Skip to main content

Photochemical Patterning of Cellular Microenvironments

  • Chapter
Book cover Microscale Technologies for Cell Engineering

Abstract

Advances in photochemistry have profoundly impacted biological research by enabling researchers to both observe and direct cellular signaling processes. Recently, a number of innovations have been made toward the goal of using light-mediated reactions to manipulate the chemical and physical nature of hydrogel-based cellular microenvironments with spatiotemporal control. For example, using photoaddition and photocleavage reactions it is possible to both add and remove biochemical cues from cellular microenvironments. Matrix stiffness can also be dynamically modulated by using light to induce secondary cross-links, thereby stiffening the microenvironment, or by using photocleavage reactions to reduce the cross-link density and decrease the microenvironmental stiffness. Collectively, these approaches provide researchers with a diverse toolkit for probing the effects of matrix-derived signals, guiding cellular organization, and influencing cell-fate decisions. In this chapter, a summary of the state of the art in the field, a description of the photochemical reactions that are available, and a discussion of some practical considerations for patterning cellular microenvironments are provided. Challenges facing the field are also highlighted in a prospectus for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

CuAAC:

Copper-catalyzed azide-alkyne cycloaddition

DMAP:

Dimethoxy-2-phenyl-acetophenone

E:

Young’s modulus

ECM:

Extracellular matrix

hMSC:

Human mesenchymal stem cells

I2959:

1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one

IR:

Infrared

LAP:

Lithium acylphosphinate; lithium phenyl-2,4,6-trimethyl-benzoylphosphinate

MAPK:

Mitogen-activated protein kinase

norb/FL-BSA:

Norbornene-functionalized, fluorescein-labeled bovine serum albumin

norb/TAMRA-BSA:

Norbornene-functionalized, tetramethylrhodamine-labeled bovine serum albumin

PEG:

Poly(ethylene glycol)

PI3K:

Phosphatidylinositol 3-kinase

t c :

Critical exposure time required to reach reverse gelation during photodegradation

UV:

Ultraviolet

References

  1. Tsien RY (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed 48(31):5612–5626

    Article  Google Scholar 

  2. Method of the Year 2010 (2011) Nat Methods 8(1):1

    Google Scholar 

  3. Deisseroth K (2011) Optogenetics. Nat Methods 8(1):26–29

    Article  Google Scholar 

  4. Pastrana E (2011) Optogenetics: controlling cell function with light. Nat Methods 8(1):24–25

    Article  Google Scholar 

  5. Zhang K, Cui B (2014) Optogenetic control of intracellular signaling pathways. Trends Biotechnol

    Google Scholar 

  6. Ando H, Furuta T, Tsien RY, Okamoto H (2001) Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat Genet 28(4):317–325

    Article  Google Scholar 

  7. Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50(2):291–307

    Article  Google Scholar 

  8. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  9. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13(6):547–557

    Article  Google Scholar 

  10. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23(5):781–791

    Article  Google Scholar 

  11. Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515(7526):274–278

    Article  Google Scholar 

  12. Kirschner CM, Anseth KS (2013) Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater 61(3):931–944

    Article  Google Scholar 

  13. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879

    Article  Google Scholar 

  14. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  Google Scholar 

  15. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    Article  Google Scholar 

  16. Luo Y, Shoichet MS (2004) Light-activated immobilization of biomolecules to agarose hydrogels for controlled cellular response. Biomacromolecules 5(6):2315–2323

    Article  Google Scholar 

  17. Luo Y, Shoichet MS (2004) A photolabile hydrogel for guided three-dimensional cell growth and migration. Nat Mater 3(4):249–253

    Article  Google Scholar 

  18. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10(10):799–806

    Article  Google Scholar 

  19. Wylie RG, Shoichet MS (2011) Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12(10):3789–3796

    Article  Google Scholar 

  20. Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS, Hubbell JA, Ehrbar M, Lutolf MP (2013) In situ cell manipulation through enzymatic hydrogel photopatterning. Nat Mater 12(11):1072–1078

    Article  Google Scholar 

  21. Lee SH, Moon JJ, West JL (2008) Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29(20):2962–2968

    Article  Google Scholar 

  22. Culver JC, Hoffmann JC, Poche RA, Slater JH, West JL, Dickinson ME (2012) Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater 24(17):2344–2348

    Article  Google Scholar 

  23. Polizzotti BD, Fairbanks BD, Anseth KS (2008) Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules 9(4):1084–1087

    Article  Google Scholar 

  24. Alge DL, Azagarsamy MA, Donohue DF, Anseth KS (2013) Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules 14(4):949–953

    Article  Google Scholar 

  25. DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8(8):659–664

    Article  Google Scholar 

  26. Deforest CA, Sims EA, Anseth KS (2010) Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem Mater 22(16):4783–4790

    Article  Google Scholar 

  27. Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS (2009) A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv Mater 21(48):5005–5010

    Article  Google Scholar 

  28. Lin F, Yu JY, Tang W, Zheng JK, Defante A, Guo K, Wesdemiotis C, Becker ML (2013) Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior. Biomacromolecules 14(10):3749–3758

    Article  Google Scholar 

  29. Kade MJ, Burke DJ, Hawker CJ (2010) The power of thiol-ene chemistry. J Polym Sci Pol Chem 48(4):743–750

    Article  Google Scholar 

  30. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63

    Article  Google Scholar 

  31. Wirkner M, Alonso JM, Maus V, Salierno M, Lee TT, Garcia AJ, del Campo A (2011) Triggered cell release from materials using bioadhesive photocleavable linkers. Adv Mater 23(34):3907–3910

    Article  Google Scholar 

  32. DeForest CA, Anseth KS (2012) Photoreversible patterning of biomolecules within click-based hydrogels. Angew Chem 51(8):1816–1819

    Article  Google Scholar 

  33. Griffin DR, Kasko AM (2012) Photo-selective delivery of model therapeutics from hydrogels. ACS Macro Lett 1(11):1330–1334

    Article  Google Scholar 

  34. Griffin DR, Patterson JT, Kasko AM (2010) Photodegradation as a mechanism for controlled drug delivery. Biotechnol Bioeng 107(6):1012–1019

    Article  Google Scholar 

  35. Griffin DR, Schlosser JL, Lam SF, Nguyen TH, Maynard HD, Kasko AM (2013) Synthesis of photodegradable macromers for conjugation and release of bioactive molecules. Biomacromolecules 14(4):1199–1207

    Article  Google Scholar 

  36. Azagarsamy MA, Anseth KS (2013) Wavelength-controlled photocleavage for the orthogonal and sequential release of multiple proteins. Angew Chem 52(51):13803–13807

    Article  Google Scholar 

  37. Goubko CA, Basak A, Majumdar S, Jarrell H, Khieu NH, Cao X (2013) Comparative analysis of photocaged RGDS peptides for cell patterning. J Biomed Mater Res A 101(3):787–796

    Article  Google Scholar 

  38. Salierno MJ, Garcia AJ, del Campo A (2013) Photo-activatable surfaces for cell migration assays. Adv Funct Mater 23(48):5974–5980

    Article  Google Scholar 

  39. Lee TT, Garcia JR, Paez JI, Singh A, Phelps EA, Weis S, Shafiq Z, Shekaran A, Del Campo A, Garcia AJ (2014) Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater 14(3):352–360

    Article  Google Scholar 

  40. Klan P, Solomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J (2013) Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 113(1):119–191

    Article  Google Scholar 

  41. Lee HM, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4(6):409–427

    Article  Google Scholar 

  42. Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13(10):979–987

    Article  Google Scholar 

  43. Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS (2010) Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One 5(12), e15655

    Article  Google Scholar 

  44. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  Google Scholar 

  45. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438

    Article  Google Scholar 

  46. Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8

    Article  Google Scholar 

  47. Wang H, Haeger SM, Kloxin AM, Leinwand LA, Anseth KS (2012) Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus. PLoS One 7(7), e39969

    Article  Google Scholar 

  48. Kirschner CM, Alge DL, Gould ST, Anseth KS (2014) Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype. Adv Healthc Mater 3(5):649–657

    Article  Google Scholar 

  49. Wang H, Tibbitt MW, Langer SJ, Leinwand LA, Anseth KS (2013) Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc Natl Acad Sci U S A 110(48):19336–19341

    Article  Google Scholar 

  50. Yang C, Tibbitt MW, Basta L, Anseth KS (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13(6):645–652

    Article  Google Scholar 

  51. Guvendiren M, Burdick JA (2012) Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics. Nat Commun 3:792

    Article  Google Scholar 

  52. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12(5):458–465

    Article  Google Scholar 

  53. Hanjaya-Putra D, Wong KT, Hirotsu K, Khetan S, Burdick JA, Gerecht S (2012) Spatial control of cell-mediated degradation to regulate vasculogenesis and angiogenesis in hyaluronan hydrogels. Biomaterials 33(26):6123–6131

    Article  Google Scholar 

  54. Mosiewicz KA, Kolb L, van der Vlies AJ, Lutolf MP (2014) Microscale patterning of hydrogel stiffness through light-triggered uncaging of thiols. Biomater Sci 2(11):1640–1651

    Article  Google Scholar 

  55. Yao X, Peng R, Ding JD (2013) Cell-material interactions revealed via material techniques of surface patterning. Adv Mater 25(37):5257–5286

    Article  Google Scholar 

  56. Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43(1):55–62

    Article  Google Scholar 

  57. Kirschner CM, Anseth KS (2013) In situ control of cell substrate microtopographies using photolabile hydrogels. Small 9(4):578–584

    Article  Google Scholar 

  58. Xue C, Wong DY, Kasko AM (2014) Complex dynamic substrate control: dual-tone hydrogel photoresists allow double-dissociation of topography and modulus. Adv Mater 26(10):1577–1583

    Article  Google Scholar 

  59. Bryant SJ, Nuttelman CR, Anseth KS (2000) Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11(5):439–457

    Article  Google Scholar 

  60. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314

    Article  Google Scholar 

  61. DeForest CA, Anseth KS (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3(12):925–931

    Article  Google Scholar 

  62. Shih H, Lin CC (2013) Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol Rapid Commun 34(3):269–273

    Article  Google Scholar 

  63. Fairbanks BD, Schwartz MP, Bowman CN, Anseth KS (2009) Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30(35):6702–6707

    Article  Google Scholar 

  64. Kloxin AM, Tibbitt MW, Anseth KS (2010) Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat Protoc 5(12):1867–1887

    Article  Google Scholar 

  65. Griffin DR, Kasko AM (2012) Photodegradable macromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 134(31):13103–13107

    Article  Google Scholar 

  66. Azagarsamy MA, McKinnon DD, Age DL, Anseth KS (2014) Coumarin-based photodegradable hydrogel: design, synthesis, gelation, and degradation kinetics. ACS Macro Lett 3(6):515–519

    Article  Google Scholar 

  67. Kotzur N, Briand B, Beyermann M, Hagen V (2009) Wavelength-selective photoactivatable protecting groups for thiols. J Am Chem Soc 131(46):16927–16931

    Article  Google Scholar 

  68. Kloxin CJ, Scott TF, Bowman CN (2009) Stress relaxation via addition-fragmentation chain transfer in a thiol-ene photopolymerization. Macromolecules 42(7):2551–2556

    Article  Google Scholar 

  69. Gandavarapu NR, Azagarsamy MA, Anseth KS (2014) Photo-click living strategy for controlled, reversible exchange of biochemical ligands. Adv Mater 26(16):2521–2526

    Article  Google Scholar 

  70. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021

    Article  Google Scholar 

  71. Adzima BJ, Tao Y, Kloxin CJ, DeForest CA, Anseth KS, Bowman CN (2011) Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nat Chem 3(3):256–259

    Article  Google Scholar 

  72. Hong V, Steinmetz NF, Manchester M, Finn MG (2010) Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjug Chem 21(10):1912–1916

    Article  Google Scholar 

  73. Fan YP, Deng C, Cheng R, Meng FH, Zhong ZY (2013) In situ forming hydrogels via catalyst-free and bioorthogonal “tetrazole-alkene” photo-click chemistry. Biomacromolecules 14(8):2814–2821

    Article  Google Scholar 

  74. McKinnon DD, Brown TE, Kyburz KA, Kiyotake E, Anseth KS (2014) Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 15(7):2808–2816

    Article  Google Scholar 

  75. Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494

    Article  Google Scholar 

  76. Tibbitt MW, Han BW, Kloxin AM, Anseth KS (2012) Student award for outstanding research winner in the Ph.D. category for the 9th World Biomaterials Congress, Chengdu, China, June 1–5, 2012: synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J Biomed Mater Res A 100(7):1647–1654

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Alge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alge, D.L. (2016). Photochemical Patterning of Cellular Microenvironments. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics