Skip to main content

Heavy Metal-Induced Oxidative Stress in Plants: Response of the Antioxidative System

  • Chapter
Book cover Reactive Oxygen Species and Oxidative Damage in Plants Under Stress

Abstract

Heavy metals (HMs) are among the most important environmental pollutants, particularly in areas with strong anthropogenic pressure. For plants, high levels of HMs are extremely toxic since they may act in several different modes: by the direct inhibition of plant growth and biosynthetic pathways or through the production of reactive oxygen species (ROS). Certain metals generate ROS due to their involvement in redox reactions like Fenton and/or Haber–Weiss reactions, while metals without redox capacity enhance ROS production by reducing the antioxidant glutathione pool, activating calcium-dependent systems and influencing iron-mediated processes. ROS production affects lipids, proteins, and DNA and consequently leads to cell death. In response, plants are equipped with complex enzymatic and nonenzymatic mechanisms involved in antioxidative defense to neutralize HM toxicity, and the main components of these mechanisms will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Saf 72:610–618

    Article  CAS  PubMed  Google Scholar 

  • Agrawal SB, Agrawal M, Lee EH, Kramer GF, Pillai P (1992) Changes in polyamine and glutathione contents of a green algae, Chlorogonium elongatum (Dang) France exposed to mercur. Environ Exp Bot 32:145–151

    Article  CAS  Google Scholar 

  • Ahamad ZH, Shuhanija SN (2013) Physiological and biochemical responses of a Malaysian red alga, Gracilaria manilaensis treated with copper, lead and mercury. J Environ Res Dev 7:1246–1253

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahn YO, Kim SH, Lee J, Kim HR, Lee HS, Kwak SS (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39:2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Akinci IE, Akinci S (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr J Biotechnol 9:4589–4594

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils, trace metals and metalloids in soils and their bioavailability. Springer, London

    Google Scholar 

  • Alloway BJ, Steinnes E (1999) Anthropogenic additions of cadmium to soils. In: McLaughlin MJ, Singh BR (eds) Cadmium in soils and plants, Developments in plants and soils sciences. Kluwer, Dordrecht

    Google Scholar 

  • Alrawiq N, Khairiah J, Talib ML, Ismail BS, Anizan I (2014) Accumulation and translocation of heavy metals in soil and paddy plant samples collected from rice fields irrigated with recycled and non-recycled water in MADA Kedah, Malaysia. Int J ChemTech Res 6:2347–2356

    Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Amin H, Arain BA, Amin F, Surhio MA (2013) Phytotoxicity of chromium on germination, growth and biochemical attributes of Hibiscus esculentus L. Am J Plant Sci 4:2431–2439

    Article  CAS  Google Scholar 

  • Anjum NA, Gill SS, Gill R, Hasanuzzaman M, Duarte AC, Pereira E, Ahmad I, Tuteja R, Tuteja N (2014) Metal/metalloid stress tolerance in plants: role of ascorbate, its redox couple, and associated enzymes. Protoplasma 251:1265–1283

    Article  CAS  PubMed  Google Scholar 

  • Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  CAS  PubMed  Google Scholar 

  • Arunakumara KKIU, Zhang X (2007) Effect of Pb2+ on phycobiliprotein content of Spirulina platensis, an edible cyanobacterium. Trop Agric Res 19:150–159

    Google Scholar 

  • Arunakumara KKIU, Zhang X (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ Chin 7:25–30

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (1998) Nickel-induced oxidative damage and antioxidant responses in Zea mays shoots. Plant Physiol Biochem 36:689–694

    Article  CAS  Google Scholar 

  • Bah AM, Dai H, Zhao J, Sun H, Cao F, Zhang G, Wu F (2011) Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia. Biol Trace Elem Res 142:77–92

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan CP, Narayanan CS (2007) Phytotoxicity of heavy metals nickel and lead on the cyanobacterial pigments. Seaweed Res Util 29:217–226

    Google Scholar 

  • Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047

    Article  CAS  PubMed  Google Scholar 

  • Bestwick CS, Al A, Puri N, Mansfield JW (2001) Characterization of lipid peroxidation and changes to pro- and antioxidant enzyme activities during the hypersensitive reaction in lettuce (Lactuca sativa L.). Plant Sci 161:497–506

    Article  CAS  Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Abbas F, Iqbal N, Ahmad MSA, Shakoor MB (2013) Influence of lead stress on growth, photosynthesis and lead uptake in the seedlings of cotton. Int J Agron Plant Prod 4:2492–2501

    CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1115–1121

    Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  • Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M (2013) Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int J Mol Sci 14:3540–3555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Planta 83:463–468

    Article  CAS  Google Scholar 

  • Cardoso PF, Gratão PL, Gomes-Junior RA, Medici LO, Azevedo RA (2005) Response of Crotalaria juncea to nickel exposure. Braz J Plant Physiol 17:267–272

    Article  CAS  Google Scholar 

  • Cetin ES, Babalik Z, Hallac-Turk F, Gokturk-Baydar N (2014) The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures. Biol Res 47:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soil 22:167–179

    Article  Google Scholar 

  • Chen G, Asada K (1992) Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol 33:117–123

    CAS  Google Scholar 

  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    Article  CAS  PubMed  Google Scholar 

  • Chongpraditnun P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    CAS  Google Scholar 

  • Chou TS, Chao YY, Huei Kao C (2012) Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J Plant Physiol 169:478–486

    Article  CAS  PubMed  Google Scholar 

  • Ci D, Jiang D, Dai T, Jing Q, Cao W (2009) Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere 77:1620–1625

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, del Río LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • Creissen GP, Mullineaux PM (1995) Cloning and characterization of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197:422–425

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Planta 110:512–517

    Article  CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2001) The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 39:657–664

    Article  CAS  Google Scholar 

  • Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Guisez Y, Colpaert J, Vangronsveld J (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316

    Article  CAS  PubMed  Google Scholar 

  • D’Souza RM, Devaraj VR (2012) Induction of oxidative stress and antioxidative mechanisms in Hyacinth bean under zinc stress. Afr Crop Sci J 20:17–29

    Google Scholar 

  • Dandan L, Dongmei Z, Peng W, Weng Nanyan W, Xiangdong Z (2011) Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Ecotoxicol Environ Saf 74:874–881

    Article  PubMed  CAS  Google Scholar 

  • Das PK, Kar M, Mishra D (1978) Nickel nutrition of plants. 1. Effects of nickel on some oxidase activities during rice (Oryza sativa L.) seed germination. Z Pflanzenphysiol 90:225–233

    Article  CAS  Google Scholar 

  • Daud MK, Mei L, Variath MT, Ali S, Li C, Rafiq MT, Zhu SJ (2014) Chromium (VI) uptake and tolerance potential in cotton cultivars: effect on their root physiology, ultramorphology, and oxidative metabolism. Bio Med Res Int 2014:1–11

    Article  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang D, Oliver D, Coutu J, Shulaev V, Schlauch K, Mittler R (2004) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • De Jesus MD, Tabatabai F, Chapman DJ (1989) Taxonomic distribution of copper-zinc superoxide dismutase in green algae and its phylogenetic importance. J Phycol 25:767–772

    Article  Google Scholar 

  • Degenhardt B, Gimmler H (2000) Cell wall adaptations to multiple environmental stresses in maize roots. J Exp Bot 51:595–603

    Article  CAS  PubMed  Google Scholar 

  • del Río LA, Scandalio LM, Corpas FJ, Palma JM, Barroso JM (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes, production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Hölzer-Feller RU (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Devi Chinmayee M, Anu MS, Mahesh B, Mary Sheeba A, Mini I, Swapna TS (2014) A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas L. J Environ Sci Toxicol Food Technol 8:58–67

    Google Scholar 

  • Dietz KJ, Bair M, Kramer U (1999) Free radical and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants from molecules to ecosystems. Springer, Berlin

    Google Scholar 

  • Dinakar N, Nagajyothi PC, Suresh S, Udaykiran Y, Damodharam T (2008) Phytotoxicity of cadmium on protein, proline and antioxidant enzyme activities in growing Arachis hypogaea L. seedlings. J Environ Sci 20:199–206

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1119

    Article  CAS  PubMed  Google Scholar 

  • Duman F (2011) Effects of exogenous glycinebetaine and trehalose on lead accumulation in an aquatic plant (Lemna gibba L.). Int J Phytoremediation 13:492–497

    Article  CAS  PubMed  Google Scholar 

  • Duman F, Ozturk F (2010) Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J Environ Sci 22:526–532

    Article  CAS  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    Article  CAS  Google Scholar 

  • Ebbs S, Uchil S (2008) Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 46:49–55

    Article  CAS  Google Scholar 

  • Ekmekçi Y, Tanyolaç D, Ayhan B (2008) Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  PubMed  CAS  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N, Hocher V, ElMzibri M, Bogusz D, Smouni A (2013) Effects of lead on root growth. Front Plant Sci 4:175

    Article  PubMed Central  PubMed  Google Scholar 

  • Falk J, Munné-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549–1566

    Article  CAS  PubMed  Google Scholar 

  • Farid M, Shakoor MB, Ehsan S, Ali S, Zubair M, Hanif MA (2013) Morphological, physiological and biochemical responses of different plant species to Cd stress. Int J Chem Biochem Sci 3:53–60

    Google Scholar 

  • Fatima RA, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    Article  CAS  PubMed  Google Scholar 

  • Fernàndez-Martínez J, Zacchini M, Fernández-Marín B, García-Plazaola JI, Fleck I (2014) Gas-exchange, photo- and antioxidant protection, and metal accumulation in I-214 and Eridano Populus sp. clones subjected to elevated zinc concentrations. Environ Exp Bot 107:144–153

    Article  CAS  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165:833–844

    Article  CAS  PubMed  Google Scholar 

  • Florence TM, Stauber JL (1986) Toxicity of copper complexes to the marine diatom Nitzschia closterium. Aquat Toxicol 8:11–26

    Article  CAS  Google Scholar 

  • Fodor F (2002) Physiological responses of vascular plants to heavy metals. In: Prasad MN, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht

    Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts. A proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289

    Article  CAS  PubMed  Google Scholar 

  • Franklin NM, Adams MS, Stauber JL, Lim RP (2001) Development of a rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol 40:469–480

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gajewska E, Skłodowska M (2005) Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress. Acta Physiol Planta 27:329–339

    Article  CAS  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer, Berlin

    Google Scholar 

  • Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khana NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Gill R, Anjum NA (2014) Target osmoprotectants for abiotic stress tolerance in crop plants-glycine betaine and proline. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CAB, Wallingford, CT

    Google Scholar 

  • Gomes-Júnior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006a) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Júnior RA, Moldes CA, Delite FS, Pompeu GB, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006b) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Gouveia C, Kreusch M, Schmidt ÉC, Felix MR, Osorio LK, Pereira DT, dos Santos R, Ouriques LC, Martins Rde P, Latini A, Ramlov F, Carvalho TJ, Chow F, Maraschin M, Bouzon ZL (2013) The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microsc Microanal 19:513–524

    Article  CAS  PubMed  Google Scholar 

  • Grant CA, Buckley WT, Bailey LD, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78:1–17

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gratão PL, Pompeu GB, Cardoso PF, Lea PJ, Azevedo RA (2006) Plant antioxidant responses to toxic elements. Curr Top Biochem Res 8:41–70

    Google Scholar 

  • Greger M (2004) Metal availability, uptake, transport and accumulation in plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Grzesiak M, Filek M, Barbasz A, Kreczmer B, Hartikainen H (2013) Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG- and NaCl-induced stresses. Plant Growth Regul 69:177–189

    Article  CAS  Google Scholar 

  • Guan LM, Scandalios JG (2000) Hydrogen peroxide-mediated catalase gene expression in response to wounding. Free Radic Biol Med 28:1182–1190

    Article  CAS  PubMed  Google Scholar 

  • Guan LM, Scandalios JG (2002) Catalase gene expression in response to auxin-mediated developmental signals. Physiol Planta 114:288–295

    Article  CAS  Google Scholar 

  • Guo TR, Zhang GP, Zhang YH (2007) Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloids Surf B Biointerfaces 57:182–188

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Planta 106:262–267

    Article  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger M, Rossato L, Pereira LB, Castro G, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  PubMed  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Berlin

    Chapter  Google Scholar 

  • Gururani MA, Upadhyaya CP, Strasser RJ, Yu JW, Park SW (2013) Evaluation of abiotic stress tolerance in transgenic potato plants with reduced expression of PSII manganese stabilizing protein. Plant Sci 198:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hajimahmoodi M, Ali Faramarzi M, Mohammadi N, Soltani N, Oveisi R, Nastaran M, Nafissi-Varcheh N (2009) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50

    Article  CAS  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulations in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hassinen VH, Tervahauta AI, Schat H, Karenlampi SO (2011) Plant metallothioneins—metal chelators with ROS scavenging activity? Plant Biol 13:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hédiji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaïbi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotoxicol Environ Saf 73:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  PubMed  Google Scholar 

  • Heidari M, Saran S (2011) Effects of lead and cadmium on seed germination, seedling growth and antioxidant enzymes activities of mustard (Sinapis arvensis L.). J Agric Biol Sci 6:6–11

    Google Scholar 

  • Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (1999) Radical scavenging activities of phycocyanobilin prepared from a cyanobacterium, Spirulina platensis. Fish Sci 65:971–972

    CAS  Google Scholar 

  • Hirata T, Tanaka M, Ooike M, Tsunomura T, Sakaguchi M (2000) Antioxidant activities of phycocyanobilin prepared from Spirulina platensis. J App Phycol 12:435–439

    Article  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  PubMed  Google Scholar 

  • Ikenaka Y, Nakayama SMM, Muzandu K, Choongo K, Teraoka H, Mizuno N, Ishizuka M (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4:729–739

    CAS  Google Scholar 

  • Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496

    Article  CAS  Google Scholar 

  • Islam MM, Hoque A, Okuma E, Banu NA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    Article  CAS  PubMed  Google Scholar 

  • Jain RS, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32:979–986

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Burzyński M, Klobus G (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. J Exp Bot 59:3721–3728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Sinha PB, Haniya AMK, Manoharan K (2006) Differential antioxidative responses of ascorbate-glutathione cycle enzymes metabolites to chromium stress in greengram (Vigna radiata L. Wilczek) leaves. J Plant Biol 49:440–447

    Article  CAS  Google Scholar 

  • Keilig K, Ludwig-Müller J (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot Stud 50:311–318

    CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  • Kováčik J, Babula P, Hedbavny J, Kryštofová O, Provaznik I (2015) Physiology and methodology of chromium toxicity using alga Scenedesmus quadricauda as model object. Chemosphere 120:23–30

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith AC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Kruk J, Holländer-Czytko H, Oettmeier W, Trebst A (2005) Tocopherol as singlet oxygen scavenger in photosystem II. J Plant Physiol 162:749–757

    Article  CAS  PubMed  Google Scholar 

  • Kubiś J (2008) Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. J Plant Physiol 165:397–406

    Article  PubMed  CAS  Google Scholar 

  • Kumar H, Sharma D, Kumar V (2012) Nickel-induced oxidative stress and role of antioxidant defence in barley roots and leaves. Int J Environ Biol 2:121–128

    Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42

    Article  CAS  PubMed  Google Scholar 

  • Lang M, Zhang Y, Chai T (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  CAS  Google Scholar 

  • Larkum AWD (2003) Light harvesting systems in algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer, Dordrecht

    Chapter  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13–19

    Article  CAS  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146–1169

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhou D, Wang P, Weng N, Zhu X (2011) Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Ecotoxicol Environ Saf 74:874–881

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zou J, Wang M, Jiang W (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis L. Bioresour Technol 99:2628–2636

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Millan A, Sagardoy R, Solanas M, Abadia A, Abadia J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. J Environ Exp Bot 65:376–385

    Article  CAS  Google Scholar 

  • Ma M, Zhu W, Wang Z, Witkaamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on fresh-water alga (Scenedesmus subspicatus 86.81 SAG) in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228

    Article  CAS  PubMed  Google Scholar 

  • Malar S, Vikram SS, Favas PJC, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55:54

    Article  CAS  Google Scholar 

  • Malešev D, Kuntić V (2007) Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. J Serb Chem Soc 72:921–939

    Article  CAS  Google Scholar 

  • Mallick N (2004) Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J Plant Physiol 161:591–597

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157:183–193

    Article  CAS  Google Scholar 

  • Mallick N, Mohn FH (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicol Environ Saf 55:64–69

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bouché N (2008) MicroRNA-directed regulation: to cleave or not to cleave. Trends Plant Sci 13:359–367

    Article  CAS  PubMed  Google Scholar 

  • Mano J (2002) Early events in environmental stresses in plants: induction mechanisms of oxidative stress. In: Inzé D (ed) Oxidative stress in plants. Taylor and Francis, London

    Google Scholar 

  • Marques AP, Rangel AO, Castro PM (2007) Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination. J Environ Qual 36:646–653

    Article  CAS  PubMed  Google Scholar 

  • Matringe M, Ksas B, Rey P, Havaux M (2008) Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol 147:764–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (1999) Heavy metal induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol 143:253–259

    Article  CAS  Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Gotz B, Kupper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood L, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miranda MS, Sato S, Mancini-Filho J (2001) Antioxidant activity of the microalga Chlorella vulgaris cultured on special conditions. Boll Chim Farm 140:165–168

    CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 98:233–238

    Article  CAS  Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Moura DJ, Péres VF, Jacques RA, Saffi J (2012) Heavy metal toxicity: oxidative stress parameters and DNA repair. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Heidelberg

    Google Scholar 

  • Nadgórska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res Int 20:1124–1134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  CAS  PubMed  Google Scholar 

  • Naser AH (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13

    Article  CAS  PubMed  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Sgherri C (2002) Lipoic acid: a unique anti-oxidant in the detoxification of activated oxygen species. Plant Physiol Biochem 40:463–470

    Article  CAS  Google Scholar 

  • Neill JS, Desikan R, Clarke A, Hurst RD, Hanckok JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  CAS  PubMed  Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2:969–974

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Oancea S, Foca N, Airinei A (2005) Effects of heavy metals on plant growth and photosynthetic activity. Analele Univ. “Al. I. Cuza”, Tom I, s, Biofizica, Fizica medicala si fizica mediului, pp 107–110

    Google Scholar 

  • Obroucheva NV, Bystrova EI, Ivanov VB, Antipova OV, Seregin IV (1998) Root growth responses to lead in young maize seedlings. Plant Soil 200:55–61

    Article  CAS  Google Scholar 

  • Okamoto OK, Colepicolo P (1998) Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119:67–73

    Article  CAS  PubMed  Google Scholar 

  • Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46:289–294

    Article  CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826–837

    Article  CAS  PubMed  Google Scholar 

  • Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic 98:113–119

    Article  CAS  Google Scholar 

  • Parmar P, Kumari N, Sharma V (2013) Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54:45

    Article  Google Scholar 

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigene family in rice and its evolution in land plants. Phytochemistry 65:1879–1893

    Article  CAS  PubMed  Google Scholar 

  • Pawlik-Skowrońska B (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat Toxicol 52:241–249

    Article  PubMed  Google Scholar 

  • Perl-Treves R, Perl A (2002) Oxidative stress: an Introduction. In: Inzé D (ed) Oxidative stress in plants. Taylor and Francis, London

    Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Poniedziałek M, Sękara A, Ciura J, Jędrszczyk E (2005) Nickel and manganese accumulation and distribution in organs of nine crops. Folia Hortic 17:11–22

    Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Steward CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pumas C, Vacharapiyasophon P, Peerapornpisal Y, Leelapornpisid P, Boonchum W, Ishii M, Khanongnuch C (2011) Thermostability of phycobiliproteins and antioxidant activity from four thermotolerant cyanobacteria. Phycol Res 59:166–174

    Article  CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113

    Article  CAS  PubMed  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Rijstenbil JW, Derksen JWM, Gerringa LJA, Poortvliet TCW, Sandee A, Van den Berg M, Van Drie J, Wijnholds JA (1994) Oxidative stress induced by copper: defense and damage in the marine planktonic diatom Ditylum brightwellii (Grunow) West, grown in continuous cultures with high and low zinc levels. Mar Biol 119:583–590

    Article  CAS  Google Scholar 

  • Rivelli AR, De Maria S, Puschenreiter M, Gherbin P (2012) Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements. Int J Phytoremediation 14:320–334

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas F, Gomez M, del Rio L, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 •− and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas F, Rodríguez-Serrano M, Gómez M, del Rio L, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by Cd in pea plants. J Plant Physiol 164:1346–1357

    Article  CAS  PubMed  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabatini SE, Juarez AB, Eppis MR, Bianchi L, Luquet CM, Rios de Molina MC (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sarma AD, Sreelakshimi Y, Sharma R (1997) Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry 45:671–674

    Article  CAS  Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Planta 101:477–482

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Scheidegger C, Sigg L, Behra R (2011) Characterization of lead induced metal–phytochelatin complexes in Chlamydomonas reinhardtii. Environ Toxicol Chem 30:2546–2552

    Article  CAS  PubMed  Google Scholar 

  • Schreck E, Foucault Y, Sarret G, Sobanska S, Cécillon L, Castrec-Rouelle M, Uzu G, Dumat C (2012) Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: mechanisms involved for lead. Sci Tot Environ 427–428:253–262

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed Central  PubMed  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Planta 129:519–528

    Article  CAS  Google Scholar 

  • Senden MHMN, van der Meer AJGM, Verburg TG, Wolterbeek HT (1995) Citric acid in tomato plant roots and its effect on cadmium uptake and distribution. Plant Soil 17:333–339

    Article  Google Scholar 

  • Shah KH, Ritambhara GK, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma SS, Schat H, Vooijs R (1998) In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49:15311–15535

    Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278:341–349

    Article  CAS  Google Scholar 

  • Shu X, Yan Yin L, Fa Zhang Q, Bo Wang W (2011) Effect of Pb toxicity on leaf growth, antioxidant enzyme activities, and photosynthesis in cuttings and seedlings of Jatropha curcas L. Environ Sci Pollut Res 19:893–902

    Article  CAS  Google Scholar 

  • Shukla UC, Murthy RC, Kakkar P (2008) Combined effect of ultraviolet-B radiation and cadmium contamination on nutrient uptake and photosynthetic pigments in Brassica campestris L. seedlings. Environ Toxicol 23:712–719

    Article  CAS  PubMed  Google Scholar 

  • Siedlecka A, Krupa Z (1999) Cd/Fe interactions in higher plants - Its consequences for the photosynthetic apparatus. Photosynth Res 36:321–331

    Article  CAS  Google Scholar 

  • Singh VP (2005) Metal toxicity and tolerance in plants and animals. Sarup, New Delhi

    Google Scholar 

  • Skowroński T, De Knecht JA, Simons J, Verkleji JAC (1998) Phytochelatin synthesis in response to cadmium uptake in Vaucheria (Xanthophyceae). Eur J Phycol 33:87–91

    Article  Google Scholar 

  • Ślesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol 54:39–50

    PubMed  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8

    Article  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Stroiński A, Kozłowska M (1997) Cadmium induced oxidative stress in potato tuber. Acta Soc Bot Pol 66:189–195

    Article  Google Scholar 

  • Su C, LiQin J, WenJun Z (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skep Crit 3:24–38

    Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  PubMed  Google Scholar 

  • Surosz W, Palinska KA (2005) Effects of heavy-metal stress on cyanobacterium Anabaena flos-aquae. Arch Environ Contam Toxicol 48:40–48

    Article  CAS  PubMed  Google Scholar 

  • Tahara S (2007) A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci Biotechnol Biochem 71:1387–1404

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer, Sunderland, MA

    Google Scholar 

  • Tamás L, Dudíková J, Ďurčeková K, Halušková L, Huttová J, Mistrík I, Olle M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  PubMed  CAS  Google Scholar 

  • Tang YL, Ren WW, Zhang L, Tang KX (2011) Molecular cloning and characterization of gene coding for γ-tocopherol methyltransferase from lettuce (Lactuca sativa). Genet Mol Res 10:320–412

    Google Scholar 

  • Teklić T, Engler M, Cesar V, Lepeduš H, Parađiković N, Lončarić Z, Štolfa I, Marotti T, Mikac N, Žarković N (2008a) Influence of excess copper on lettuce (Lactuca sativa L.) grown in soil and nutrient solution. J Food Agric Environ 6:439–444

    Google Scholar 

  • Teklić T, Hancock JT, Engler M, Parađiković N, Cesar V, Lepeduš H, Štolfa I, Bešlo D (2008b) Antioxidative responses in radish (Raphanus sativus L.) plants stressed by copper and lead in nutrient solution and soil. Acta Biol Cracov Bot 50:79–86

    Google Scholar 

  • Tian S, Lu L, Yang X, Huang H, Wang K, Brown P (2011) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biol Plant 56:344–350

    Article  CAS  Google Scholar 

  • Tomašević M, Aničić M (2010) Trace element content in urban tree leaves and sem-edax characterization of deposited particles. FU Phys Chem Technol 8:1–13

    Article  CAS  Google Scholar 

  • Trebst A, Depka B, Holländer-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Gaur JP (2006) Physiological behavior of Scenedesmus sp. during exposure to elevated levels of Cu and Zn and after withdrawal of metal stress. Protoplasma 229:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293:653–659

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effect of metal on enzyme activity on plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Van Assche F, Put C, Clijsters HMM (1986) Heavy metals induce specific isozyme patterns of peroxidase in Phaseolus vulgaris L. Arch Int Physiol Biochim 94:60

    Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    Article  CAS  Google Scholar 

  • Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55:35

    Article  CAS  Google Scholar 

  • Volland S, Lütz C, Michalkec B, Lütz-Meindl U (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wada N, Sakamoto T, Matsugo S (2013) Multiple roles of photosynthetic and sunscreen pigments in cyanobacteria focusing on the oxidative stress. Metabolites 3:463–483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Fang J, Leonard SS, Murali Krishna Rao K (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Gao F, Guo BQ, Huang JC, Wang L, Zhou YJ (2013) Short term chromium stress induced alterations in the maize leaf proteome. Int J Mol Sci 14:11125–11144

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weckx EJ, Clijsters H (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

  • Willkenes H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    Article  Google Scholar 

  • Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defences in the marine macroalga Ulva fasciata. Bot Stud 50:25–34

    CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong ZT (1998) Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull Environ Contam Toxicol 60:285–291

    Article  CAS  PubMed  Google Scholar 

  • Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer, Dordrecht

    Google Scholar 

  • Yan R, Gao S, Yang W, Cao M, Wang S, Chen F (2008) Nickel toxicity induced antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. cotyledons. Plant Soil Environ 54:294–300

    CAS  Google Scholar 

  • Yang Y, Wei X, Lu J, You J, Wang W, Shi R (2010) Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 73:1982–1987

    Article  CAS  PubMed  Google Scholar 

  • Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz DD, Parlak KU (2011) Antioxidative parameters in the opposite-leaved pondweed (Gronlendia densa) in response to nickel stress. Chem Spec Bioavail 23:71–79

    Article  CAS  Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113

    Article  CAS  PubMed  Google Scholar 

  • Zengin F (2013) Physiological behaviour of bean (Phaseolus vulgaris L.) seedlings under metal stress. Biol Res 46:79–85

    Article  PubMed  CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Ser Bot 47:157–164

    Google Scholar 

  • Zhou ZP, Liu LN, Chen XL, Wang JX, Chen M, Zheng YZ, Zhou BC (2005) Factors that affect antioxidant activity of c-phycocyanins from Spirulina platensis. J Food Biochem 29:313–322

    Article  CAS  Google Scholar 

  • Zou J, Yu K, Zhang Z, Jiang W, Liu D (2009) Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays (L.) seedlings. Acta Biol Cracov Bot 51:23–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivna Štolfa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Štolfa, I., Pfeiffer, T.Ž., Špoljarić, D., Teklić, T., Lončarić, Z. (2015). Heavy Metal-Induced Oxidative Stress in Plants: Response of the Antioxidative System. In: Gupta, D., Palma, J., Corpas, F. (eds) Reactive Oxygen Species and Oxidative Damage in Plants Under Stress. Springer, Cham. https://doi.org/10.1007/978-3-319-20421-5_6

Download citation

Publish with us

Policies and ethics