Skip to main content

Abstract

In this chapter, essentials of finite element analysis on musculoskeletal biomechanics are studied. For this reason, some fundamental types of finite elements, methodology, and difficulties of finite element analysis are considered. Also, some information on well-known general purpose finite element codes preferred in biomechanics and biomaterials world is given. Before discussing orthopedic researches for clinical relevance, an example of two-dimensional finite element analysis is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huiskes R (2000) If bone is the answer, then what is the question? J Anat 197:145–156

    Article  PubMed Central  PubMed  Google Scholar 

  2. Brown TD (2004) Finite element modeling in musculoskeletal biomechanics. J Appl Biomech 20:336–366

    Google Scholar 

  3. van der Meulen MCH, Huiskes R (2002) Why mechanobiology?: a survey article. J Biomech 35(4):401–414. doi:10.1016/S0021-9290(01)00184-1

    Article  PubMed  Google Scholar 

  4. Doblare M, Garcia JM, Gomez MJ (2004) Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71:1809–1840. doi:10.1016/j.engfracmech.2003.08.003

    Article  Google Scholar 

  5. Rapoff AJ (2006) Orthotropic index for bone. J Mater Sci-Mater Med 17:803–805. doi:10.1007/s10856-006-9838-x

    Article  CAS  PubMed  Google Scholar 

  6. Harris MD, Anderson AE, Henak CR et al (2012) Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res 30:1133–1139. doi:10.1002/jor.22040

    Article  PubMed Central  PubMed  Google Scholar 

  7. Freutel M, Schmidt H, Dürselen L et al (2014) Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech 29:363–372. doi:10.1016/j.clinbiomech.2014.01.006

    Article  Google Scholar 

  8. Kythe PK, Puri P (2002) Computational methods for linear integral equations. Birkhauser, Boston

    Book  Google Scholar 

  9. Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical grid generation: foundations and applications. North-Holland Publication, Amsterdam

    Google Scholar 

  10. Stancu DD, Stroud AH (1963) Quadrature formulas with simple Gaussian nodes and multiple fixed nodes. Math Comput 17(84):384–394

    Article  Google Scholar 

  11. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, 5th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  12. http://imechanica.org/files/l2-elements.pdf. Accessed 02 Dec 2014

  13. http://www.ansys.stuba.sk/html/elem_55/EBooktoc.htm. Accessed 02 Dec 2014

  14. http://www.aero.polimi.it/~lanz/bacheca/downloads/cost/aa10_11/MD_Nastran_Elements_1.pdf. Accessed 02 Dec 2014

  15. http://www.mate.tue.nl/~piet/inf/mrc/pdf/volb.pdf. Accessed 02 Dec 2014

  16. Wu JZ, Herzog W, Epstein M (1998) Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissue. J Biomech 31:165–169

    Article  CAS  PubMed  Google Scholar 

  17. Giner E, Sukumar N, Tarancon JE et al (2009) An abaqus implementation of the extended finite element method. Eng Fract Mech 76:347–368. doi:10.1016/j.engfracmech.2008.10.015

    Article  Google Scholar 

  18. Sarkalkan N, Waarsing JH, Bos PK et al (2014) Statistical shape and appearance models for fast and automated estimation of proximal femur fracture load using 2D finite element models. J Biomech 47:3107–3114. doi:10.1016/j.jbiomech.2014.06.027

    Article  PubMed  Google Scholar 

  19. D’Amore A, Amoroso N, Gottardi R et al (2014) From single fiber to macro-level mechanics: a structural finite-element model for elastomeric fibrous biomaterials. J Mech Behav Biomed Mater 39:146–161. doi:10.1016/j.jmbbm.2014.07.016

    Article  PubMed Central  PubMed  Google Scholar 

  20. Yu T, Liu X, Ye J et al (2014) Investigation of mechanical behavior of CPC/bone specimens by finite element analysis. Ceram Int 40:2933–2942. doi:10.1016/j.ceramint.2013.10.018

    Article  CAS  Google Scholar 

  21. Nareliya R, Kumar V (2011) Biomechanical analysis of human femur bone. Int J Eng Sci Technol 3(4):3090–3094

    Google Scholar 

  22. Payan Y (ed) (2012) Soft tissue biomechanical modeling for computer assisted surgery. Springer, Berlin

    Google Scholar 

  23. Adewusi S, Thomas M, Vu HV (2014) Natural frequencies of the human hand-arm system using finite element method and experimental modal analysis. Trans Control Mech Syst 3(2):11–18

    Google Scholar 

  24. Schmidt H, Bashkuev M, Galbusera F et al (2014) Finite element study of human lumbar disc nucleus replacements. Comput Methods Biomech 17(16):1762–1776. doi:10.1080/10255842.2013.766722

    Article  Google Scholar 

  25. Ghotge RS (2010) Effect of fixation using locked compression plate versus lag screws on biomechanics of talonavicular joint: a human cadaveric foot model. MSc. Thesis, The University of Tennessee and The University of Memphis

    Google Scholar 

  26. Middleton J, Jones ML, Pande GN (eds) (1998) Computer methods in biomechanics and biomedical engineering-2. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  27. Bonnet AS, Postaire M, Lipinski P (2009) Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and food stuff position. Med Eng Phys 31:806–815. doi:10.1016/j.medengphy.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  28. Erdemir A, Guess TM, Halloran J et al (2012) Considerations for reporting finite element analysis studies in biomechanics. J Biomech 45:625–633. doi:10.1016/j.jbiomech.2011.11.038

    Article  PubMed Central  PubMed  Google Scholar 

  29. Burkhart TA, Andrews DM, Dunning CE (2013) Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue. J Biomech 46:1477–1488. doi:10.1016/j.jbiomech.2013.03.022

    Article  PubMed  Google Scholar 

  30. van den Munckhof S, Zadpoor AA (2014) How accurately can we predict the fracture load of the proximal femur using finite element models? Clin Biomech 29:373–380. doi:10.1016/j.clinbiomech.2013.12.018

    Article  Google Scholar 

  31. Halonen KS, Mononen ME, Jurvelin JS et al (2014) Deformation of articular cartilage during static loading of a knee joint – experimental and finite element analysis. J Biomech 47:2467–2474. doi:10.1016/j.jbiomech.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  32. Webb JD, Blemker SS, Delp SL (2014) 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput Methods Biomech 17(8):829–837. doi:10.1080/10255842.2012.719605

    Article  Google Scholar 

  33. Matsuura Y, Giambini H, Ogawa Y et al (2014) Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine 39(22):E1291–E1296. doi:10.1097/BRS.0000000000000540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. MSC.Marc (2013) Mac Neal - Schwendler Corporation (MSC), USA

    Google Scholar 

  35. Yetmez M (2014) Sintering behavior and mechanical properties of biphasic calcium phosphate ceramics. Adv Mater Sci Eng 871749:1–5. doi:10.1155/2014/871749

    Article  Google Scholar 

  36. Bronzino J (ed) (2000) Biomedical engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  37. Houdkova S, Kasparova M (2013) Experimental study of indentation fracture toughness in HVOF sprayed hardmetal coatings. Eng Fract Mech 110:468–476. doi:10.1016/j.engfracmech.2013.05.001

    Article  Google Scholar 

  38. Bowman KL Jr, Fox J, Sekiya JK (2010) A clinically relevant review of hip biomechanics. Arthroscopy 26(8):1118–1129. doi:10.1016/j.arthro.2010.01.027

    Article  PubMed  Google Scholar 

  39. Zachariah SG, Sanders JE (1996) Interface mechanics in lower-limb external prosthetics: a review of finite element method. IEEE Trans Rehabil Eng 4(4):288–302

    Article  CAS  PubMed  Google Scholar 

  40. Prendergast PJ (1997) Finite element models in tissue mechanics and orthopaedic implant design. Clin Biomech 12(6):343–366

    Article  Google Scholar 

  41. Keaveny TM, Morgan EF, Niebur GL et al (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  CAS  PubMed  Google Scholar 

  42. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750. doi:10.1016/S8756-3282(03)00210-2

    Article  PubMed  Google Scholar 

  43. Fernandez JW, Hunter PJ (2005) An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mech 4:20–38. doi:10.1016/S8756-3282(03)00210-2

    Article  CAS  Google Scholar 

  44. Jiang HB (2007) Static and dynamic mechanics analysis on artificial hip joints with different interface designs by the finite element method. J Bionic Eng 4:123–131. doi:10.1016/S1672-6529(07)60024-9

    Article  Google Scholar 

  45. Duchemin L, Mitton D, Jolivet E et al (2008) An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech 11(2):105–111. doi:10.1080/10255840701535965

    Article  CAS  Google Scholar 

  46. Anderson AE, Ellis BJ, Maas SA et al (2010) Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech 43:1351–1357. doi:10.1016/j.jbiomech.2010.01.010

    Article  PubMed Central  PubMed  Google Scholar 

  47. Birnbaum K, Pandorf T (2011) Finite element model of the proximal femur under consideration of the hip centralizing forces of the iliotibial tract. Clin Biomech 26:58–64. doi:10.1016/j.clinbiomech.2010.09.005

    Article  CAS  Google Scholar 

  48. van de Groes S, de Waal-Melefijt M, Verdonschot N (2014) Probability of mechanical loosening of the femoral component in high flexion total knee arthroplasty can be reduced by rather simple surgical techniques. Knee 21:209–215. doi:10.1016/j.knee.2013.05.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yetmez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yetmez, M. (2016). Finite Element Analysis. In: Korkusuz, F. (eds) Musculoskeletal Research and Basic Science. Springer, Cham. https://doi.org/10.1007/978-3-319-20777-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20777-3_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20776-6

  • Online ISBN: 978-3-319-20777-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics