Skip to main content

Photoperiodism: The Calendar of Plants

  • Chapter
  • First Online:
Rhythms in Plants

Abstract

The daylength varies with the time of the year and can thus be used by plants—and other organisms—to react photoperiodically in developmental steps and morphological features such as cyst formation, germination of zygospores and cell division in certain algae, succulence of stems and leaves, formation of storage organs, and flower induction. The functioning and molecular bases of circadian clocks of plants are mentioned and shown how they are entrained to the day, and whether they are involved in photoperiodic timing. Seasonal aspects for various crops and the evolution of photoperiodism are briefly touched upon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Navarro C, Prat S (2011) From the model to the crop: genes controlling tuber formation in potato. Curr Opin Biotechnol 22:287–292

    CAS  PubMed  Google Scholar 

  • Abelenda JA, Navarro C, Prat S (2014) Flowering and tuberization: a tale of two nightshades. Trends Plant Sci 19:115–122

    CAS  PubMed  Google Scholar 

  • Agrawal SC (2012) Factors controlling induction of reproduction in algae–review: the text. Folia Microbiol (Praha) 57:387–407

    CAS  Google Scholar 

  • Akimoto H, Kinumi T, Ohmiya Y (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dinoflagellate Lingulodinium polyedrum. J Biol Rhythms 20:479–489

    CAS  PubMed  Google Scholar 

  • Akman OE, Rand DA, Brown PE et al (2010) Robustness from flexibility in the fungal circadian clock. BMC Syst Biol 4:88

    PubMed Central  PubMed  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ et al (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883

    CAS  PubMed  Google Scholar 

  • An H, Roussot C, Suárez-López P et al (2004) Constans acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626

    CAS  PubMed  Google Scholar 

  • Aukerman MJ, Amasino RM (1996) Molecular genetic analysis of flowering time in Arabidopsis. Semin Cell Dev Biol 7:427–433

    CAS  Google Scholar 

  • Balzer I, Hardeland R (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253:795–797

    CAS  PubMed  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    PubMed  Google Scholar 

  • Beel B, Müller N, Kottke T et al (2013) News about cryptochrome photoreceptors in algae. Plant Signal Behav 8(e22):870

    Google Scholar 

  • Bin Rahman ANMR, Zhang J (2013) Rayada specialty: the forgotten resource of elite features of rice. Rice (N Y) 6:41

    Google Scholar 

  • Blackman BK (2013) Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication. J Exp Bot 64:421–431

    CAS  PubMed  Google Scholar 

  • Blaney LT, Hamner KC (1957) Interrelations among effects of temperature, photoperiod, and dark period on floral initiation of Biloxi soybeans. Bot Gaz 119:10–24

    Google Scholar 

  • Boesger J, Wagner V, Weisheit W et al (2009) Analysis of flagellar phosphoproteins from Chlamydomonas rheinhardtii. Eukaryot Cell 8:922–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    PubMed  Google Scholar 

  • Bollig I (1970) Erfolgt die Zeitmessung bei photoperiodischen Reaktionen durch die circadiane Uhr? Ein neuer Test der Bünning-Hypothese. State examination thesis, Universität Tübingen

    Google Scholar 

  • Bollig I (1975) Photoperiodic time measurement and circadian leaf movement in Pharbitis nil controlled by the same clock? Z Pflanzenphysiol 77:54–69

    Google Scholar 

  • Bollig I, Chandrashekeran M, Engelmann W et al (1976) Photoperiodism in Chenopodium rubrum. An explicit version of the Bünning hypothesis. Int J Chronobiol 4:83–96

    Google Scholar 

  • Bouget FY, Lefranc M, Thommen Q et al (2014) Transcriptional versus non-transcriptional clocks: a case study in Ostreococcus. Mar Genomics 14C:17–22

    Google Scholar 

  • Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal timing that matters. Mol Ecol 17:157–166

    CAS  PubMed  Google Scholar 

  • Bradshaw WE, Quebodeaux IMC, Holzapfel CM (2003) The contribution of an hourglass timer to the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 57:2342–2349

    CAS  PubMed  Google Scholar 

  • Bradshaw WE, Emerson KJ, Holzapfel CM (2012) Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity 108:473–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner W, Engelmann W (1973) Heavy water slows down the photoperiodic timing of flower induction in Chenopodium rubrum. Z Naturforsch 28c:356

    Google Scholar 

  • Bruce V (1972) Mutants of the biological clock in Chlamydomonas rheinhardtii. Genetics 70:537–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunner M, Simons MJP, Merrow M (2008) Lego clocks: building a clock from parts. Genes Dev 22:1422–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bünning E (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber d Bot Ges 54:590–607

    Google Scholar 

  • Bünning E (1951) Erbliche Jahresrhythmen bei Pflanzen. Umschau 51:268–270

    Google Scholar 

  • Bünning E (1954) Der Verlauf der endogenen Tagesrhythmik bei photoperiodischen Störlicht-Versuchen mit Soja. Physiol Plant 7:538–547

    Google Scholar 

  • Bünning E (1960) Circadian rhythms and time measurement in photoperiodism. Cold Spring Harb Symp Quant Biol 25:249–256

    Google Scholar 

  • Bünning E (1969) Common features of photoperiodism in plants and animals. Photochem Photobiol 9:219–228

    PubMed  Google Scholar 

  • Bünning E (1979) Circadian rhythms, light, and photoperiodism: a re-evaluation. Bot Mag Tokyo 92:89–103

    Google Scholar 

  • Bünning E, Moser I (1966) Unterschiedliche photoperiodische Empfindlichkeit der beiden Blattseiten von Kalanchoe blossfeldiana. Planta 69:296–298

    PubMed  Google Scholar 

  • Bünning E, Moser I (1969a) Einfluss der Blattlage auf die Blütenbildung. Naturwiss 56:519

    Google Scholar 

  • Bünning E, Moser I (1969b) Interference of moon light with the photoperiodic measurement of time by plants, and their adaptive rection. Proc Natl Acad Sci USA 62:1018–1022

    PubMed Central  PubMed  Google Scholar 

  • Bünsow R (1953) Endogene Tagesrhythmik und Photoperiodismus bei Kalanchoe blossfeldiana. Planta 42:220–252

    Google Scholar 

  • Byrne TE, Wells MR, Johnson CH (1992) Circadian rhythms of chemotaxis to ammonium and of methylammonium uptake in Chlamydomonas. Plant Physiol 98:879–886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chailakhyan M (1936) On the hormonal theory of plant development. C R Dokl Acad Sci URSS 3:442

    Google Scholar 

  • Chen AK, Latz MI, Sobolewski P et al (2007) Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am J Physiol Regul Integr Comp Physiol 292:R2020–R2027

    CAS  PubMed  Google Scholar 

  • Chory J (2010) Light: an infinite spectrum of possibilities. Plant J 61(6):982–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cockram J, Jones H, Leigh FJ et al (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  PubMed  Google Scholar 

  • Coelho CP, Costa Netto AP, Colasanti J et al (2013) A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control. Genet Mol Res 12:1347–1359

    CAS  PubMed  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    CAS  PubMed  Google Scholar 

  • Corellou F, Schwartz C, Motta JP et al (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21:3436–3449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Courties C, Chretiennot-Dinet MJ (1994) Smallest eukaryotic organism. Nature 370:255

    Google Scholar 

  • Cremer F, Coupland G (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends Plant Sci 8:405–407

    CAS  PubMed  Google Scholar 

  • Daan S, Albrecht U, van der Horst GT et al (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J Biol Rhythms 16:105–116

    CAS  PubMed  Google Scholar 

  • Dagenais-Bellefeuille S, Bertomeu T, Morse D (2008) S-phase and M-phase timing are under independent circadian control in the dinoflagellate Lingulodinium. J Biol Rhythms 23:400–408

    PubMed  Google Scholar 

  • Dalchau N (2012) Understanding biological timing using mechanistic and black-box models. New Phytol 193:852–858

    CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, McGonigle B et al (2011) Beyond flowering time: pleiotropic function of the maize flowering hormone florigen. Plant Signal Behav 6:1267–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Demir-Hilton E, Sudek S, Cuvelier ML et al (2011) Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J 5:1095–1107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dielen V, Lecouvet V, Dupont S et al (2001) In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. J Exp Bot 52:715–723

    CAS  PubMed  Google Scholar 

  • Dixon LE, Hodge SK, van Ooijen G et al (2014) Light and circadian regulation of clock components aids flexible responses to environmental signals. New Phytol 203:568–577

    PubMed Central  PubMed  Google Scholar 

  • Djouani-Tahri EB, Motta JP, Bouget FY et al (2010) Insights into the regulation of the core clock component TOC1 in the green picoeukaryote Ostreococcus. Plant Signal Behav 5:332–335

    CAS  PubMed Central  Google Scholar 

  • Dodd AN, Dalchau N, Gardner MJ et al (2014) The circadian clock has transient plasticity of period and is required for timing of nocturnal processes in Arabidopsis. New Phytol 201:168–179

    PubMed  Google Scholar 

  • Drabešová J, Cháb D, Kolař J et al (2014) A dark-light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J Exp Bot 65:2137–2146

    PubMed Central  PubMed  Google Scholar 

  • Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587

    CAS  PubMed  Google Scholar 

  • Edwards KD, Akman OE, Knox K et al (2010) Quantitative analysis of regulatory flexibility under changing environmental conditions. Mol Syst Biol 6:424

    PubMed Central  PubMed  Google Scholar 

  • Emerson KJ, Dake SJ, Bradshaw WE et al (2009) Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J Comp Physiol A 195:385–391

    Google Scholar 

  • Endo M, Nagatani A (2008) Flowering regulation by tissue specific functions of photoreceptors. Plant Signal Behav 3:47–48

    PubMed Central  PubMed  Google Scholar 

  • Endo M, Kudo D, Koto T et al (2014a) Light-dependent destabilization of PHL in Arabidopsis. Plant Signal Behav 9:47–48

    Google Scholar 

  • Endo M, Shimizu H, Nohales MA et al (2014b) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engelmann W (1960) Endogene Rhythmik und photoperiodische Blühinduktion bei Kalanchoe. Planta 55:496–511

    Google Scholar 

  • Engelmann W, Bollig I, Hartmann R (1976) Wirkung von Lithium-Ionen auf zirkadiane Rhythmen. Arzneimittelforschung 25:1085–1086

    Google Scholar 

  • Evans LT (ed) (1969) The induction of flowering: some case histories. MacMillan of Australia, South Melbourne

    Google Scholar 

  • Ewing E, Struik P (1998) Tuber formation in potato: Induction, initiation and growth. Hort Rev 14:89–197

    Google Scholar 

  • Farré EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16:621–629

    PubMed  Google Scholar 

  • Fischer L, Lipavska H, Hausman JF et al (2008) Morphological and molecular characterization of a spontaneously tuberizing potato mutant: an insight into the regulatory mechanisms of tuber induction. BMC Plant Biol 8:117

    PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Toledo-Ortiz G, Pyott DE et al (2014) Interaction of light and temperature signalling. J Exp Bot 65:2859–2871

    CAS  PubMed  Google Scholar 

  • Fu J, Wang L, Wang Y et al (2014) Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium. Plant Physiol Biochem 74:230–238

    CAS  PubMed  Google Scholar 

  • Fukuda H, Nakamichi N, Hisatsune M et al (2007) Synchronization of plant circadian oscillators with a phase delay effect of the vein network. Phys Rev Lett 99(9):098102

    PubMed  Google Scholar 

  • Gao H, Zheng XM, Fei G et al (2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9(2):e1003281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garner W, Allard H (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J agr Res 18:553–606

    Google Scholar 

  • Gaskill C, Forbes-Stovall J, Kessler B et al (2010) Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas. Plant Physiol Biochem 48:239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • González-Schain ND, Díaz-Mendoza M, Zurczak M et al (2012) Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J 70:678–690

    PubMed  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas rheinhardtii. J Cell Biol 129:1061–1069

    CAS  PubMed  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gu X, Wang Y, He Y (2013) Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. PLoS Biol 11(e1001):649

    Google Scholar 

  • Guo H, Yang H, Mockler T et al (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 297:1360–1363

    Google Scholar 

  • Gyllenstrand N, Karlgren A, Clapham D et al (2014) No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). Plant Cell Physiol 55(3):535–550

    CAS  PubMed  Google Scholar 

  • Haberlandt G (1905) Die Lichtsinnesorgane der Blätter. Engelmann Leipzig

    Google Scholar 

  • Hackbarth J (1935) Versuche über Photoperiodismus bei südamerikanischen Kartoffelklonen. Der Züchter 7:95–104

    Google Scholar 

  • Halliday KJ, Whitelam GC (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyD and phyE. Plant Physiol 131:1913–1920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardeland R, Poeggeler B (2003) Non-vertebrate melatonin. J Pineal Res 34:233–241

    CAS  PubMed  Google Scholar 

  • Harder R (1948) Vegetative and reproductive development of Kalanchoe blossfeldiana as influenced by photoperiodism. Symp Soc Exp Biol 2:117–138

    Google Scholar 

  • Harder R, von Dassow HP (1940) Über die Einwirkung von Kurztagsblättern auf im Langtag befindliche Blätter und Stengelteile der gleichen Pflanze. Untersuchungen zur Frage nach einem formbeeinflussenden Wirkstoff. Planta 31:523–558

    Google Scholar 

  • Harder R, Gall E (1945) Über die Trennung der Blühhormon- und Metaplasinwirkung bei Kalanchoe blossfeldiana durch Narkose. Nachr Ak Wiss Göttingen Math Phys Klasse 54–59

    Google Scholar 

  • Hardin PE, Panda S (2013) Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 23:724–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M et al (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    CAS  PubMed  Google Scholar 

  • Hasegawa H, Yamada M, Iwase Y et al (2010) Reduction in the critical dark length for flower induction during aging in the short-day plant Pharbitis nil var Kidachi. Sex Plant Reprod 23:291–300

    PubMed  Google Scholar 

  • Hastings JW (2007) The Gonyaulax clock at 50: translational control of circadian expression. Cold Spring Harb Symp Quant Biol 72:141–144

    CAS  PubMed  Google Scholar 

  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiol 135:677–684

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S et al (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    CAS  PubMed  Google Scholar 

  • Hayama R, Agashe B, Luley E et al (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Y (2012) Chromatin regulation of flowering. Trends Plant Sci 17:556–562

    CAS  PubMed  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    CAS  PubMed  Google Scholar 

  • Heide OM (1984) Floral requirement in Bromus inermis, a short-long-day plant. Physiol Plant 62:59–64

    Google Scholar 

  • Heijde M, Zabulon G, Corellou F et al (2010) Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes. Plant, Cell Environ 33:1614–1626

    CAS  Google Scholar 

  • Hsu PY, Harmer SL (2014) Wheels within wheels: the plant circadian system. Trends Plant Sci 19:240–249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang NC, Jane WN, Chen J et al (2012) Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J 72:175–184

    CAS  PubMed  Google Scholar 

  • Hung HY, Shannon LM, Tian F et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA 109:E1913–E1921

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hut RA (2011) Photoperiodism: shall EYA compare thee to a summer’s day? Curr Biol 21:R22–R25

    CAS  PubMed  Google Scholar 

  • Hut RA, Beersma DGM (2011) Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc Lond B Biol Sci 366:2141–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11(11):550–558

    CAS  PubMed  Google Scholar 

  • Imamura SI (1967) Physiology of flowering in Pharbitis nil. Jap Soc Plant Physiol, Tokyo

    Google Scholar 

  • Ishikawa R, Aoki M, Kurotani KI et al (2011) Phytochrome B regulates heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genomics 285:461–470

    CAS  PubMed  Google Scholar 

  • Itoh H, Izawa T (2013) The coincidence of critical day length recognition for florigen gene expression and floral transition under long-day conditions in rice. Mol Plant 6:635–649

    CAS  PubMed  Google Scholar 

  • Izawa T et al (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    CAS  PubMed  Google Scholar 

  • Jackson S, Thomas B (1998) The photoperiodic control of tuberization in potato. In: Biological rhythms and photoperiodism in plants, Environmental Plant Biology. Bios Scientific Publishers Oxford, Washington DC, pp 183–193

    Google Scholar 

  • Jacquot JP, Gadal P (2014) The molecular genetics of floral transition and flower development. In: Advances in Botanical Research, vol 72. Elsevier, London

    Google Scholar 

  • James AB, Monreal JA, Nimmo GA et al (2008) The circadian clock in Arabidopsis roots is a simplified slave version of the clock in shoots. Science 322:1832–1835

    CAS  PubMed  Google Scholar 

  • Jarillo JA, Pineiro MA (2006) The molecular basis of photoperiodism. Biol Rhythm Res 37:353–380

    CAS  Google Scholar 

  • Jiang K, Liberatore KL, Park SJ et al (2013) Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9(e1004):043

    Google Scholar 

  • Johnson CH, Kondo T (1992) Light pulses induce “singular” behavior and shorten the period of the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas. J Biol Rhythms 7:313–327

    CAS  PubMed  Google Scholar 

  • Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas: II. Illuminated cells. Plant Physiol 97:1122–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnsson A, Karlsson H (1972) A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J Theor Biol 36:153–174

    CAS  PubMed  Google Scholar 

  • Jung CH, Wong CE, Singh MB et al (2012) Comparative genomic analysis of soybean flowering genes. PLoS ONE 7:e38250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MRG, Ai XY, Zhang JZ (2014) Genetic regulation of flowering time in annual and perennial plants. Wiley Interdiscip Rev RNA 5(3):347–359

    CAS  PubMed  Google Scholar 

  • Kim KC, Han JA, Lee J et al (2011) Gene encoding PnFL-2 with TIFY and CCT motifs may control floral induction in Pharbitis nil. Genes Genomics 33:229–236

    CAS  Google Scholar 

  • Kim SJ, Moon J, Lee I et al (2003) Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil. J Exp Bot 54:1879–1887

    CAS  PubMed  Google Scholar 

  • King RW (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53:2631–2638

    Google Scholar 

  • King VM, Bentley GE, Follett BK (1997) A direct comparison of photoperiodic time measurement and the circadian system in European starlings and Japanese quail. J Biol Rhythms 12:431–442

    CAS  PubMed  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    PubMed Central  PubMed  Google Scholar 

  • Klebs G (1913) Über die Blütenbildung bei Sempervivum. Flora 111(112):128

    Google Scholar 

  • Kloosterman B, Navarro C, Bijsterbosch G et al (2007) StgaGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J 52:362–373

    CAS  PubMed  Google Scholar 

  • Kloosterman B, Abelenda JA, Gomez MdMC et al (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495:246–250

    CAS  PubMed  Google Scholar 

  • Knott J (1934) Effect of localized photoperiod on spinach. J Am Soc Hortic Sci 31:152

    Google Scholar 

  • Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain of Chlamydomonas: I. Cells in darkness. Plant Physiol 95:197–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koštál V (2011) Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity? J Insect Physiol 57(5):538–556

    PubMed  Google Scholar 

  • Kubota A, Kita S, Ishizaki K et al (2014) Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat Commun 5:3668

    CAS  PubMed  Google Scholar 

  • Lagercrantz U (2009) At the end of the day: a common molecular mechanism for photoperiod responses in plants? J Exp Bot 60:2501–2515

    CAS  PubMed  Google Scholar 

  • Lang A (1952) Physiology of flowering. Annu Rev Plant Physiol 3:265–306

    Google Scholar 

  • Lankinen P, Forsman P (2006) Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis. J Biol Rhythms 21:3–12

    CAS  PubMed  Google Scholar 

  • Lankinen P, Tyukmaeva VI, Hoikkala A (2013) Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. J Insect Physiol 59:745–751

    CAS  PubMed  Google Scholar 

  • Lees AD (1960) Some aspects of animal photoperiodism. Cold Spring Harb Symp Quant Biol 25:261–268

    CAS  PubMed  Google Scholar 

  • Lewis RS, Kernodle SP (2009) A method for accelerated trait conversion in plant breeding. Theor Appl Genet 118:1499–1508

    PubMed  Google Scholar 

  • Li C, Gu M, Shi N et al (2011) Mobile FT mRNA contributes to the systemic florigen signalling in floral induction. Sci Rep 1:73

    PubMed Central  PubMed  Google Scholar 

  • Ligr M, Ron C, Nátr L (1995) Calculation of the photoperiod length. Comput Appl Biosci 11(2):133–139

    CAS  PubMed  Google Scholar 

  • Liu B, Lo SCL, Matton DP et al (2012) Daily changes in the phosphoproteome of the dinoflagellate Lingulodinium. Protist 163:746–754

    CAS  PubMed  Google Scholar 

  • Liu J, Yu J, McIntosh L et al (2001) Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 125:1821–1830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Zhu Y, Shen L et al (2013) Emerging insights into florigen transport. Curr Opin Plant Biol 16:607–613

    CAS  PubMed  Google Scholar 

  • Locke JCW, Southern MM, Kozma-Bognár L et al (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1(2005):0013

    PubMed  Google Scholar 

  • Locke JCW, Kozma-Bognár L, Gould PD et al (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59

    PubMed Central  PubMed  Google Scholar 

  • Love J, Dodd AN, Webb AAR (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16:956–966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lozano JC, Schatt P, Botebol H et al (2014) Efficient gene targeting and removal of foreign DNA by homologous recombination in the picoeukaryote Ostreococcus. Plant J 78:1073–1083

    CAS  PubMed  Google Scholar 

  • Lumsden P, Millar A (1998) Biological rhythms and photoperiodism in plants. Environmental plant biology. Bios Scientific Publishers Oxford, Washington DC

    Google Scholar 

  • Lumsden P, Thomas B, Vince-Prue D (1982) Photoperiodic control of flowering in dark-grown seedlings of Pharbitis nil Choisy: the effect of skeleton and continuous light photoperiods. Plant Physiol 70:277–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lüning K (1980) Control of algal life history by daylength and temperature. In: Price J, Irvine D, Farnham W (eds) The shore environment: method and ecosystems, vol 2, Ecosystems. Ac.Press, London, pp 915–945

    Google Scholar 

  • Maldonado EM, Latz MI (2007) Shear-stress dependence of dinoflagellate bioluminescence. Biol Bull 212:242–249

    PubMed  Google Scholar 

  • Manichaikul A, Ghamsari L, Hom EFY et al (2009) Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat Methods 6:589–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin A, Adam H, Díaz-Mendoza M et al (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873–2881

    CAS  PubMed  Google Scholar 

  • Más P (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int J Dev Biol 49:491–500

    PubMed  Google Scholar 

  • Matías-Hernández L, Aguilar-Jaramillo AE, Marín-González E et al (2014) RAV genes: regulation of floral induction and beyond. Ann Bot 114:1459–1470

    Google Scholar 

  • Matsoukas IG, Massiah AJ, Thomas B (2013) Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant, Cell Environ 36:1802–1811

    CAS  Google Scholar 

  • Matsuo T, Ishiura M (2011) Chlamydomonas rheinhardtii as a new model system for studying the molecular basis of the circadian clock. FEBS Lett 585:1495–1502

    CAS  PubMed  Google Scholar 

  • Mayer W, Moser I, Bünning E (1973) Die Epidermis als Ort der Lichtperzeption für circadiane Laubblattbewegungen und photoperiodischer Induktionen. Z Pflanzenphysiol 70:66–73

    Google Scholar 

  • McClung CA (2011a) Circadian rhythms: lost in post-translation. Curr Biol 21:R400–R402

    CAS  PubMed  Google Scholar 

  • McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • McClung CR (2011b) The genetics of plant clocks. Adv Genet 74:105–139

    CAS  PubMed  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants–a rhythmic arrangement. FEBS Lett 585:1474–1484

    CAS  PubMed  Google Scholar 

  • Melchers G (1956) Die Beteiligung der endonomen Tagesrhythmik am Zustandekommen der photoperiodischen Reaktion der Kurztagpflanze Kalanchoe blossfeldiana. Z Naturforsch 11b:544–548

    Google Scholar 

  • Menaker M, Eskin A (1967) Circadian clock in photoperiodic time measurement: a test of the Bünning hypothesis. Science 157:1182–1185

    CAS  PubMed  Google Scholar 

  • Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell 23:942–960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meuti ME, Denlinger DL (2013) Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol 53:131–143

    PubMed Central  PubMed  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283

    CAS  PubMed  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra MK, Tewary PD (2000) Photoperiodic induction of ovarian growth and plasma estradiol secretion in a migratory finch, Emberiza melanocephala: involvement of circadian rhythm. Acta Biol Hung 51:31–36

    CAS  PubMed  Google Scholar 

  • Mittag M (2001) Circadian rhythms in microalgae. Int Rev Cytol 206:213–247

    CAS  PubMed  Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas rheinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno T, Nomoto Y, Oka H et al (2014) Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol 55:958–976

    CAS  PubMed  Google Scholar 

  • Monnier A, Liverani S, Bouvet R et al (2010) Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genom 11:192

    Google Scholar 

  • Morant PE, Thommen Q, Pfeuty B et al (2010) A robust two-gene oscillator at the core of Ostreococcus tauri circadian clock. Chaos 20(045):108

    Google Scholar 

  • Moshkov B (1936) Role of leaves in photoperiodic reaction of plants. Bull Appl Bot Gen Plant Breed A17:25

    Google Scholar 

  • Moulager M, Monnier A, Jesson B et al (2007) Light-dependent regulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:1360–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moulager M, Corellou F, Vergé V et al (2010) Integration of light signals by the retinoblastoma pathway in the control of S phase entry in the picophytoplanktonic cell Ostreococcus. PLoS Genet 6(e1000):957

    Google Scholar 

  • Mylne JS, Wigge PA (2011) Plant chemical biology: florigen takes two to tango. Nat Chem Biol 7:665–666

    CAS  PubMed  Google Scholar 

  • Nakajima M, Imai K, Ito H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Andrés F, Kanehara K et al (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553

    PubMed Central  PubMed  Google Scholar 

  • Nakane Y, Yoshimura T (2014) Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 8:115

    PubMed Central  PubMed  Google Scholar 

  • Nanda KK, Hamner KC (1958) Studies on the nature of the endogenous rhythm affecting photoperiodic response of Biloxy soybean. Biol Zent Bl 120:14–25

    Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oró E et al (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122

    CAS  PubMed  Google Scholar 

  • Nelson RJ, Denlinger DL, Somers DE (eds) (2010) Photoperiodism. The biological calendar. Oxford University Press, Oxford

    Google Scholar 

  • Nikaido S, Johnson C (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas rheinhardtii. Photochem Photobiol 71:758–765

    CAS  PubMed  Google Scholar 

  • Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50:838–854

    CAS  PubMed  Google Scholar 

  • Nomoto Y, Kubozono S, Miyachi M et al (2013) Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana. Plant Signal Behav 8(e22):863

    Google Scholar 

  • Nonoue Y, Fujino K, Hirayama Y et al (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116:715–722

    CAS  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD et al (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    CAS  PubMed  Google Scholar 

  • Oda A, Narumi T, Li T et al (2012) CsFTL3, a Chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in Chrysanthemums. J Exp Bot 63:1461–1477

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558

    PubMed Central  PubMed  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pajoro A, Biewers S, Dougali E et al (2014) The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction; a two decades history. J Exp Bot

    Google Scholar 

  • Perales M, Más P (2007) A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19:2111–2123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeuty B, Thommen Q, Corellou F et al (2012) Circadian clocks in changing weather and seasons: lessons from the picoalga Ostreococcus tauri. BioEssays 34:781–790

    PubMed  Google Scholar 

  • Putterill J, Robson F, Lee K et al (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    CAS  PubMed  Google Scholar 

  • Qin X, Byrne M, Mori T et al (2010) Intermolecular associations determine the dynamics of the circadian KaiABC oscillator. Proc Natl Acad Sci USA 107:14805–14810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ral JP, Colleoni C, Wattebled F et al (2006) Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas rheinhardtii. Plant Physiol 142:305–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rand DA, Shulgin BV, Salazar D et al (2004) Design principles underlying circadian clocks. J R Soc Interface 1:119–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rand DA, Shulgin BV, Salazar JD et al (2006) Uncovering the design principles of circadian clocks: mathematical analysis of flexibility and evolutionary goals. J Theor Biol 238:616–635

    CAS  PubMed  Google Scholar 

  • Razumov V (1931) On the localization of photoperiodical stimulation. Bull Appl Bot Gen Plant Breed 27:249

    Google Scholar 

  • Ream TS, Woods DP, Amasino RM (2012) The molecular basis of vernalization in different plant groups. Cold Spring Harb Symp Quant Biol 77:105–115

    CAS  PubMed  Google Scholar 

  • Riboni M, Robustelli Test A, Galbiati M et al (2014) Environmental stress and flowering time: the photoperiodic connection. Plant Signal Behav 9, e29036

    Google Scholar 

  • Roden LC, Song HR, Jackson S et al (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc Natl Acad Sci USA 99:13313–13318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roenneberg T, Hastings JW (1988) Two photoreceptors control the circadian clock of a unicellular alga. Naturwiss 75:206–207

    CAS  PubMed  Google Scholar 

  • Romero JM, Valverde F (2009) Evolutionarily conserved photoperiod mechanisms in plants: when did plant photoperiodic signaling appear? Plant Signal Behav 4:642–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutitzky M, Ghiglione HO, Curá JA et al (2009) Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genom 10:60

    Google Scholar 

  • Sachs J (1880) Stoff und Form der Pflanzenorgane. Arb Bot Inst Würzburg 3:452–488

    Google Scholar 

  • Saiovici MS, Nicholls TJ, Follett BK (1987) Rapid photoperiodic responses in Japanese quail: is daylength measurement based upon a circadian system? J Biol Rhythms 2:139–152

    CAS  PubMed  Google Scholar 

  • Saunders DS (2005) Erwin Bünning and Tony Lees, two giants of chronobiology, and the problem of time measurement in insect photoperiodism. J Insect Physiol 51:599–608

    CAS  PubMed  Google Scholar 

  • Saunders DS (2010) Controversial aspects of photoperiodism in insects and mites. J Insect Physiol 56:1491–1502

    CAS  PubMed  Google Scholar 

  • Saunders DS, Bertossa RC (2011) Deciphering time measurement: the role of circadian ‘clock’ genes and formal experimentation in insect photoperiodism. J Insect Physiol 57:557–566

    CAS  PubMed  Google Scholar 

  • Sawa M, Kay SA, Imaizumi T (2008) Photoperiodic flowering occurs under internal and external coincidence. Plant Signal Behav 3(4):269–271

    PubMed Central  PubMed  Google Scholar 

  • Schäuble S, Heiland I, Voytsekh O et al (2011) Predicting the physiological role of circadian metabolic regulation in the green alga Chlamydomonas rheinhardtii. PLoS ONE 6(e23):026

    Google Scholar 

  • Schultz LW, Liu L, Cegielski M et al (2005) Crystal structure of a pH-regulated luciferase catalyzing the bioluminescent oxidation of an open tetrapyrrole. Proc Natl Acad Sci USA 102:1378–1383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze T, Prager K, Dathe H et al (2010) How the green alga Chlamydomonas reinhardtii keeps time. Protoplasma 244:3–14

    CAS  PubMed  Google Scholar 

  • Schwabe WW (1968) Studies on the role of the leaf epiderm in photoperiodic perception in Kalanchoe blossfeldiana. J Exp Bot 19:108–113

    Google Scholar 

  • Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seidman G, Riggan W (1968) Stomatal movements: a yearly rhythm. Nature 217:684–685

    Google Scholar 

  • Serrano G, Herrera-Palau R, Romero JM et al (2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19:359–368

    CAS  PubMed  Google Scholar 

  • Shafiq S, Berr A, Shen WH (2014) Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation. New Phytol 201:312–322

    CAS  PubMed  Google Scholar 

  • Shalit A, Rozman A, Goldshmidt A et al (2009) The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA 106:8392–8397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shrestha R, Gómez-Ariza J, Brambilla V et al (2014) Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot 114:1445–1458

    Google Scholar 

  • Simpson GG (2003) Evolution of flowering in response to day length: flipping the CONSTANS switch. BioEssays 25:829–832

    CAS  PubMed  Google Scholar 

  • Skopik SD, Takeda M (1986) Photoperiodic control of diapause induction and termination in Ostrinia nubilalis: two different clocks? J Biol Rhythms 1:137–143

    CAS  PubMed  Google Scholar 

  • Smykal P, Gennen J, De Bodt S et al (2007) Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant Mol Biol 65:233–242

    CAS  PubMed  Google Scholar 

  • Son GH, Park BS, Song JT et al (2014) FLC-mediated flowering repression is positively regulated by sumoylation. J Exp Bot 65:339–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnewald S, Sonnewald U (2014) Regulation of potato tuber sprouting. Planta 239:27–38

    CAS  PubMed  Google Scholar 

  • Spruyt E, De Greef J (1987) Endogenous rhythmicity in water uptake by seeds. Ann Bot 60:171–176

    Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F et al (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    CAS  PubMed  Google Scholar 

  • Suzuki L, Johnson CH (2002) Photoperiodic control of germination in the unicell Chlamydomonas. Naturwiss 89:214–220

    CAS  PubMed  Google Scholar 

  • Takeda M, Skopik SD (1997) Photoperiodic time measurement and related physiological mechanisms in insects and mites. Annu Rev Entomol 42:323–349

    CAS  PubMed  Google Scholar 

  • Takeno K (2010) Epigenetic regulation of photoperiodic flowering. Plant Signal Behav 5:788–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thain SC, Murtas G, Lynn JR et al (2002) The circadian clock that controls gene expression in Arabidopsis is tissue specific. Plant Physiol 130:102–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Thomas RG (1961) Flower initiation in Bromus inermis l., a short-long-day plant. Nature 190:1130–1131

    Google Scholar 

  • Thommen Q, Pfeuty B, Morant PE et al (2010) Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri. PLoS Comput Biol 6(e1000):990

    Google Scholar 

  • Thommen Q, Pfeuty B, Corellou F et al (2012) Robust and flexible response of the Ostreococcus tauri circadian clock to light/dark cycles of varying photoperiod. FEBS J 279:3432–3448

    CAS  PubMed  Google Scholar 

  • Tizio R (1971) Action et role probable de certaines gibberellines (A1,A3, A4, A5, A9, et A13) sur la croissance des stolones et la tuberalization de la pomme de terre (Solanum tuberosum L.). Potato Res 14:193–204

    Google Scholar 

  • Tournois J (1912) Influence de la lumiere sur la floraison du houblon japonaise et du chanvre. C R Acad Sci 155:297

    Google Scholar 

  • Troein C, Corellou F, Dixon LE et al (2011) Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J 66:375–385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turck F, Coupland G (2014) Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution 68:620–631

    CAS  PubMed  Google Scholar 

  • Turnbull C (2011) Long-distance regulation of flowering time. J Exp Bot 62:4399–4413

    CAS  PubMed  Google Scholar 

  • Valverde F (2011) Constans and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 62:2453–2463

    CAS  PubMed  Google Scholar 

  • Valverde F, Mouradov A, Soppe W et al (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    CAS  PubMed  Google Scholar 

  • van Ooijen G, Millar AJ (2012) Non-transcriptional oscillators in circadian timekeeping. Trends Biochem Sci 37(11):484–492

    PubMed  Google Scholar 

  • Vaze KM, Sharma VK (2013) On the adaptive significance of circadian clocks for their owners. Chronobiol Int 30:413–433

    PubMed  Google Scholar 

  • Velez-Ramirez AI, van Ieperen W, Vreugdenhil D et al (2014) A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat Commun 5:4549

    CAS  PubMed  Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. Mc Graw-Hill Book Company, London

    Google Scholar 

  • von Denffer D (1941) Über die photoperiodische Beeinflussbarkeit von Habitus und Sukkulenz bei einigen Crassulaceen Arten. Jahrb wiss Bot 89:543–573

    Google Scholar 

  • Wade GN, Bartness TJ, Alexander JR (1986) Photoperiod and body weight in female Syrian hamsters: skeleton photoperiods, response magnitude, and development of photorefractoriness. Physiol Behav 37:863–868

    CAS  PubMed  Google Scholar 

  • Wagner E, Cumming BC (1970) Betacyanine accumulation, chlorophyll content, and the flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action. Can J Bot 48:1–18

    CAS  Google Scholar 

  • Wagner V, Mittag M (2009) Probing circadian rhythms in Chlamydomonas rheinhardtii by functional proteomics. Methods Mol Biol 479:173–188

    CAS  PubMed  Google Scholar 

  • Wagner V, Gessner G, Mittag M (2005) Functional proteomics: a promising approach to find novel components of the circadian system. Chronobiol Int 22:403–415

    CAS  PubMed  Google Scholar 

  • Wallrabe E (1944) Über die Wirkung von Licht verschiedener Wellenlänge auf die Blütenbildung und die Sukkulenz der Blätter bei der Kurztagspflanze Kalanchoe blossfeldiana. Bot Arch 45:281–236

    Google Scholar 

  • Wang Y, Gu X, Yuan W et al (2014) Photoperiodic control of the floral transition through a distinct polycomb repressive complex. Dev Cell 28:727–736

    CAS  PubMed  Google Scholar 

  • Watanabe S, Xia Z, Hideshima R et al (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weller J, Reid J, Taylor S et al (1997) The genetic control of flowering in pea. Trend Plant Sci 2:412–418

    Google Scholar 

  • Wellmer F, Riechmann JL (2005) Gene network analysis in plant development by genomic technologies. Int J Dev Biol 49:745–759

    CAS  PubMed  Google Scholar 

  • Wellmer F, Bowman JL, Davies B et al (2014) Flower development: open questions and future directions. Methods Mol Biol 1110:103–124

    PubMed  Google Scholar 

  • Wenden B, Kozma-Bognár L, Edwards KD et al (2011) Light inputs shape the Arabidopsis circadian system. Plant J 66:480–491

    CAS  PubMed  Google Scholar 

  • Wenden B, Toner DLK, Hodge SK et al (2012) Spontaneous spatiotemporal waves of gene expression from biological clocks in the leaf. Proc Natl Acad Sci USA 109:6757–6762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Went F (1959) The periodic aspect of photoperiodism and thermoperiodicity. In: Withrow R (ed) Photoperiodism and related phenomena in plants and animals, American Ass.Adv.Science Washington D.C., pp 551–564

    Google Scholar 

  • Werner R (2002) Chlamydomonas reinhardtii as a unicellular model for circadian rhythm analysis. Chronobiol Int 19(2):325–343

    CAS  PubMed  Google Scholar 

  • Whyte RO, Murneek AE (1948) Vernalization and Photoperiodism—a symposium. Chronica Botanica, Waltham, Mass

    Google Scholar 

  • Wigge PA (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    CAS  PubMed  Google Scholar 

  • Woelfle MA, Ouyang Y, Phanvijhitsiri K et al (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486

    CAS  PubMed  Google Scholar 

  • Wong CE, Singh MB, Bhalla PL (2013) The dynamics of soybean leaf and shoot apical meristem transcriptome undergoing floral initiation process. PLoS ONE 8(e65):319

    Google Scholar 

  • Wu L, Liu D, Wu J et al (2013) Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. Plant Cell 25:4363–4377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Saito H, Hirose I et al (2014) The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice. Mol Breed 33:813–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada K, Lim J, Dale JM et al (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    CAS  PubMed  Google Scholar 

  • Yamada M, Takeno K (2014) Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. J Plant Physiol 171:205–212

    CAS  PubMed  Google Scholar 

  • Yamashino T (2013) From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabidopsis thaliana. Biosci Biotechnol Biochem 77:10–16

    CAS  PubMed  Google Scholar 

  • Yamashino T, Nomoto Y, Lorrain S et al (2013) Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis. Plant Signal Behav 8(e23):390

    Google Scholar 

  • Yang S, Weers BD, Morishige DT et al (2014) CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol 14:148

    PubMed Central  PubMed  Google Scholar 

  • Yang XP, de Groot EJ (1992) Identification of two clock proteins in Acetabularia cliftonii and construction of cDNA libraries from Acetabularia cliftonii and Acetabularia mediterranea. Int J Biochem 24:1141–1150

    CAS  PubMed  Google Scholar 

  • Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nature Rev Mol Biol 4:265–275

    CAS  Google Scholar 

  • Yeang HY (2013) Solar rhythm in the regulation of photoperiodic flowering of long-day and short-day plants. J Exp Bot 64(10):2643–2652

    CAS  PubMed  Google Scholar 

  • Yerushalmi S, Yakir E, Green RM (2011) Circadian clocks and adaptation in Arabidopsis. Mol Ecol 20:1155–1165

    PubMed  Google Scholar 

  • Yon F, Seo PJ, Ryu JY et al (2012) Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata. BMC Plant Biol 12:172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeevaart JA (1978) Flower formation in the short-day plant Kalanchoë by grafting with a long-day and a short-long-day Echeveria. Planta 140:289–291

    CAS  PubMed  Google Scholar 

  • Zeevaart JAD (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11:541–547

    CAS  PubMed  Google Scholar 

  • Zheng CC, Bui AQ, O’Neill SD (1993) Abundance of an mRNA encoding a high mobility group DNA-binding protein is regulated by light and an endogenous rhythm. Plant Mol Biol 23:813–823

    CAS  PubMed  Google Scholar 

  • Zheng CC, Potter D, O’Neill SD (2009) Phytochrome gene expression and phylogenetic analysis in the short-day plant Pharbitis nil (Convolvulaceae): differential regulation by light and an endogenous clock. Am J Bot 96:1319–1336

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I appreciate the help from Anders Johnsson (Trondheim, corrections), Dorothee Staiger (Bielefeld, literature, pointing out errors), Patricia Lakin-Thomas (Toronto, informations and literature), Markus Schmid (Tübingen), Heather Silyn-Roberts (Auckland, corrections), Rüdiger Hardeland (Göttingen, informations), Isabelle Carre (Coventry), Motomu Endo (Tokyo), Salomé Prat (Madrid), Gordon Simpson (Dundee), Maria Rosa Ponce Molet (Alicante), Chentao Lin (Los Angeles), Woodland Hastings (Cambridge, Mass.), George Coupland and Franziska Turck (Köln), David Saunders (Edinburgh), Robert Turgeon (Cornell), Steven Clark (Ann Arbor), Karen J. Halliday (Edinburgh), Eric Bittman (Amherst).

For lack of space, the literature has been restricted by citing mainly the recent publications, in which earlier references can be found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Engelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Engelmann, W. (2015). Photoperiodism: The Calendar of Plants. In: Mancuso, S., Shabala, S. (eds) Rhythms in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-20517-5_8

Download citation

Publish with us

Policies and ethics