Skip to main content

Nuclear Dismantling Events: Crucial Steps During the Execution of Plant Programmed Cell Death

  • Chapter
Plant Programmed Cell Death

Abstract

Programmed cell death (PCD) is an important process in the life cycle of multicellular organisms, which has the relevant function of eliminating unneeded or damaged cells. In response to either internal or external signals, cells that will undergo PCD begin a degenerative process in which the nucleus becomes the major target of the machinery of cell death. In this review, we summarize the key features that characterize nucleus dismantling in plant cells undergoing PCD, focusing on the similarities and differences with their animal counterparts. Taking into account morphological and biochemical events, two types of nuclear dismantling processes may be distinguished, termed premortem and postmortem, depending on whether nucleus degeneration begins before or after vacuolar rupture and rapid clearance of the cell contents. Premortem nucleus dismantling includes events affecting the nuclear envelope (such as lobbing of the nuclear surface, selective proteolysis of nucleoporins, and nuclear pore complex clustering), chromatin condensation, and DNA fragmentation. The postmortem process is so rapid that a sequence of events during cellular disintegration has not been identified. Finally, critical targets that may be of relevance in nuclear dismantling research in the future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

ER:

Endoplasmic reticulum

INM:

Inner nuclear membrane

KASH:

Klarsicht/ANC-1/Syne-1 homology

MAPK:

Mitogen-activated protein kinase

NPC:

Nuclear pore complex

Nup:

Nucleoporin

ONM:

Outer nuclear membrane

PCD:

Programmed cell death

ROS:

Reactive oxygen species

SIPK:

Salicylic acid-induced protein kinase

SUN protein:

Sad1/UNC84 protein

TE:

Tracheid element

References

  1. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–254

    Article  CAS  PubMed  Google Scholar 

  2. Danial NK, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  3. Conradt B (2009) Programmed cell death during animal development. Annu Rev Genet 43:493–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kitazumi I, Tsukahara M (2011) Regulation of DNA fragmentation: the role of caspases and phosphorylation. FEBS J 278:427–441

    Article  CAS  PubMed  Google Scholar 

  6. He C, Klionsky DJ (2009) Regulation mechanism and signalling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  8. Van Doorn WG (2011) Classes of programmed cell death in plants, compared to those in animals. J Exp Bot 62:4749–4761

    Article  PubMed  CAS  Google Scholar 

  9. Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2:2–11

    Article  CAS  PubMed  Google Scholar 

  10. Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  11. Gadjev I, Stone JM, Geshev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

    Article  CAS  PubMed  Google Scholar 

  12. Rogers HJ (2006) Cell death and organ development in plants. Curr Top Dev Biol 71:225–261

    Article  CAS  Google Scholar 

  13. Kacprzyc J, Daly CT, McCabe PF (2011) The botanical dance of death: programmed cell death in plants. Adv Bot Res 60:169–261

    Article  CAS  Google Scholar 

  14. Coll NS, Epple P, Dangl JL (2011) Programmed cell death in the plant immune system. Cell Death Differ 18:1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rippe K (2007) Dynamic organization of the nucleus. Curr Opin Genet Dev 17:373–380

    Article  CAS  PubMed  Google Scholar 

  16. Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121

    Article  PubMed  CAS  Google Scholar 

  17. Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell Death Differ 15:243–250

    Article  CAS  PubMed  Google Scholar 

  18. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  19. Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS (2003) Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell 14:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park YE, Hayashi YK, Bonne G, Arimura T, Noguchi S, Nonaka I et al (2009) Autophagic degradation of nuclear components in mammalian cells. Autophagy 5:795–804

    Article  CAS  PubMed  Google Scholar 

  21. Shoji J, Kikuma T, Arioka M, Kitamoto K (2010) Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. Plos One 5:12

    Article  CAS  Google Scholar 

  22. Akematsu T, Pearlman RL, Endoh H (2010) Gigantic macroautophagy in programmed nuclear death in Tetrahymena thermophila. Autophagy 6:901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akematsu T, Kobayashi T, Osada E, Fukuda Y, Endoh H, Pearlman RL (2012) Programmed nuclear death and its relation to apoptosis and autophagy during sexual reproduction in Tetrahymena thermophila. Jpn J Protozool 45:1–15

    Google Scholar 

  24. Eastwood MD, Cheung SWT, Lee KY, Moffat J, Meneghini MD (2012) Developmentally programmed nuclear destruction during yeast gametogenesis. Dev Cell 23:35–44

    Article  CAS  PubMed  Google Scholar 

  25. Gernand D, Rutten T, Varshney A, Rubtsova M, Prodanovic S, Bru BC, Kumlehn J, Matzk F, Houben A (2005) Uniparental chromosome elimination at mitosis and interphase in wheat and pearl millet crosses involves micronucleus formation, progressive heterochromatinization and DNA fragmentation. Plant Cell 17:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  PubMed  CAS  Google Scholar 

  27. Burke B, Ellemberg J (2002) Remodelling the walls of the nucleus. Nat Rev Mol Cell Biol 3:487–497

    Article  CAS  PubMed  Google Scholar 

  28. Güttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178–191

    Article  PubMed  CAS  Google Scholar 

  29. Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tapley EC, Starr DA (2013) Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr Opin Cell Biol 25:57–62

    Article  CAS  PubMed  Google Scholar 

  31. Evans DE, Shvedunova M, Graumann K (2011) The nuclear envelope in the plant cell cycle: structure, function and regulation. Ann Bot 107:1111–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boruc J, Zhou X, Meier I (2012) Dynamics of the plant nuclear envelope and nuclear pore. Plant Physiol 158:78–86

    Article  CAS  PubMed  Google Scholar 

  33. Tamura K, Hara-Nishimura I (2013) The molecular architecture of the plant nuclear pore complex. J Exp Bot 64:823–832

    Article  CAS  PubMed  Google Scholar 

  34. Fiserova J, Kiseleva E, Goldberg MW (2009) Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J 59:243–255

    Article  CAS  PubMed  Google Scholar 

  35. Masuda K, Xu ZJ, Takahashi S, Ito A, Ono M, Nomura K et al (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Exp Cell Res 232:173–181

    Article  CAS  PubMed  Google Scholar 

  36. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19:2793–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graumann K, Runions J, Evans DE (2010) Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant J 61:134–144

    Article  CAS  PubMed  Google Scholar 

  38. Murphy SP, Simmons CR, Bass HW (2010) Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants. BMC Plant Biol 10:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oda Y, Fukuda H (2011) Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. Plant J 66:629–641

    Article  CAS  PubMed  Google Scholar 

  40. Zhou X, Graumann K, Evans DE, Meier I (2012) Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shaping determination. J Cell Biol 196:203–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamura K, Fukao Y, Iwamoto M, Haragushi T, Hara-Nishimura I (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22:4084–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meier I (2007) Composition of the plant nuclear envelope: theme and variations. J Exp Bot 58:27–34

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Q, Brkljacic J, Meier I (2008) Two distinct interacting classes of nuclear envelope-associated coiled-coil proteins are required for the tissue-specific nuclear envelope targeting of Arabidopsis RanGAP. Plant Cell 20:1639–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsiatsiani L, Gevaert K, Van Breusegem F (2012) Natural substrates of plant proteases: how can protease degradomics extend our knowledge? Physiol Plant 145:28–40

    Article  CAS  PubMed  Google Scholar 

  47. Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66:969–982

    Article  CAS  PubMed  Google Scholar 

  48. Watanabe N, Lam E (2011) Calcium-dependent activation and autolysis of Arabidopsis metacaspase 2d. J Biol Chem 286:10027–10040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bozhkov PV, Suárez MF, Filonova LH, Daniel G, Zamyatnin AA, Rodríguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17:487–494

    Article  CAS  PubMed  Google Scholar 

  51. Vercammen D, Belenghi B, Van de Cotte B, Beunens T, Gavigan J-A, De Ricke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F (2006) Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J Mol Biol 364:625–636

    Article  CAS  PubMed  Google Scholar 

  52. Sundtröm JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodríguez-Nieto S, Zamyatnin AA, Valineva T et al (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354

    Article  CAS  Google Scholar 

  53. Dit Frey NF, Muller P, Jammes F, Kizis D, Leung J, Perrot-Rechenmann C, Bianchi MW (2010) The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis. Plant Cell 22:1575–1591

    Article  PubMed Central  CAS  Google Scholar 

  54. Tsiatsiani L, Timmerman E, De Bock P-J, Vercammen D, Stael S, Van de Cotte B, Staes A, Goethals M, Beunens T, Van Damme P, Gevaert K, Van Breusegem F (2013) The Arabidopsis Metacaspase9 degradome. Plant Cell 25:2831–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scovassi AI, Diederich M (2004) Modulation of Poly (ADP-ribosylation) in apoptotic cells. Biochem Pharmacol 68:1041–1047

    Article  CAS  Google Scholar 

  56. Thomas SG, Franklin-Tong V (2004) Self-Incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  CAS  PubMed  Google Scholar 

  57. Cook A, Bono F, Jinek M, Conti E (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671

    Article  CAS  PubMed  Google Scholar 

  58. Merkle T (2011) Nucleocytoplasmic transport of protein and mRNA in plants. Plant Cell Rep 30:153–176

    Article  CAS  PubMed  Google Scholar 

  59. Ferrando-May E (2005) Nucleocytoplasmic transport in apoptosis. Cell Death Differ 12:1263–1276

    Article  CAS  PubMed  Google Scholar 

  60. Grote P, Schaeuble K, Ferrando-May E (2007) Commuting (to) suicide: an update on nucleocytoplasmic transport in apoptosis. Arch Biochem Biophys 462:156–161

    Article  CAS  PubMed  Google Scholar 

  61. Bano D, Dinsdale D, Cabrera-Socorro A, Maida S, Lambacher N, Mccoll B, Ferrando-May E, Hengartner MO, Nicotera P (2010) Alteration of nuclear pore complex in Ca2+-mediated cell death. Cell Death Differ 17:119–133

    Article  CAS  PubMed  Google Scholar 

  62. Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Görlich D, Nicotera P (2001) Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis. Cell Death Differ 8:495–505

    Article  CAS  PubMed  Google Scholar 

  63. Faleiro L, Lazebnik Y (2000) Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 151:951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Menke FLH, Kang H-G, Chen Z, Park JM, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-cell death in tobacco. Mol Plant Microbe Interact 18:1027–1034

    Article  CAS  PubMed  Google Scholar 

  65. Dahan J, Pichereaux C, Rossignol M, Blanc S, Wendehenne D, Pugin A, Bourque S (2009) Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions. Biochem J 418:191–200

    Article  CAS  PubMed  Google Scholar 

  66. Lee J, Rudd JJ, Macioszek VK, Scheel D (2004) Dynamic changes in the localization of MAPK cascade components controlling pathogenesis-related (PR) gene expression during innate immunity in Parsley. J Biol Chem 279:22440–22448

    Article  CAS  PubMed  Google Scholar 

  67. Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che F-S (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J 28:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Elbaz M, Avni A, Weil M (2002) Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9:726–733

    Article  CAS  PubMed  Google Scholar 

  69. Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bosch M, Frankling-Tong V (2007) Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc Natl Acad Sci USA 104:18327–18332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bollhöner B, Zhang B, Stael S, Denancé N, Overmyer K, Goffner D, Van Breusegem F, Tuominen H (2013) Post mortem function of AtMC9 in xylem vessel elements. New Phytol 200:498–510

    Article  PubMed  CAS  Google Scholar 

  72. Domínguez F, Cejudo FJ (2006) Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells. Biochem J 307:529–536

    Article  Google Scholar 

  73. Domínguez F, Moreno J, Cejudo FJ (2004) A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death. J Biol Chem 279:11530–11536

    Article  PubMed  CAS  Google Scholar 

  74. Cacas J-L (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33:1453–1473

    CAS  PubMed  Google Scholar 

  75. Hayashi Y, Yamada K, Shimada T, Matsushima R, Nishizawa NK, Nishimura M, Hara-Nichimura I (2001) A proteinase-storing body that prepares for cell death or stressed in the epidermal cells of Arabidopsis. Plant Cell Physiol 42:894–899

    Article  CAS  PubMed  Google Scholar 

  76. Schmid M, Simpson D, Gietl C (1999) Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proc Natl Acad Sci USA 96:14159–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Senatore A, Trobacher CP, Greenwood JS (2009) Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiol 149:775–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lehmann K, Hause B, Altmann D, Köck M (2001) Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination and senescence. Plant Physiol 127:436–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Farage-Barhom S, Burd S, Sonego L, Mett A, Belausov E, Gidoni D, Lers A (2011) Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol Plant 4:1062–1073

    Article  CAS  PubMed  Google Scholar 

  81. Andeme-Ondzighi C, Christopher DA, Cho EJ, Chang S-C, Staehelin A (2008) Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20:2205–2220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Balk J, Chew SK, Leaver CJ, McCabe PF (2003) The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J 34:573–583

    Article  CAS  PubMed  Google Scholar 

  84. Liu YD, Ren DT, Pike S, Pallardy S, Gasmann W, Zhang SQ (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954

    Article  CAS  PubMed  Google Scholar 

  85. Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  CAS  PubMed  Google Scholar 

  86. Geshev TS, Hille J (2005) Hydrogen peroxide as a signal controlling programmed cell death. J Cell Biol 168:17–20

    Article  CAS  Google Scholar 

  87. Geshev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  CAS  Google Scholar 

  88. Gerner C, Gotzmann J, Fröhwein U, Schamberger C, Ellinger A, Sauermann G (2002) Proteome analysis of nuclear matrix proteins during apoptotic chromatin condensation. Cell Death Differ 9:671–681

    Article  CAS  PubMed  Google Scholar 

  89. Fischer U, Jänicke RU, Shultze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100

    Article  CAS  PubMed  Google Scholar 

  90. Lüthi AU, Martin SJ (2007) The CASBAH: the searchable database of caspase substrates. Cell Death Differ 14:641–650

    Article  PubMed  CAS  Google Scholar 

  91. Casiano CA, Martin SJ, Green DR, Tang EM (1996) Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis. J Exp Med 184:765–770

    Article  CAS  PubMed  Google Scholar 

  92. Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R (2001) Nuclear apoptotic changes: an overview. J Cell Biochem 82:634–646

    Article  CAS  PubMed  Google Scholar 

  93. Falcieri E, Gobbi P, Cataldi A, Zamai L, Faenza I, Vitale M (1994) Nuclear pores in the apoptotic cell. Histochem J 26:754–763

    Article  CAS  PubMed  Google Scholar 

  94. Reipert S, Reipert BM, Hickman JA, Allen TD (1996) Nuclear pore clustering is a consistent feature of apoptosis in vitro. Cell Death Differ 3:131–139

    CAS  PubMed  Google Scholar 

  95. Liu Q, Pante N, Misteli T, Elsagga M, Crisp M, Hodzic D, Burke B, Roux KJ (2007) Functional association of Sun 1 with nuclear pore complexes. J Cell Biol 178:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    Article  CAS  PubMed  Google Scholar 

  97. Levine A, Penell RI, Álvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  CAS  PubMed  Google Scholar 

  98. Mittler R, Simon L, Lam E (1997) Pathogen-induced programmed cell death in tobacco. J Cell Sci 110:1333–1344

    Article  CAS  PubMed  Google Scholar 

  99. Bozhkov PV, Filonova LH, Suárez MF (2005) Programmed cell death in plant embryogenesis. Curr Top Dev Biol 67:135–179

    Article  CAS  PubMed  Google Scholar 

  100. Füllgrabe J, Hajji N, Joseph B (2010) Cracking the death code: apoptosis-related histone modifications. Cell Death Differ 17:1238–1243

    Article  PubMed  CAS  Google Scholar 

  101. Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou D-X (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in Rice. Plant Physiol 144:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bourque S, Dutrarte A, Hammoudi V, Blanc S, Dahan J, Jeandroz S, Pichereaux C, Rossignol M, Wendehenne D (2011) Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytol 192:127–139

    Article  CAS  PubMed  Google Scholar 

  103. Dahan J, Koen E, Dutrarte A, Lamotte O, Bourque S (2011) Post-translational modifications of nuclear proteins in the response of plant cells to abiotic stresses. In: Arun Shanker (ed) Physiological, biochemical and genetic perspectives. InTech, Rijeka

    Google Scholar 

  104. Ye Y, Li Z, Xing D (2012) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36:1–15

    Article  PubMed  CAS  Google Scholar 

  105. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  106. Mengel A, Chaki M, Shekariesfahlam A, Lindermayr C (2013) Effect of nitric oxide on gene transcription – S-nitrosylation of nuclear proteins. Front Plant Sci 4:293

    Article  PubMed  PubMed Central  Google Scholar 

  107. Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  CAS  PubMed  Google Scholar 

  108. Varnier AL, Mazeyrat-Gourbeyre F, Sangwan RS, Clement C (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152:118–128

    Article  CAS  PubMed  Google Scholar 

  109. Bar-Dror T, Dermastia M, Kladnik A, Znidaric MT, Novac MP, Meir S, Burd S, Philosoph-Hadas S, Ori N, Sonego L, Dickman MB, Lers A (2011) Programmed cell death occurs asymmetrically during abscission in tomato. Plant Cell 23:4146–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Filonova LH, Von Arnold S, Daniel G, Bozhkov PV (2002) Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 9:1057–1062

    Article  CAS  PubMed  Google Scholar 

  111. López-Fernández MA, Maldonado S (2013) Programmed cell death during quinoa perisperm development. J Exp Bot 64:3313–3325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. López Fernández MP, Maldonado S (2013) Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa. Ann Bot 112:1253–1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Domínguez F, Moreno J, Cejudo FJ (2001) The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 213:352–360

    Article  PubMed  CAS  Google Scholar 

  114. Domínguez F, Moreno J, Cejudo FJ (2003) Gibberellin regulation of aleurone cell death in germinating wheat seeds. In: Nicolás G, Bradford KJ, Come D, Pritchard HW (eds) The biology of seeds: recent research advances. CAB International, Wallingford

    Google Scholar 

  115. Domínguez F, Moreno J, Cejudo FJ (2012) The scutellum of germinated wheat grains undergoes programmed cell death: identification of an acidic nuclease involved in nucleus dismantling. J Exp Bot 63:5475–5485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wredle U, Walles B, Hakman I (2001) DNA fragmentation and nuclear degradation during programmed cell death in the suspensor and endosperm in Vicia faba. Int J Plant Sci 162:1053–1063

    Article  Google Scholar 

  117. Schussler EE, Longstreth DJ (2000) Changes in cell structure during the formation of root aerenchyma in Sagittaria lancifolia (Alismataceae). Am J Bot 87:12–19

    Article  CAS  PubMed  Google Scholar 

  118. Gunawardena AHLAN, Pearce DM, Jackson MB, Hawes CR, Evans DE (2001) Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.). Planta 212:205–214

    Article  CAS  PubMed  Google Scholar 

  119. Gunawardena AHLAN, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Teper-Bamnolker P, Buskila Y, Lopesco Y, Ben-Dor S, Saad I, Holdengreber V, Belausov E, Zemach H, Ori N, Lers A, Eshel D (2012) Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiol 158:2053–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mittler R, Lam E (1995) Identification, characterization and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7:1951–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Love AJ, Milner JJ, Sadanandom A (2008) Timing is everything: regulatory overlap in plant cell death. Trends Plant Sci 13:589–595

    Article  CAS  PubMed  Google Scholar 

  123. Kihlmark M, Imreh G, Hallberg E (2001) Sequential degradation of proteins from the nuclear envelope during apoptosis. J Cell Sci 114:3643–3653

    Article  CAS  PubMed  Google Scholar 

  124. Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC (2007) Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 313:3635–3644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Kusaka K, Tada Y, Shigemi T, Sakamoto M, Nakayashiki H, Tosa Y, Mayama S (2004) Coordinate involvement of cysteine protease and nuclease in the executive phase of plant apoptosis. FEBS Lett 578:363–367

    Article  CAS  PubMed  Google Scholar 

  126. Yamada T, Ichimura K, Van Doorn WG (2006) DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum and Petunia. J Exp Bot 57:3543–3552

    Article  CAS  PubMed  Google Scholar 

  127. Yamada T, Takatsu Y, Kasumi M, Ichimura K, Van Doorn WG (2006) Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil). Planta 224:1279–1290

    Article  CAS  PubMed  Google Scholar 

  128. Samejima K, Earnshaw WC (2005) Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6:677–688

    Article  CAS  PubMed  Google Scholar 

  129. Young TE, Gallie DR, DeMasson DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115:737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39:915–926

    Article  CAS  PubMed  Google Scholar 

  131. Young TE, Gallie DR (2000) Regulation of programmed cell death in maize endosperm by abscisic acid. Plant Mol Biol 42:397–414

    Article  CAS  PubMed  Google Scholar 

  132. Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the early degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz H-R, Cordes VC, Ferrando-May E (2006) Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 281:1296–1304

    Article  CAS  PubMed  Google Scholar 

  135. Buendía B, Santa-María A, Courvalin JC (1999) Caspase-dependent proteolysis of integral and peripheral proteins of nuclear membranes and nuclear pore complex proteins during apoptosis. J Cell Sci 112:1743–1753

    Article  PubMed  Google Scholar 

  136. Kramer A, Liashkovich I, Oberleithner H, Ludwig S, Mazur I, Shahin V (2008) Apoptosis leads to a degradation of vital components of active nuclear transport and a dissociation of the nuclear lamina. Proc Natl Acad Sci USA 105:11236–11241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutai U (2011) Phosphorylation of Nup 98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 114:539–550

    Article  CAS  Google Scholar 

  138. Cotter L, Allen TD, Kiseleva E, Goldberg MW (2007) Nuclear membrane disassembly and rupture. J Mol Biol 369:683–695

    Article  CAS  PubMed  Google Scholar 

  139. Martelli AM, Mazzotti G, Capitani S (2004) Nuclear protein kinase C isoforms and apoptosis. Eur J Histochem 48:89–94

    Article  CAS  PubMed  Google Scholar 

  140. Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moss DK, Betin VM, Malesinski SD, Lane JD (2006) A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 119:2362–2374

    Article  CAS  PubMed  Google Scholar 

  142. Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  143. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin J-F, Wu S-H, Swidzinsky J, Ichizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–58

    Article  CAS  PubMed  Google Scholar 

  144. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y-S, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Ran D, Benyon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Turner S, Gallois P, Brown D (2007) Tracheary element differentiation. Annu Rev Plant Biol 58:407–433

    Article  CAS  PubMed  Google Scholar 

  146. Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol 125:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Funk V, Kositsup B, Zhao C, Beers EP (2002) The Arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol 128:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Avci U, Petzold HE, Ismail IO, Beers EP, Haigler CH (2008) Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots. Plant J 56:303–315

    Article  CAS  PubMed  Google Scholar 

  149. Courtois-Moreau CL, Pesquet E, Sjödin A, Muñiz L, Bollhöner B, Kaneda M, Samuels L, Jansson S, Tuominen H (2009) A unique program for cell death in xylem fibers of Populus stem. Plant J 58:260–274

    Article  CAS  PubMed  Google Scholar 

  150. Pérez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, Van Hoof A, LeBrasseur ND, Lers A, Green PJ (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122:169–180

    Article  PubMed  PubMed Central  Google Scholar 

  151. Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission and programmed cell death-related processes. J Exp Bot 59:3247–3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bollhöner B, Prestele J, Tuominen H (2012) Xylem cell death: emerging understanding of regulation and function. J Exp Bot 63:1081–1094

    Article  PubMed  CAS  Google Scholar 

  153. Battelli R, Lombardi L, Rogers HJ, Picciarelli P, Lorenzi R, Ceccarelli N (2011) Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum. Plant Sci 180:716–725

    Article  CAS  PubMed  Google Scholar 

  154. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401:168–173

    Article  CAS  PubMed  Google Scholar 

  155. Aleksandrushkina NI, Vanyushin BF (2009) Endonucleases and their involving in plant apoptosis. Russ J Plant Physiol 56:291–305

    Article  CAS  Google Scholar 

  156. Hara-Nishimura I, Hatsugai N, Kuroyanagi M, Nakaume S, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408

    Article  CAS  PubMed  Google Scholar 

  157. Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J 29:1149–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Coffeen W, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sakamoto Y, Takagi S (2013) LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol 54:622–633

    Article  CAS  PubMed  Google Scholar 

  160. Tamura K, Hara-Nishimura I (2011) Involvement of the nuclear pore complex in morphology of the plant nucleus. Nucleus 1:168–172

    Article  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by European Regional Development Fund-cofinanced grants from the Spanish Ministry of Science and Innovation (BIO2010-15430) and Junta de Andalucía (BIO-182 and CVI-5919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Cejudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Domínguez, F., Cejudo, F.J. (2015). Nuclear Dismantling Events: Crucial Steps During the Execution of Plant Programmed Cell Death. In: Gunawardena, A.N., McCabe, P.F. (eds) Plant Programmed Cell Death. Springer, Cham. https://doi.org/10.1007/978-3-319-21033-9_7

Download citation

Publish with us

Policies and ethics