Skip to main content

Part of the book series: Particle Technology Series ((POTS,volume 25))

  • 2343 Accesses

Abstract

Recent developments have significantly altered our understanding of (nano)particle wet synthesis. The most salient feature is that after nucleation and limited growth the “primary” particles aggregate and subsequently coalesce into larger secondary particles of which the size can be limited in the traditional way such as by surface active agents. Hence, the final size and shape of the secondary particles can be controlled at will through the controlled assembly of the primary particles. The aim of this chapter is to use this in the design of wet synthesis methods for both organic and inorganic particles where a particular example for Pt catalysts is discussed in detail. In order to achieve this, colloidal behavior is presented in a colloquial form and interactions, stability, nucleation and growth are reviewed. Subsequently, the use of surfactant as a template is discussed after which the reader is prepared to embark on a description of a synthesis procedure that was recently developed in our group. The importance cannot be stressed: finally one is able to design a synthesis procedure although many challenges remain that are reviewed in the outlook at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even though many (colloidal) objects are not spheres, one still uses expressions for spheres to obtain the correct order of magnitude in the absence of a more accurate value.

  2. 2.

    It is important to realize that the diffusion rate determines the time scale over which the sedimentation profile establishes itself. The shape of the profile however is independent of the kinetics; as a signature: the profile does not contain the viscosity which is the rate determining liquid property here.

  3. 3.

    The word coagulation is also used to denote flocculation or aggregation.

  4. 4.

    The Smoluchoski family preferred the Polish name as given in the text. German texts, such as his PhD thesis, refer to him as Marian, Ritter von Smolan Smoluchowski; the word Ritter stands for Knight. In contemporary texts, confusion dominates and one also finds Maryan von Smoluchowsky.

  5. 5.

    The ionic strength of a 1–1 electrolyte is equal to its concentration, for more involved electrolytes it can be found in various text books [22].

  6. 6.

    There is no immediate argument as to why the functional form of the nucleation function should be a Gaussian.

References

  1. Andre, P., Ninham, B.W., Pileni, M.P.: Mesostructured fluids: a geometrical model predicting experimental data. New J. Chem. 25(4), 563–571 (2001). doi:10.1039/b009079o

    Article  Google Scholar 

  2. Astruc, D., Lu, F., Aranzaes, J.R.: Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44(48), 7852–7872 (2005)

    Article  Google Scholar 

  3. Baldan, A.: Review progress in Ostwald ripening theories and their applications to nickel-base superalloys – Part I: Ostwald ripening theories. J. Mater. Sci. 37(11), 2171–2202 (2002)

    Article  ADS  Google Scholar 

  4. Ben-Yaakov, D., Andelman, D., Podgornik, R., Harries, D.: Ion-specific hydration effects: extending the Poisson-Boltzmann theory. Curr. Opin. Colloid Interface Sci. 16(6), 542–550 (2011). doi:10.1016/j.cocis.2011.04.012

    Article  Google Scholar 

  5. Boutonnet, M., Kizling, J., Stenius, P.: The preparation of monodisperse colloidal metal particles from micro-emulsions. Colloids Surf. 5(3), 209–225 (1982). doi:10.1016/0166-6622(82)80079-6

    Article  Google Scholar 

  6. Bumajdad, A., Eastoe, J.: Conductivity of water-in-oil microemulsions stabilized by mixed surfactants. J. Colloid Interface Sci. 274(1), 268–276 (2004)

    Article  Google Scholar 

  7. Ciesielski, A., El Garah, M., Haar, S., Kovaricek, P., Lehn, J.M., Samori, P.: Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy. Nat. Chem. 6(11), 1017–1023 (2014). doi:10.1038/nchem.2057

    Article  Google Scholar 

  8. Dobrowolska, M.E., Koper, G.J.M.: Optimal ionic strength for nonionically initiated polymerization. Soft Matter 10(8), 1151–1154 (2014)

    Article  ADS  Google Scholar 

  9. Dobrowolska, M.E., van Esch, J.H., Koper, G.J.M.: Direct visualization of “Coagulative Nucleation” in surfactant-free emulsion polymerization. Langmuir 29(37), 11724–11729 (2013)

    Article  Google Scholar 

  10. Eastoe, J., Hollamby, M.J., Hudson, L.: Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128, 5–15 (2006)

    Article  Google Scholar 

  11. Eriksson, S., Nylen, U., Rojas, S., Boutonnet, M.: Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal. A-Gen. 265(2), 207–219 (2004)

    Article  Google Scholar 

  12. Esquivel, J., Facundo, I.A., Trevino, M., Lopez, R.G.: A novel method to prepare magnetic nanoparticles: precipitation in bicontinuous microemulsions. J. Mater. Sci. 42(21), 9015–9020 (2007)

    Article  ADS  Google Scholar 

  13. Fendler, J.H.: Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87(5), 877–899 (1987)

    Article  Google Scholar 

  14. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove and B. Vincent: Polymers at Interfaces. Chapman and Hall, London (1993)

    Google Scholar 

  15. Fletcher, P.D.I., Howe, A.M., Robinson, B.H.: The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc. Faraday Trans. I 83, 985–1006 (1987)

    Article  Google Scholar 

  16. Friedman, R.: Electrolyte solutions and specific ion effects on interfaces. J. Chem. Educ. 90(8), 1018–1023 (2013). doi:10.1021/ed4000525

    Article  Google Scholar 

  17. Goia, D.V., Matijevic, E.: Preparation of monodispersed metal particles. New J. Chem. 22(11), 1203–1215 (1998). doi:10.1039/a709236i

    Article  Google Scholar 

  18. Gorshkov, V., Privman, V.: Models of synthesis of uniform colloids and nanocrystals. Physica E 43(1), 1–12 (2010)

    Article  ADS  Google Scholar 

  19. Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzan, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4(7), 3591–3605 (2010). doi:10.1021/nn100869j

    Article  Google Scholar 

  20. Harada, M., Kamigaito, Y.: Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy. Langmuir 28(5), 2415–2428 (2012). doi:10.1021/la204031j

    Article  Google Scholar 

  21. Helfrich, W.: Elastic properties of lipid bilayers – theory and possible experiments. Z. Naturforsch. C 28(11–1), 693–703 (1973)

    Google Scholar 

  22. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry, 3rd edn, revised and expanded. Undergraduate Chemistry: A Series of Textbooks. Marcel Dekker, New York (1997)

    Google Scholar 

  23. Hollamby, M.J., Eastoe, J., Mutch, K.J., Rogers, S., Heenan, R.K.: Fluorinated microemulsions as reaction media for fluorous nanoparticles. Soft Matter 6(5), 971–976 (2010)

    Article  ADS  Google Scholar 

  24. Holmberg, K., Jönsson, B., Kronberg, B., Lindman, B.: Surfactants and Polymers in Aqueous Solution. Wiley, New York (2002)

    Book  Google Scholar 

  25. Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Academic, New York (1981)

    Google Scholar 

  26. Hunter, R.J.: Introduction to Modern Colloid Science. Oxford Science Publications. Oxford University Press, Oxford (1993)

    Google Scholar 

  27. Hunter, R.J.: Foundations of Colloid Science. Foundations of Colloid Science. Oxford University Press, Oxford (2001)

    Google Scholar 

  28. Israelachvili, J.N.: Intermolecular and Surface Forces. McGraw-Hill Publishing Co., Japan (2011)

    Google Scholar 

  29. Jia, C.J., Schuth, F.: Colloidal metal nanoparticles as a component of designed catalyst. PCCP 13(7), 2457–2487 (2011). doi:10.1039/c0cp02680h

    Article  ADS  Google Scholar 

  30. Koper, G.J.M.: An Introduction to Interfacial Engineering. VSSD, Delft (2007)

    Google Scholar 

  31. Koper, G.J.M., Sager, W.F.C., Smeets, J., Bedeaux, D.: Aggregation in oil-continuous water sodium bis(2-ethylhexyl)sulfosuccinate oil microemulsions. J. Phys. Chem. 99(35), 13291–13300 (1995)

    Article  Google Scholar 

  32. Kowlgi, K., Lafont, U., Rappolt, M., Koper, G.: Uniform metal nanoparticles produced at high yield in dense microemulsions. J. Colloid Interface Sci. 372(1), 16–23 (2012)

    Article  Google Scholar 

  33. Kraft, D.J., Hilhorst, J., Heinen, M.A.P., Hoogenraad, M.J., Luigjes, B., Kegel, W.K.: Patchy polymer colloids with tunable anisotropy dimensions. J. Phys. Chem. B 115(22), 7175–7181 (2011). doi:10.1021/jp108760g

    Article  Google Scholar 

  34. Krauel, K., Davies, N.M., Hook, S., Rades, T.: Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization. J. Control. Release 106(1–2), 76–87 (2005)

    Article  Google Scholar 

  35. Krommenhoek, P.J., Wang, J., Hentz, N., Johnston-Peck, A.C., Kozek, K.A., Kalyuzhny, G., Tracy, J.B.: Bulky adamantanethiolate and cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. ACS Nano 6(6), 4903–4911 (2012). doi:10.1021/nn3003778

    Article  Google Scholar 

  36. Kunz, W.: Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 15(1–2), 34–39 (2010). doi:10.1016/j.cocis.2009.11.008

    Article  MathSciNet  Google Scholar 

  37. Kunz, W., Testard, F., Zemb, T.: Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature. Langmuir 25(1), 112–115 (2009)

    Article  Google Scholar 

  38. Lamer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72(11), 4847–4854 (1950)

    Article  Google Scholar 

  39. Latsuzbaia, R.: Increasing the Lifetime of Fuel Cell Catalysts. PhD-thesis, Delft University of Technology (2015)

    Google Scholar 

  40. Libert, S., Gorshkov, V., Privman, V., Goia, D., Matijevic, E.: Formation of monodispersed cadmium sulfide particles by aggregation of nanosize precursors. Adv. Colloid Interface Sci. 100, 169–183 (2003). doi:10.1016/s0001-8686(02)00056-8

    Article  Google Scholar 

  41. Liveri, V.T.: Controlled synthesis of nanoparticles in microheterogeneous systems. Springer, New York (2006)

    Google Scholar 

  42. Lohse, S.E., Murphy, C.J.: The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 25(8), 1250–1261 (2013). doi:10.1021/cm303708p

    Article  Google Scholar 

  43. Lopez-Quintela, M.A.: Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr. Opin. Colloid Interface Sci. 8(2), 137–144 (2003)

    Article  Google Scholar 

  44. Lopez-Quintela, M.A., Tojo, C., Blanco, M.C., Rio, L.G., Leis, J.R.: Microemulsion dynamics and reactions in microemulsions. Curr. Opin. Colloid Interface Sci. 9(3–4), 264–278 (2004)

    Article  Google Scholar 

  45. Ma, F., Wu, D.T., Wu, N.: Formation of colloidal molecules induced by alternating-current electric fields. J. Am. Chem. Soc. 135(21), 7839–7842 (2013). doi:10.1021/ja403172p

    Article  Google Scholar 

  46. Malheiro, A.R., Varanda, L.C., Perez, J., Villullas, H.: The aerosol OT plus n-butanol plus n-heptane plus water system: phase behavior, structure characterization, and application to Pt70Fe30 nanoparticle synthesis. Langmuir 23(22), 11015–11020 (2007)

    Article  Google Scholar 

  47. Martinez-Rodriguez, R.A., Vidal-Iglesias, F.J., Solla-Gullon, J., Cabrera, C.R., Feliu, J.M.: Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J. Am. Chem. Soc. 136(4), 1280–1283 (2014). doi:10.1021/ja411939d

    Article  Google Scholar 

  48. Matijevic, E.: Preparation and properties of uniform size colloids. Chem. Mater. 5(4), 412–426 (1993). doi:10.1021/cm00028a004

    Article  Google Scholar 

  49. Matijevic, E.: Uniform inorganic colloid dispersions – achievements and challenges. Langmuir 10(1), 8–16 (1994). doi:10.1021/la00013a003

    Article  Google Scholar 

  50. Matijevic, E., Goia, D.: Formation mechanisms of uniform colloid particles. Croat. Chem. Acta 80(3–4), 485–491 (2007)

    Google Scholar 

  51. Muhammed, M.A.H., Aldeek, F., Palui, G., Trapiella-Alfonso, L., Mattoussi, H.: Growth of in situ functionalized luminescent silver nanoclusters by direct reduction and size focusing. ACS Nano 6(10), 8950–8961 (2012). doi:10.1021/nn302954n

    Article  Google Scholar 

  52. Naik, B., Ghosh, N.N.: A review on chemical methodologies for preparation of mesoporous silica and alumina based materials. Recent Patents Nanotechnol. 3(3), 213–224 (2009)

    Article  Google Scholar 

  53. Nardello, W., Chailloux, N., Poprawski, J., Salager, J.L., Aubry, J.M.: HLD concept as a tool for the characterization of cosmetic hydrocarbon oils. Polym. Int. 52(4), 602–609 (2003). doi:10.1002/pi.1012

    Article  Google Scholar 

  54. Negro, E., Latsuzbaia, R., de Vries, A.H., Koper, G.J.M.: Experimental and molecular dynamics characterization of dense microemulsion systems: morphology, conductivity and SAXS. Soft Matter 10(43), 8685–8697 (2014)

    Google Scholar 

  55. Negro, E., Latsuzbaia, R., Koper, G.J.M.: Bicontinuous microemulsions for high yield wet synthesis of ultrafine platinum nanoparticles: effect of precursors and kinetics. Langmuir 30(28), 8300–8307 (2014)

    Google Scholar 

  56. Park, J., Joo, J., Kwon, S.G., Jang, Y., Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46(25), 4630–4660 (2007). doi:10.1002/anie.200603148

    Article  Google Scholar 

  57. Pileni, M.P.: The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2(3), 145–150 (2003)

    Article  ADS  Google Scholar 

  58. Pileni, M.P.: Reverse micelles used as templates: a new understanding in nanocrystal growth. J. Exp. Nanosci. 1(1), 13–27 (2006)

    Article  Google Scholar 

  59. Polte, J., Ahner, T.T., Delissen, F., Sokolov, S., Emmerling, F., Thunemann, A.F., Kraehnert, R.: Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132(4), 1296–1301 (2010)

    Article  Google Scholar 

  60. Polte, J., Erler, R., Thunemann, A.F., Sokolov, S., Ahner, T.T., Rademann, K., Emmerling, F., Kraehnert, R.: Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 4(2), 1076–1082 (2010). doi:10.1021/nn901499c

    Article  Google Scholar 

  61. Polte, J., Tuaev, X., Wuithschick, M., Fischer, A., Thuenemann, A.F., Rademann, K., Kraehnert, R., Emmerling, F.: Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles. ACS Nano 6(7), 5791–5802 (2012). doi:10.1021/nn301724z

    Article  Google Scholar 

  62. Rao, C.N.R., Vivekchand, S.R.C., Biswas, K., Govindaraj, A.: Synthesis of inorganic nanomaterials. Dalton Trans. 34, 3728–3749 (2007)

    Article  Google Scholar 

  63. Reiss, H., Koper, G.J.M.: The Kelvin relation – stability, fluctuation, and factors involved in measurement. J. Phys. Chem. 99(19), 7837–7844 (1995)

    Article  Google Scholar 

  64. Reyes, P.Y., Espinoza, J.A., Trevino, M.E., Saade, H., Lopez, R.G.: Synthesis of silver nanoparticles by precipitation in bicontinuous microemulsions. J. Nanomater. Article ID 948941, (2010)

    Google Scholar 

  65. Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena. Wiley, Hoboken (2012)

    Google Scholar 

  66. Sager, W.F.: Microemulsion templating. In: Zvelindovsky, A. (ed.) Nanostructured Soft Matter. NanoScience and Technology, pp. 3–44. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  67. Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., Tan, W.H.: Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17(10), 2900–2906 (2001)

    Article  Google Scholar 

  68. Senkov, O.N.: Particle size distributions during diffusion controlled growth and coarsening. Scr. Mater. 59(2), 171–174 (2008)

    Article  Google Scholar 

  69. Senkov, O.N.: Particle size distributions during diffusion controlled growth and coarsening (vol 59, pg 171, 2008). Scr. Mater. 62(2), 122–122 (2010)

    Article  Google Scholar 

  70. Singh, V., Khullar, P., Dave, P.N., Kaur, G., Bakshi, M.S.: Ecofriendly route to synthesize nanomaterials for biomedical applications: bioactive polymers on shape-controlled effects of nanomaterials under different reaction conditions. ACS Sustain. Chem. Eng. 1(11), 1417–1431 (2013). doi:10.1021/sc400159x

    Article  Google Scholar 

  71. Sugimoto, T.: Underlying mechanisms in size control of uniform nanoparticles. J. Colloid Interface Sci. 309(1), 106–118 (2007)

    Article  Google Scholar 

  72. Tang, L., Li, X., Cammarata, R.C., Friesen, C., Sieradzki, K.: Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 132(33), 11722–11726 (2010). doi:10.1021/ja104421t

    Article  Google Scholar 

  73. Tojo, C., de Dios, M., Barroso, F.: Surfactant effects on microemulsion-based nanoparticle synthesis. Materials 4(1), 55–72 (2011). doi:10.3390/ma4010055

    Article  ADS  Google Scholar 

  74. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951)

    Article  Google Scholar 

  75. Van Hyning, D.L., Klemperer, W.G., Zukoski, C.F.: Silver nanoparticle formation: predictions and verification of the aggregative growth model. Langmuir 17(11), 3128–3135 (2001)

    Article  Google Scholar 

  76. Latsuzbaia, R., Negro, E., Koper, G.: Bicontinuous microemulsions for high yield, wet synthesis of ultrafine nanoparticles: a general approach. Faraday Discuss. 181, 37–48 (2015). doi:10.1039/c5fd00004a

    Google Scholar 

  77. Wang, F., Richards, V.N., Shields, S.P., Buhro, W.E.: Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26(1), 5–21 (2014). doi:10.1021/cm402139r

    Article  Google Scholar 

  78. Wang, F.D., Richards, V.N., Shields, S.P., Buhro, W.E.: Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 26(1), 5–21 (2014)

    Article  Google Scholar 

  79. Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009). doi:10.1002/anie.200802248

    Article  Google Scholar 

  80. Xu, W., Shen, Y., Xie, A., Chen, Y., Liu, T., Du, R.: Synthesis and characterization of PbS nanotubes in bicontinuous microemulsion system. Colloid J. 72(2), 274–278 (2010)

    Article  Google Scholar 

  81. Yethiraj, A.: Tunable colloids: control of colloidal phase transitions with tunable interactions. Soft Matter 3(9), 1099–1115 (2007). doi:10.1039/b704251p

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The Chemistry department of Cambridge University is thanked for hosting G.K. in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ger J. M. Koper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koper, G.J.M., Latsuzbaia, R. (2016). Wet Colloid Synthesis: Precipitation and Dispersion. In: Merkus, H., Meesters, G. (eds) Production, Handling and Characterization of Particulate Materials. Particle Technology Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-20949-4_3

Download citation

Publish with us

Policies and ethics