Skip to main content

Fluorescence Detection Techniques

  • Chapter
Book cover Introduction to Fluorescence Sensing

Abstract

In this Chapter we concentrate on the methods of fluorescence observation. Starting from introducing the definitions and explaining fundamentals in fluorescence spectroscopy, the discussion proceeds to different methods of fluorescence that are valuable for sensing technologies. We discuss intensity-based sensing with and without intrinsic reference and the methods that do not need such reference and require the measurements of anisotropy and lifetime. The methods based on excimer and exciplex formation and Förster resonance energy transfer (FRET) involve interactions in the system of fluorescence reporters. In contrast, the sensing response based on wavelength-shifting and two-band wavelength-ratiometry relies on modulation of weak intermolecular interactions of a single fluorophore with its environment. The final section “Sensing and thinking” discusses the optimal choice of fluorescence detection techniques with the list of questions and problems addressed to the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697

    Article  CAS  PubMed  Google Scholar 

  • Andrews DL, Curutchet C, Scholes GD (2011) Resonance energy transfer: beyond the limits. Laser Photonics Rev 5(1):114–123

    Article  CAS  Google Scholar 

  • Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J Am Chem Soc 123(29):7124–7133

    Article  CAS  PubMed  Google Scholar 

  • Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291(2):175–197

    Article  CAS  PubMed  Google Scholar 

  • Birks JB (1973) Organic molecular photophysics. John Wiley & Sons. New York

    Google Scholar 

  • Braslavsky SE (2007) Glossary of terms used in Photochemistry 3(rd) Edition (IUPAC Recommendations 2006). Pure Appl Chem 79:293–465

    Article  CAS  Google Scholar 

  • Bright FV, Betts TA, Litwiler KS (1990) Regenerable fiber-optic-based immunosensor. Anal Chem 62:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Burke M, O’Sullivan PJ, Soini AE, Berney H, Papkovsky DB (2003) Evaluation of the phosphorescent palladium(II)-coproporphyrin labels in separation-free hybridization assays. Anal Biochem 320(2):273–280

    Article  CAS  PubMed  Google Scholar 

  • Callis PR (2010) Electrochromism and solvatochromism in fluorescence response of organic dyes. A nanoscopic view. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Fundamentals and molecular design, vol 8, Springer series on fluorescence. Springer, Heidelberg. pp. 309–330

    Google Scholar 

  • Chandrasekharan N, Kelly LA (2001) A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J Am Chem Soc 123(40):9898–9899

    Article  CAS  PubMed  Google Scholar 

  • Chang CJ, Javorski J, Nolan EM, Shaeng M, Lippard SJ (2004) A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-release of intracellular zinc. Proc Natl Acad Sci U S A 101:1129–1134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clarke RJ, Zouni A, Holzwarth JF (1995) Voltage sensitivity of the fluorescent probe RH421 in a model membrane system. Biophys J 68(4):1406–1415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clayton AHA, Hanley QS, Arndt-Jovin DJ, Subramaniam V, Jovin TM (2002) Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys J 83(3):1631–1649. doi:10.1016/s0006-3495(02)73932-5

  • Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp 179–252

    Google Scholar 

  • Collado D, Perez-Inestrosa E, Suau R, Desvergne JP, Bouas-Laurent H (2002) Bis(isoquinoline N-oxide) pincers as a new type of metal cation dual channel fluorosensor. Org Lett 4(5):855–858

    Article  CAS  PubMed  Google Scholar 

  • Collier BB, McShane MJ (2013) Time-resolved measurements of luminescence. J Luminescence 144:180–190

    Article  CAS  Google Scholar 

  • Crosby GA, Demas JN (1971) Measurement of photoluminescence quantum yields. Review. J Phys Chem 75(8):991–1024. doi:10.1021/j100678a001

    Article  CAS  Google Scholar 

  • de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Sci 11(11):2655–2675

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  • Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17(1):19–42

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2005a) The future of fluorescence sensor arrays. Trends Biotechnol 23(9):456–460

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2005b) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343(1):1–22

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2005c) The problem of self-calibration of fluorescence signal in microscale sensor systems. Lab Chip 5(11):1210–1223

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Letters 580(12):2951–2957

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20(5):1099–1128

    Article  PubMed  Google Scholar 

  • Demchenko AP (2013) Nanoparticles and nanocomposites for fluorescence sensing and imaging. Methods Appl Fluoresc 1(2):022001

    Google Scholar 

  • Demchenko AP (2014) Practical aspects of wavelength ratiometry in the studies of intermolecular interactions. J Mol Struct 1077:51–67

    Google Scholar 

  • Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S, Duportail G, Mely Y (2003) Multiparametric color-changing fluorescence probes. J Fluoresc 13(4):291–295

    Article  CAS  Google Scholar 

  • Demchenko AP, Sytnik AI (1991a) Site-selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Article  CAS  Google Scholar 

  • Demchenko AP, Sytnik AI (1991b) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc Natl Acad Sci U S A 88(20):9311–9314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Demchenko AP, Tang KC, Chou PT (2013) Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem Soc Rev 42(3):1379–1408. doi:10.1039/c2cs35195a

    Article  CAS  PubMed  Google Scholar 

  • Demchenko AP, Yesylevskyy SO (2009) Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 160(2):63–84

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare N, Lakowicz JR (2001) Wavelength-ratiometric probes for saccharides based on donor–acceptor diphenylpolyenes. J Photochem Photobiol A Chem 143:39–47

    Article  Google Scholar 

  • Duhamel J (2012) New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution. Langmuir 28(16):6527–6538

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Plaxco KW, Heeger AJ (2005) Biosensors based on binding-modulated donor–acceptor distances. Trends Biotechnol 23(4):186–192

    Article  CAS  PubMed  Google Scholar 

  • Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260

    Article  CAS  Google Scholar 

  • Fonin AV, Sulatskaya AI, Kuznetsova IM, Turoverov KK (2014) Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS One 9(7), e103878

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fujimoto K, Shimizu H, Inouye M (2004) Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J Org Chem 69(10):3271–3275

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Tolosa L, Govind R (2004) Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem 76:1403–1410

    Article  CAS  PubMed  Google Scholar 

  • Gershkovich AA, Kholodovych VV (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer. J Biochem Biophys Methods 33(3):135–162

    Google Scholar 

  • Gilardi G, Zhou LQ, Hibbert L, Cass AE (1994) Engineering the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66(21):3840–3847

    Article  CAS  PubMed  Google Scholar 

  • Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124(25):7481–7489

    Article  CAS  PubMed  Google Scholar 

  • Gokulrangan G, Unruh JR, Holub DF, Ingram B, Johnson CK, Wilson GS (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Anal Chem 77(7):1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Gong Y-J, Zhang X-B, Zhang C-C, Luo A-L, Fu T, Tan W, Shen G-L, Yu R-Q (2012) Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications. Anal Chem 84(24):10777–10784. doi:10.1021/ac302762d

    Article  CAS  PubMed  Google Scholar 

  • Grichine A, Haefele A, Pascal S, Duperray A, Michel R, Andraud C, Maury O (2014) Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chem Sci 5(9):3475–3485

    Google Scholar 

  • Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67(1):208–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  • Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a long lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes. Anal Chem 70(3):632–637

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011) Pyrene‐excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed 50(2):401–404

    Article  CAS  Google Scholar 

  • Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6(3):167–173

    Article  CAS  PubMed  Google Scholar 

  • Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1395

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman S, Biwersi J, Verkman AS (1999) Synthesis and characterization of dual-wavelength Cl–sensitive fluorescent indicators for ratio imaging. Am J Physiol 276(3 Pt 1):C747–C757

    CAS  PubMed  Google Scholar 

  • Jiang GY, Wang S, Yuan WF, Zhao Z, Duan AJ, Xu CM, Jiang L, Song YL, Zhu DB (2007) Photo- and proton-dual-responsive fluorescence switch based on a bisthienylethene-bridged naphthalimide dimer and its application in security data storage. Eur J Organic Chem 13:2064–2067

    Article  CAS  Google Scholar 

  • Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. J Chem Phys 117(24):10953–10964

    Article  CAS  Google Scholar 

  • Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. Trends Anal Chem 23:407–415

    Article  CAS  Google Scholar 

  • Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: The new principle in design of fluorescence sensors. J Am Chem Soc 124(41):12372–12379

    Article  CAS  PubMed  Google Scholar 

  • Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5(3):461–468

    Article  CAS  Google Scholar 

  • Koch M, Perumal K, Blacque O, Garg JA, Saiganesh R, Kabilan S, Balasubramanian KK, Venkatesan K (2014) Metal‐free triplet phosphors with high emission efficiency and high tunability. Angew Chemie Int Ed Engl 53(25):6378–6382

    Article  CAS  Google Scholar 

  • Koronszi I, Reichert J, Heinzmann G, Ache HJ (1998) Development of submicron optochemical potassium sensor with enhanced stability due to internal reference. Sensors Attenuators B 51:188–195

    Article  Google Scholar 

  • Kostenko E, Dobrikov M, Komarova N, Pyshniy D, Vlassov V, Zenkova M (2001) 5′-bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA. Nucleosides Nucleotides Nucleic Acids 20(10–11):1859–1870

    Article  CAS  PubMed  Google Scholar 

  • Kuwana E, Sevick-Muraca EM (2002) Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics. Biophys J 83(2):1165–1176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73(17):4354–4363

    Article  CAS  PubMed  Google Scholar 

  • Mahara A, Iwase R, Sakamoto T, Yamana K, Yamaoka T, Mirakami A (2002) Bispyrene-conjugated 2′-O-methyloligonucleotide as a highly specific RNA-recognition probe. Angew Chem Int Ed 41:3648–3650

    Article  CAS  Google Scholar 

  • Maliwal BP, Gryczynski Z, Lakowicz JR (2001) Long-wavelength long-lifetime luminophores. Anal Chem 73(17):4277–4285

    Article  CAS  PubMed  Google Scholar 

  • Malval J-P, Lapouyade R, Leger JM, Jany C (2003) Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photochemical electron transfer. Photochem Photobiol Sci 2:259–266

    Article  CAS  PubMed  Google Scholar 

  • McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319(2):244–250

    Article  CAS  PubMed  Google Scholar 

  • McFarland SA, Finney NS (2001) Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. J Am Chem Soc 123(6):1260–1261

    Article  CAS  PubMed  Google Scholar 

  • Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264(14):8171–8178

    CAS  PubMed  Google Scholar 

  • Nielsen K, Lin M, Gall D, Jolley M (2000) Fluorescence polarization immunoassay: detection of antibody to Brucella abortus. Methods 22(1):71–76

    Article  CAS  PubMed  Google Scholar 

  • Oheim M, Naraghi M, Muller TH, Neher E (1998) Two dye two wavelength excitation calcium imaging: results from bovine adrenal chromaffin cells. Cell Calcium 24(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Oncul S, Demchenko AP (2006) The effects of thermal quenching on the excited-state intramolecular proton transfer reaction in 3-hydroxyflavones. Spectrochim Acta A Mol Biomol Spectrosc 65(1):179–183

    Article  PubMed  CAS  Google Scholar 

  • Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5(5):297–306

    Article  CAS  PubMed  Google Scholar 

  • Park HG, Song JY, Park KH, Kim MH (2006) Fluorescence-based assay formats and signal amplification strategies for DNA microarray analysis. Chem Eng Sci 61(3):954–965

    Article  CAS  Google Scholar 

  • Petitjean A, Lehn JM (2007) Conformational switching of the pyridine-pyrimidine-pyridine scaffold for ion-controlled FRET. Inorg Chim Acta 360(3):849–856

    Article  CAS  Google Scholar 

  • Povrozin YA, Kolosova OS, Obukhova OM, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Seta-633 – a NIR fluorescence lifetime label for low-molecular-weight analytes. Bioconjug Chem 20(9):1807–1812

    Article  CAS  PubMed  Google Scholar 

  • Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258:7541–7544

    CAS  PubMed  Google Scholar 

  • Prokhorenko IA, Astakhova IV, Momynaliev KT, Zatsepin TS, Korshun VA (2009) Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection. Methods Mol Biol 578:209–222

    Article  CAS  PubMed  Google Scholar 

  • Putkey JA, Liu W, Lin X, Ahmed S, Zhang M, Potter JD, Kerrick WG (1997) Fluorescent probes attached to Cys 35 or Cys 84 in cardiac troponin C are differentially sensitive to Ca(2+)-dependent events in vitro and in situ. Biochemistry 36(4):970–978

    Article  CAS  PubMed  Google Scholar 

  • Raymond FR, Ho HA, Peytavi R, Bissonnette L, Boissinot M, Picard FJ, Leclerc M, Bergeron MG (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnol 5

    Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1992) A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem 267(33):23495–23501

    CAS  PubMed  Google Scholar 

  • Rurack K (2001) Flipping the light switch ‘on’ – the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim Acta A 57:2161–2195

    Google Scholar 

  • Rurack K (2008) Fluorescence quantum yields: methods of determination and standards. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I, vol 5, Springer Ser Fluoresc. Springer, Berlin/Heidelberg, pp 101–145

    Chapter  Google Scholar 

  • Sahoo D, Narayanaswami V, Kay CM, Ryan RO (2000) Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39(22):6594–6601

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Barragan I, Costa-Fernandez JM, Valledor M, Campo JC, Sanz-Medel A (2006) Room-temperature phosphorescence (RTP) for optical sensing. Trends Anal Chem 25(10):958–967

    Google Scholar 

  • Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9):730–734

    Article  CAS  PubMed  Google Scholar 

  • Shynkar V, Mely Y, Duportail G, Piemont E, Klymchenko AS, Demchenko AP (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4′-dialkylamino-3-hydroxyflavones. J Phys Chem A 109:9522–9529

    Article  CAS  Google Scholar 

  • Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108(40):8151–8159

    Article  CAS  Google Scholar 

  • Smallshaw JE, Brokx S, Lee JS, Waygood EB (1998) Determination of the binding constants for three HPr-specific monoclonal antibodies and their Fab fragments. J Mol Biol 280:765–774

    Article  CAS  PubMed  Google Scholar 

  • Sportsman JR, Daijo J, Gaudet EA (2003) Fluorescence polarization assays in signal transduction discovery. Comb Chem High Throughput Screen 6(3):195–200

    Article  CAS  PubMed  Google Scholar 

  • Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Suppan P, Ghoneim N (1997) Solvatochromism. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Szmacinski H, Lakowicz JR (1994) Lifetime-based sensing. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 4. Plenum Press, New York, pp 295–334

    Chapter  Google Scholar 

  • Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chemistry 9(7):1479–1485

    Article  CAS  PubMed  Google Scholar 

  • Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T (2002) Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J Am Chem Soc 124(8):1653–1657

    Article  CAS  PubMed  Google Scholar 

  • Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K (1998) Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Anal Chem 70(22):4717–4723

    Article  CAS  PubMed  Google Scholar 

  • Tolosa L, Ge X, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314(2):199–205

    Article  CAS  PubMed  Google Scholar 

  • Tomin VI, Demchenko AP, Chou P-T (2015) Thermodynamic vs. Kinetic Control of Excited-State Proton Transfer Reactions. J Photochem Photobiol C Photochem Rev 22(1):1–18

    Google Scholar 

  • Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Dynamic quenching as a simple test for the mechanism of excited-state reaction. Chem Phys 342:126–134

    Article  CAS  Google Scholar 

  • Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R (2001) Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Anal Sci 17(1):155–160

    Article  CAS  PubMed  Google Scholar 

  • Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction. University Science, Sausalito

    Google Scholar 

  • Ueberfeld J, Walt DR (2004) Reversible ratiometric probe for quantitative DNA measurements. Anal Chem 76(4):947–952

    Article  CAS  PubMed  Google Scholar 

  • Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. Wiley-VCH Verlag GmbH, Weinheim, FRG. doi:10.1002/3527600248.fmatter_indsub

  • Vazquez ME, Blanco JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N, N-Dimethylamino-2,3-naphthalimide. J Am Chem Soc 127(4):1300–1306

    Article  CAS  PubMed  Google Scholar 

  • Vogt RFJ, Marti GE, Zenger V (2008) Quantitative fluorescence calibration: a tool for assessing the quality of data obtained by fluorescence measurements. In: Resch-Genger U (ed) Standardization and quality assurance in fluorescence measurements I: techniques, vol 05, Springer series on fluorescence. Springer, Heidelberg, pp 3–31

    Chapter  Google Scholar 

  • Walkup GK, Imperiali B (1996) Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. J Am Chem Soc 118:3053–3054

    Article  CAS  Google Scholar 

  • Wang L, Clifford B, Graybeal L, Tolley L, McCarroll ME (2013) Detection of target proteins by fluorescence anisotropy. J Fluoresc 23(5):881–888

    Article  CAS  PubMed  Google Scholar 

  • Wu PG, Brand L (1994) Resonance energy-transfer – methods and applications. Anal Biochem 218(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2011) Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal Chem 83(9):3431–3439

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Wu HP, Huang F, Song SP, Li WX, Cao Y, Fan CH (2005a) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Res 33(9)

    Google Scholar 

  • Xu J, Takai A, Kobayashi Y, Takeuchi M (2013) Phosphorescence from a pure organic fluorene derivative in solution at room temperature. Chem Commun 49(76):8447–8449

    Article  CAS  Google Scholar 

  • Xu QH, Wang S, Korystov D, Mikhailovsky A, Bazan GC, Moses D, Heeger AJ (2005b) The fluorescence resonance energy transfer (FRET) gate: a time-resolved study. Proc Natl Acad Sci U S A 102(3):530–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamana K, Ohshita Y, Fukunaga Y, Nakamura M, Maruyama A (2008) Bis-pyrene-labeled molecular beacon: a monomer-excimer switching probe for the detection of DNA base alteration. Bioorg Med Chem 16(1):78–83

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi A, Hayashita T, Nishizawa S, Watanabe M, Teramae N (1999) Benzo-15-crown-5 fluoroionophore/cyclodextrin complex with remarkably high potassium ion sensitivity in water. J Am Chem Soc 121:2319–2320

    Article  CAS  Google Scholar 

  • Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. J Am Chem Soc 125(10):2884–2885

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ji S, Zhou F, Zhao J (2009) Synthesis of novel bispyrene diamines and their application as ratiometric fluorescent probes for detection of DNA. Biosens Bioelectron 24(12):3442–3447

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Galievsky VA, Druzhinin SI, Saha S, Zachariasse KA (2003) Singlet excited state dipole moments of dual fluorescent N-phenylpyrroles and 4-(dimethylamino)benzonitrile from solvatochromic and thermochromic spectral shifts. Photochem Photobiol Sci 2:342–353

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Yam VW (2009) Glucose sensing via polyanion formation and induced pyrene excimer emission. Chem Commun (Camb) 11:1347–1349

    Article  CAS  Google Scholar 

  • Yu Z, Ptaszek M (2013) Near-IR emissive chlorin–bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength. J Org Chem 78(21):10678–10691

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demchenko, A.P. (2015). Fluorescence Detection Techniques. In: Introduction to Fluorescence Sensing. Springer, Cham. https://doi.org/10.1007/978-3-319-20780-3_3

Download citation

Publish with us

Policies and ethics