chisari FV. The hepatitis B virus persists for decades after patients recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat Med. 1996;2:1104–8.

    Article  CAS  PubMed  Google Scholar 

  9. Mancini R, Marucci L, Benedetti A, Jezequel AM, Orlandi F. Immunohistochemical analysis of S-phase cells in normal human and rat liver by PC10 monoclonal antibody. Liver. 1994;14:57–64.

    Article  CAS  PubMed  Google Scholar 

  10. Mason WS, Cullen J, Moraleda G, Saputelli J, Aldrich CE, Miller DS, et al. Lamivudine therapy of WHV-infected woodchucks. Virology. 1998;245:18–32.

    Article  CAS  PubMed  Google Scholar 

  11. Mason WS, Xu C, Low HC, Saputelli J, Aldrich CE, Scougall C, et al. The amount of hepatocyte turnover that occurred during resolution of transient hepadnavirus infections was lower when virus replication was inhibited with entecavir. J Virol. 2009;83(4):1778–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wieland SF, Spangenberg HC, Thimme R, PUrcell RH, Chisari FV. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci U S A. 2004;101:2129–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Summers J, Jilbert AR, Yang W, Aldrich CE, Saputelli J, Litwin S, et al. Hepatocyte turnover during resolution of a transient hepadnaviral infection. Proc Natl Acad Sci U S A. 2003;100:11652–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Roskams T. Liver stem cells and their implications in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25:3818–22.

    Article  CAS  PubMed  Google Scholar 

  15. Hsia CC, Evarts RP, Nakatsukasa H, Marsden ER, Thorgeirsson SS. Occurrence of oval-type cells in hepatitis B virus-associated human hepatocarcinogenesis. Hepatology. 1992;16:1327–33.

    Article  CAS  PubMed  Google Scholar 

  16. Evarts RP, Nagy P, Marsden E, Thorgeirsson SS. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987;8:1737–40.

    Article  CAS  PubMed  Google Scholar 

  17. Wang MJ, Chen F, Li JX, Liu CC, Zhang HB, Xia Y, et al. Reversal of hepatocyte senescence after continuous in vivo cell proliferation. Hepatology. 2014;60:349–61.

    Article  CAS  PubMed  Google Scholar 

  18. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15:340–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Schaub JR, Malato Y, Gormond C, Willenbring H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 2014;8:933–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15:605–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Theise ND, Krause DS. Bone marrow to liver: the blood of Prometheus. Semin Cell Dev Biol. 2002;13:411–7.

    Article  PubMed  Google Scholar 

  22. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–70.

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422:897–901.

    Article  CAS  PubMed  Google Scholar 

  24. Dandri M, Burda MR, Will H, Petersen J. Increased hepatocyte turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA. Hepatology. 2000;32:139–46.

    Article  CAS  PubMed  Google Scholar 

  25. Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 2014;343:1221–8.

    Article  CAS  PubMed  Google Scholar 

  26. Chisari FV, Mason WS, Seeger C. Virology. Comment on “Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA”. Science. 2014;344:1237.

    Article  CAS  PubMed  Google Scholar 

  27. Jilbert AR, Wu T-T, England JM, Hall PM, Carp NZ, O’Connell AP, et al. Rapid resolution of duck hepatitis B virus infections occurs after massive hepatocellular involvement. J Virol. 1992;66:1377–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Kajino K, Jilbert AR, Saputelli J, Aldrich CE, Cullen J, Mason WS. Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. J Virol. 1994;68:5792–803.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ponzetto A, Cote PJ, Ford EC, Purcell RH, Gerin JL. Core antigen and antibody in woodchucks after infection with woodchuck hepatitis virus. J Virol. 1984;52:70–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Guo J-T, Zhou H, Liu C, Aldrich C, Saputelli J, Whitaker T, et al. Apoptosis and regeneration of hepatocytes during recovery from transient hepadnavirus infection. J Virol. 2000;74:1495–505.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Grompe M. Liver stem cells, where art thou? Cell Stem Cell. 2014;15:257–8.

    Article  CAS  PubMed  Google Scholar 

  32. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 1996;4:25–36.

    Article  CAS  PubMed  Google Scholar 

  33. Murray JM, Wieland SF, Purcell RH, Chisari FV. Dynamics of hepatitis B virus clearance in chimpanzees. Proc Natl Acad Sci U S A. 2005;102:17780–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Yim HJ, Lok AS. Natural history of chronic hepatitis B virus infection: what we knew in 1981 and what we know in 2005. Hepatology. 2006;43(2 Suppl 1):S173–81.

    Article  CAS  PubMed  Google Scholar 

  35. Chen CJ, Yang HI. Natural history of chronic hepatitis B REVEALed. J Gastroenterol Hepatol. 2011;26:628–38.

    Article  PubMed  Google Scholar 

  36. Wang HY, Chien MH, Huang HP, Chang HC, Wu CC, Chen PJ, et al. Distinct hepatitis B virus dynamics in the immunotolerant and early immunoclearance phases. J Virol. 2010;84:3454–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kennedy PT, Sandalova E, Jo J, Gill U, Ushiro-Lumb I, Tan AT, et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology. 2012;143:637–45.

    Article  CAS  PubMed  Google Scholar 

  38. Bertoletti A, Kennedy PT. The immune tolerant phase of chronic HBV infection: new perspectives on an old concept. Cell Mol Immunol. 2014;12(3):258–63.

    Article  PubMed  Google Scholar 

  39. Davis GL, Hoofnagle JH, Waggoner JG. Spontaneous reactivation of chronic hepatitis B virus infection. Gastroenterology. 1984;86(2):230–5.

    CAS  PubMed  Google Scholar 

  40. Evans AA, O’Connell AP, Pugh JC, Mason WS, Shen FM, Chen GC, et al. Geographic variation in viral load among hepatitis B carriers with differing risks of hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 1998;7:559–65.

    CAS  Google Scholar 

  41. Hosaka T, Suzuki F, Kumada H. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology. 2013;58:96–107.

    Article  Google Scholar 

  42. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381:468–75.

    Article  CAS  PubMed  Google Scholar 

  43. Tana MM, Hoofnagle JH. Scar undone: long-term therapy of hepatitis B. Lancet. 2013;381:433–4.

    Article  PubMed  Google Scholar 

  44. Furuya K, Nakamura M, Yamamoto T, Togel K, Otsuka H. Macroregenerative nodule of the liver. A clinicopathologic study of 345 autopsy cases of chronic liver disease. Cancer. 1988;61:99–105.

    Article  CAS  PubMed  Google Scholar 

  45. Mashal RD, Lester SC, Sklar J. Clonal analysis by study of X chromosome inactivation in formalin-fixed paraffin-embedded tissue. Cancer Res. 1993;53:4676–9.

    CAS  PubMed  Google Scholar 

  46. Paradis V, Laurendeau I, Vidaud M, Bedossa P. Clonal analysis of macronodules in cirrhosis. Hepatology. 1998;28:953–8.

    Article  CAS  PubMed  Google Scholar 

  47. Piao Z, Park YN, Kim H, Park C. Clonality of large regenerative nodules in liver cirrhosis. Liver. 1997;17:251–6.

    Article  CAS  PubMed  Google Scholar 

  48. Robinson WS, Klote L, Aoki N. Hepadnaviruses in cirrhotic liver and hepatocellular carcinoma. J Med Virol. 1990;31:18–32.

    Article  CAS  PubMed  Google Scholar 

  49. Yeh SH, Chen PJ, Shau WY, Chen YW, Lee PH, Chen JT, et al. Chromosomal allelic imbalance evolving from liver cirrhosis to hepatocellular carcinoma. Gastroenterology. 2001;121:699–709.

    Article  CAS  PubMed  Google Scholar 

  50. Aoki N, Robinson WS. State of hepatitis B viral genomes in cirrhotic and hepatocellular carcinoma nodules. Mol Biol Med. 1989;6:395–408.

    CAS  PubMed  Google Scholar 

  51. Mason WS, Low HC, Xu C, Aldrich CE, Scougall CA, Grosse A, et al. Detection of clonally expanded hepatocytes in chimpanzees with chronic hepatitis B virus infection. J Virol. 2009;83:8396–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Xu C, Yamamoto T, Zhou T, Aldrich CE, Frank K, Cullen JM, et al. The liver of woodchucks chronically infected with the woodchuck hepatitis virus contains foci of virus core antigen-negative hepatocytes with both altered and normal morphology. Virology. 2007;359:283–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Tu T, Mason WS, Clouston AD, Shackel NA, McCaughan GW, Yeh MM, et al. Clonal expansion of hepatocytes with a selective advantage occurs during all stages of chronic hepatitis B virus infection. J Viral Hepat. 2015;22(9):737–53.

    Article  CAS  PubMed  Google Scholar 

  54. Mason WS, Liu C, Aldrich CE, Litwin S, Yeh MM. Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J Virol. 2010;84:8308–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Burrell CJ, Gowans EJ, Jilbert AR, Lake JR, Marmion BP. Hepatitis B virus DNA detection by in situ cytohybridization: Implications for viral replication strategy and pathogenesis of chronic hepatitis. Hepatology. 1982;2:85S–91.

    Google Scholar 

  56. Gowans EJ, Burrell CJ, Jilbert AR, Marmion BP. Detection of hepatitis B virus DNA sequences in infected hepatocytes by in situ cytohybridisation. J Med Virol. 1981;8:67–78.

    Article  CAS  PubMed  Google Scholar 

  57. Su IJ, Wang HC, Wu HC, Huang WY. Ground glass hepatocytes contain pre-S mutants and represent preneoplastic lesions in chronic hepatitis B virus infection. J Gastroenterol Hepatol. 2008;23:1169–74.

    Article  CAS  PubMed  Google Scholar 

  58. Rudnick DA, Perlmutter DH. Alpha-1-antitrypsin deficiency: A new paradigm for hepatocellular carcinoma in generic liver disease. Hepatology. 2005;42:514–21.

    Article  CAS  PubMed  Google Scholar 

  59. Marongiu F, Doratiotto S, Montisci S, Pani P, Laconi E. Liver repopulation and carcinogenesis: two sides of the same coin? Am J Pathol. 2008;172:857–64.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Hsu HC, Wu TT, Sheu JC, Wu CY, Chiou TJ, Lee CS, et al. Biologic significance of the detection of HBsAg and HBcAg in liver and tumor from 204 HBsAg-positive patients with primary hepatocellular carcinoma. Hepatology. 1989;9:747–50.

    Article  CAS  PubMed  Google Scholar 

  61. Govindarajan S, Conrad A, Lim B, Valinluck B, Kim AM. P. S. Study of preneoplastic changes in liver cells by immunohistochemical and molecular hybridization techniques. Arch Pathol Lab Med. 1990;114:1042–5.

    CAS  PubMed  Google Scholar 

  62. Yang D, Alt E, Rogler CE. Coordinate expression of N-myc 2 and insulin-like growth factor II in pre-cancerous altered hepatic foci in woodchuck hepatitis virus carriers. Cancer Res. 1993;53:2020–7.

    CAS  PubMed  Google Scholar 

  63. Li Y, Hacker H, Kopp-Schneider A, Protzer U, Bannasch P. Woodchuck hepatitis virus replication and antigen expression gradually decrease in preneoplastic hepatocellular lineages. J Hepatol. 2002;37:478–85.

    Article  CAS  PubMed  Google Scholar 

  64. Radaeva S, Li Y, Hacker HJ, Burger V, Kopp-Schneider A, Bannasch P. Hepadnaviral hepatocarcinogenesis: in situ visualization of viral antigens, cytoplasmic compartmentation, enzymic patterns, and cellular proliferation in preneoplastic hepatocellular lineages in woodchucks. J Hepatol. 2000;33:580–600.

    Article  CAS  PubMed  Google Scholar 

  65. Farber E, Sarma DS. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest. 1987;56(1):4–22.

    CAS  PubMed  Google Scholar 

  66. Becker SA, Lee TH, Butel JS, Slagle BL. Hepatitis B virus X protein interferes with cellular DNA repair. J Virol. 1998;72:266–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Minor MM, Slagle BL. Hepatitis B virus HBx protein interactions with the ubiquitin proteasome system. Viruses. 2014;6:4683–702.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Higgs MR, Chouteau P, Lerat H. ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J Gen Virol. 2014;95:991–1004.

    Article  CAS  PubMed  Google Scholar 

  69. Wu BK, Li CC, Chen HJ, Chang JL, Jeng KS, Chou CK, et al. Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun. 2006;340:916–28.

    Article  CAS  PubMed  Google Scholar 

  70. Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci U S A. 2005;102:1139–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wursthorn K, Lutgehetmann M, Dandri M, Volz T, Buggisch P, Zollner B, et al. Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg\ reduction in patients with chronic hepatitis B. Hepatology. 2006;44:675–84.

    Article  CAS  PubMed  Google Scholar 

  72. Seeger C, Zoulim F, Mason WS. Hepadnaviruses. 6 ed. Knipe DM, Howley P, editors. Philadelphia: Lippincott, Williams and Wilkins; 2013.

    Google Scholar 

  73. Rodrigues L, Freitas N, Kallakury BV, Menne S, Gudima SO. Super-infection with woodchuck hepatitis virus (WHV) strain WHVNY of the livers chronically infected with the strain WHV7. J Virol. 2014;89:384–405.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Parekh S, Zoulim F, Ahn SH, Tsai A, Li J, Kawai S, et al. Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol. 2003;77:6601–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Seeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seeger, C., Litwin, S., Mason, W.S. (2016). Hepatitis B Virus: Persistence and Clearance. In: Liaw, YF., Zoulim, F. (eds) Hepatitis B Virus in Human Diseases. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-22330-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22330-8_6

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-22329-2

  • Online ISBN: 978-3-319-22330-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics