Skip to main content

Electronic Requirements and Structural Preferences for Large Polyhedral Boranes

  • Chapter
Boron

Abstract

The structural and electronic preferences of boron-based polyhedral systems with 12 or fewer vertices is well understood by the combined use of localized and delocalized bonding paradigms. Current research in polyhedral boranes predominantly involves scaling the size within the single polyhedron or by having multiple polyhedral units. Though large and multiple polyhedra are experimentally known for long in molecules as well as solids, the beginning of the current century witnessed comprehensive understanding of bonding in these extended systems. Here, we address the various bonding features exhibited by boron-based large polyhedral systems with the scaling of the system size, their electronic and structural preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HF, Schleyer PR, Robinson GH (2007) A stable neutral diborene containing a BB double bond. J Am Chem Soc 129(41):12412–12413

    Article  CAS  Google Scholar 

  2. Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A (2012) Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 336(6087):1420–1422

    Article  CAS  Google Scholar 

  3. Frenking G, Holzmann N (2012) A boron-boron triple bond. Science 336(6087):1394–1395

    Article  CAS  Google Scholar 

  4. Laszlo P (2000) A diborane story. Angew Chem Int Ed 39(12):2071–2072

    Article  CAS  Google Scholar 

  5. Raine GP, Schaefer HF (1984) Vibrational frequencies for the classical and nonclassical forms of protonated acetylene-C2H+3. J Chem Phys 81(9):4034–4037

    Article  Google Scholar 

  6. Schleyer PVR, Kos AJ, Pople JA, Balaban AT (1982) Carbenium-carbonium structures, H2C+-CH4 +, for the ethane dication. J Am Chem Soc 104(13):3771–3773

    Article  CAS  Google Scholar 

  7. Longuet-Higgins HC (1949) Substances hydrogenées avec défaut d’electrons. J Chim Phys 46:268–275

    CAS  Google Scholar 

  8. Longuet-Higgins HC, de Roberts VM (1954) The electronic structure of the borides MB6. Proc R Soc Lond Ser A 224:336–347

    Google Scholar 

  9. Longuet-Higgins HC, de Roberts VM (1955) The electronic structure of an icosahedron of boron atoms. Proc R Soc Lond Ser A 230:110–119

    Article  CAS  Google Scholar 

  10. Eberhardt WH, Crawford B, Lipscomb WN (1954) The valence structure of the boron hydrides. J Chem Phys 22(6):989–1001

    Article  CAS  Google Scholar 

  11. Lipscomb WN (1977) The Boranes and their relatives. Science 196(4294):1047–1055

    Google Scholar 

  12. Wade K (1971) Electron deficient compounds. Nelson, London

    Book  Google Scholar 

  13. Williams RE (1971) Carboranes and boranes; polyhedra and polyhedral fragments. Inorg Chem 10(1):210–214

    Article  CAS  Google Scholar 

  14. Wade K (1976) Structural and bonding patterns in cluster chemistry. In: Emeléus HJ, Sharpe AG (eds) Advances in inorganic chemistry and radiochemistry, vol 18. Elsevier-Science, pp 1–66

    Google Scholar 

  15. Hoffmann R, Lipscomb WN (1962) Theory of polyhedral molecules. I. Physical factorizations of the secular equation. J Chem Phys 36(8):2179–2189

    Article  CAS  Google Scholar 

  16. Stone AJ (1980) A new approach to bonding in transition metal clusters. Mol Phys 41(6):1339–1354

    Article  CAS  Google Scholar 

  17. Balakrishnarajan MM, Hoffmann R, Pancharatna PD, Jemmis ED (2003) Magic electron counts and bonding in tubular boranes. Inorg Chem 42(15):4650–4659

    Article  CAS  Google Scholar 

  18. Mingos DMP (1972) A general theory for cluster and ring compounds of the main group and transition elements. Nat Phys Sci 236(68):99–102

    Article  CAS  Google Scholar 

  19. Jemmis ED (1982) Overlap control and stability of polyhedral molecules. Closo-carboranes. J Am Chem Soc 104(25):7017–7020

    Article  CAS  Google Scholar 

  20. Jemmis ED, Schleyer PR (1982) Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J Am Chem Soc 104(18):4781–4788

    Article  CAS  Google Scholar 

  21. Aihara J (1978) Three-dimensional aromaticity of polyhedral boranes. J Am Chem Soc 100(11):3339–3342

    Article  CAS  Google Scholar 

  22. Friedman LB, Dobrott RD, Lipscomb WN (1963) Preparation and structure of a New Boron hydride, B20H16. J Am Chem Soc 85(21):3505–3506

    Article  CAS  Google Scholar 

  23. Miller NE, Muetterties EL (1963) A new boron hydride, B20H16. J Am Chem Soc 85(21):3506–3506

    Article  CAS  Google Scholar 

  24. Pitochelli AR, Hawthorne FM (1960) The isolation of the icosahedral B12H12 −2 Ion. J Am Chem Soc 82(12):3228–3229

    Article  CAS  Google Scholar 

  25. Londesborough MGS, Hnyk D, Bould J, Serrano-Andrés L, Sauri V, Oliva JM, Kubát P, Polívka T, Lang K (2012) Distinct photophysics of the isomers of B18H22 explained. Inorg Chem 51(3):1471–1479

    Article  CAS  Google Scholar 

  26. Cerdán L, Braborec J, Garcia-Moreno I, Costela A, Londesborough MGS (2015) A borane laser. Nat Commun 6:5958

    Article  Google Scholar 

  27. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) Electronic requirements for macropolyhedral boranes. Chem Rev 102(1):93–144

    Article  Google Scholar 

  28. Mingos DMP (1984) Polyhedral skeletal electron pair approach. Acc Chem Res 17(9):311–319

    Article  CAS  Google Scholar 

  29. Balakrishnarajan MM, Jemmis ED (2000) Electronic requirements of polycondensed polyhedral boranes. J Am Chem Soc 122(18):4516–4517

    Article  CAS  Google Scholar 

  30. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) Missing hydrogens in B19H20 ? application of electron counting rule for edge-sharing macropolyhedral boranes. Inorg Chem 40(8):1730–1731

    Article  CAS  Google Scholar 

  31. Oliva JMR, Juanjo H, Drahomír K, John D, Rosenfeld VR (2013) Borane polyhedra as building blocks for unknown but potentially isolatable New molecules – extensions based on computations of the known B18H22 isomers. Croat Chem Acta 86(4):485–494

    Article  CAS  Google Scholar 

  32. Shameema O, Jemmis ED (2008) Orbital compatibility in the condensation of polyhedral boranes. Angew Chem Int Ed 47(30):5561–5564

    Article  CAS  Google Scholar 

  33. Kiani FA, Hofmann M (2006) Which nido:nido-macropolyhedral boranes are most stable? Inorg Chem 45(17):6996–7003

    Article  CAS  Google Scholar 

  34. Hnyk D, Holub J, Jelínek T, Macháček J, Londesborough MGS (2010) Revisiting B20H16 by means of a joint computational/experimental NMR approach. Collect Czech Chem C 75(11):1115–1123

    Article  CAS  Google Scholar 

  35. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2001) A unifying electron-counting rule for macropolyhedral boranes, metallaboranes, and metallocenes. J Am Chem Soc 123(18):4313–4323

    Article  CAS  Google Scholar 

  36. Carr N, Mullica DF, Sappenfield EL, Stone FGA (1994) Carborane complexes of nickel and platinum: synthesis and protonation reactions of anionic allyl (carborane) species. Inorg Chem 33(8):1666–1673

    Article  CAS  Google Scholar 

  37. Maier A, Hofmann M, Pritzkow H, Siebert W (2002) A planar, aromatic bicyclo-tetraborane(4). Angew Chem Int Ed 41(9):1529–1532

    Article  CAS  Google Scholar 

  38. Präsang C, Hofmann M, Geiseler G, Massa W, Berndt A (2002) Aromatic boranes with planar-tetracoordinate boron atoms and very short B − B distances. Angew Chem Int Ed 41(9):1526–1529

    Article  Google Scholar 

  39. Balakrishnarajan MM, Hoffmann R (2004) Electron-deficient bonding in ⧫ rhomboid rings. J Am Chem Soc 126(40):13119–13131

    Article  CAS  Google Scholar 

  40. Albert B (1998) A new “old” sodium boride: linked pentagonal bipyramids and octahedra in Na3B20. Angew Chem Int Ed 37(8):1117–1118

    Article  CAS  Google Scholar 

  41. Brown LD, Lipscomb WN (1977) Closo boron hydrides with 13 to 24 boron atoms. Inorg Chem 16(12):2989–2996

    Article  CAS  Google Scholar 

  42. Schleyer PR, Najafian K, Mebel AM (1998) The large closo-borane dianions, BnHn 2− (n = 13–17) Are aromatic, why are they unknown? Inorg Chem 37(26):6765–6772

    Article  CAS  Google Scholar 

  43. Deng L, Chan HS, Xie ZW (2006) Synthesis, structure, and reactivity of 13-vertex carboranes and 14-vertex metallacarboranes. J Am Chem Soc 128(15):5219–5230

    Article  CAS  Google Scholar 

  44. Deng L, Zhang J, Chan HS, Xie ZW (2006) Synthesis and structure of 14-and 15-vertex ruthenacarboranes. Angew Chem Int Ed 45(26):4309–4313

    Article  CAS  Google Scholar 

  45. McIntosh RD, Ellis D, Rosair GM, Welch AJ (2006) A 15-vertex heteroborane. Angew Chem Int Ed 45(26):4313–4316

    Article  CAS  Google Scholar 

  46. Wong EH, Prasad L, Gabe EJ, Gatter MG (1983) Structural characterization of a B11H11 2−derivative: molecular structure of (C2H5)4 N+B11H10S(CH3)2. Inorg Chem 22(7):1143–1146

    Article  CAS  Google Scholar 

  47. Burke A, Ellis D, Giles BT, Hodson BE, Macgregor SA, Rosair GM, Welch AJ (2003) Beyond the icosahedron: the first 13-vertex carborane. Angew Chem Int Ed 42(2):225–228

    Article  CAS  Google Scholar 

  48. Grimes RN (2003) Supercarboranes. Angew Chem Int Ed 42(11):1198–1200

    Article  CAS  Google Scholar 

  49. Pancharatna PD, Marutheeswaran S, Austeria MP, Balakrishnarajan MM (2013) Deltahedra with holes: structural preferences of supraicosahedral boranes. Polyhedron 63:55–59

    Article  CAS  Google Scholar 

  50. Jemmis ED, Balakrishnarajan MM (2001) Polyhedral boranes and elemental boron: direct structural relations and diverse electronic requirements. J Am Chem Soc 123(18):4324–4330

    Article  CAS  Google Scholar 

  51. Rathke J, Schaeffer R (1974) Boranes. XXXVIII. Reactions of hexaborane(10) with boron hydride lewis acids. Inorg Chem 13(12):3008–3011

    Article  CAS  Google Scholar 

  52. Jemmis ED, Balakrishnarajan MM (2000) Ab initio predictions on novel stuffed polyhedral boranes. J Am Chem Soc 122(30):7392–7393

    Article  CAS  Google Scholar 

  53. Albert B, Hillebrecht H (2009) Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed 48(46):8640–8668

    Article  CAS  Google Scholar 

  54. Hughes RE, Kennard CHL, Sullenger DB, Weakliem HA, Sands DE, Hoard JL (1963) The structure of -rhombohedral boron. J Am Chem Soc 85(3):361–362

    Article  Google Scholar 

  55. Prasad DLVK, Balakrishnarajan MM, Jemmis ED (2005) Electronic structure and bonding of beta-rhombohedral boron using cluster fragment approach. Phys Rev B 72(19):195102

    Article  Google Scholar 

  56. Kasper JS, Richards SM (1969) The crystal structure of YB66. Acta Cryst 25(6):237–251

    Google Scholar 

  57. Balakrishnarajan MM, Pancharatna PD, Hoffmann R (2007) Structure and bonding in boron carbide: the invincibility of imperfections. New J Chem 31(4):473–485

    Article  CAS  Google Scholar 

  58. Balakrishnarajan MM, Hoffmann R (2003) Exohedral multiple bonding in polyhedra. 2. Skeletal distortions in ring-stacked boranes. Inorg Chem 43(1):27–32

    Article  Google Scholar 

  59. Balakrishnarajan MM, Hoffmann R (2003) Polyhedral boranes with Exo multiple bonds: three-dimensional inorganic analogues of quinones. Angew Chem Int Ed 42(32):3777–3781

    Article  CAS  Google Scholar 

  60. Finze M, Reiss GJ, Zähres M (2007) [1-H2N − CB11F11] − synthesis and reactions of a functionalized fluorinated carbadodecaborate anion. Inorg Chem 46(23):9873–9883

    Article  CAS  Google Scholar 

  61. Farha OK, Julius RL, Lee MW, Huertas RE, Knobler CB, Hawthorne MF (2005) Synthesis of stable dodecaalkoxy derivatives of hypercloso-B12H12. J Am Chem Soc 127(51):18243–18251

    Google Scholar 

  62. Pancharatna PD, Balakrishnarajan MM, Jemmis ED, Hoffmann R (2012) Polyhedral borane analogues of the benzynes and beyond: bonding in variously charged B12H10 isomers. J Am Chem Soc 134(13):5916–5920

    Article  CAS  Google Scholar 

  63. Lewis JS, Kaczmarczyk A (1966) Polyhedral borane free radicals 1. J Am Chem Soc 88(5):1068–1069

    Article  CAS  Google Scholar 

  64. Joosten D, Pantenburg I, Wesemann L (2006) Distanna-closo-dodecaborate. Angew Chem Int Ed 45(7):1085–1087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musiri M. Balakrishnarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balakrishnarajan, M.M., Pancharatna, P.D. (2015). Electronic Requirements and Structural Preferences for Large Polyhedral Boranes. In: Hnyk, D., McKee, M. (eds) Boron. Challenges and Advances in Computational Chemistry and Physics, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-22282-0_7

Download citation

Publish with us

Policies and ethics