Skip to main content

Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays

  • Chapter
  • First Online:
Nanoporous Alumina

Abstract

This chapter shows the recent trends on the use of anodized aluminum oxide (AAO) nanochannel arrays for electrochemical sensing of proteins and DNA with a special focus on those based on voltammetric detections. Some general considerations on nanochannels and especially on AAO nanoporous membranes are given first, followed by the receptors (antibody, DNA) immobilization as well as the set-up configuration. The typical optimization procedures as well as the detection principles ranging from the use of ionic electroactive indicators and nanoparticles (used also as blockers) are discussed. Aspects related to the analytical performance of the developed devices while applied in diagnostics including cancer biomarker detection are also given. Finally an overview for future improvements and applications of this technology are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Albrecht, J.B. Edel, M. Winterhalter, New developments in nanopore research-from fundamentals to applications. J. Phys. Condens. Matter. 22, 450301 (1 pp) (2010)

    Google Scholar 

  2. J.O. Arroyo, J. Andrecka, K.M. Spillane et al., Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014)

    Article  Google Scholar 

  3. H. Bayley, P.S. Cremer, Stochastic sensors inspired by biology. Nature 413, 226–230 (2001)

    Article  Google Scholar 

  4. S. Bezrukov, I. Vodyanoy, A. Parsegian, Counting polymers moving through a single ion channel. Nature 370, 279–281 (1994)

    Article  Google Scholar 

  5. D. Branton, D.W. Deamer, A. Marziali, H. Bayley, S.A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang et al., The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008)

    Article  Google Scholar 

  6. H. Chang, S.H. Joo, C. Pak, Synthesis and characterization of mesoporous carbon for fuel cell applications. J. Mater. Chem. 17, 3078–3088 (2007)

    Article  Google Scholar 

  7. J. Clarke, H.C. Wu, L. Jayasinghe, A. Patel, S. Reid, H. Bayley, Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009)

    Article  Google Scholar 

  8. W.H. Coulter, Means for counting particles suspended in a fluid. U.S. Patent No. 2, 656:508 (1953)

    Google Scholar 

  9. W.H. Coulter, High speed automatic blood cell counter and cell size analyzer. Proc. Natl. Electronics Conf. 12, 1034–1042 (1956)

    Google Scholar 

  10. A. Debrassi, A. Ribbera, Vos W.M. De et al., Stability of (bio)functionalized porous aluminum oxide. Langmuir 30, 1311–1320 (2014)

    Article  Google Scholar 

  11. A. de la Escosura-Muñiz, A. Merkoçi, Label-free voltammetric immunosensor using a nanoporous membrane based platform. Electrochem. Comm. 12, 859–863 (2010)

    Article  Google Scholar 

  12. A. de la Escosura-Muñiz, A. Merkoçi, Nanoparticle based enhancement of electrochemical DNA hybridization signal using nanoporous electrodes. Chem. Commun. 46, 9007–9009 (2010)

    Article  Google Scholar 

  13. A. de la Escosura-Muñiz, A. Merkoçi, A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small 7, 675–682 (2011)

    Article  Google Scholar 

  14. A. de la Escosura-Muñiz, A. Merkoçi, Nanochannels preparation and application in biosensing. ACS Nano 6(9), 7556–7583 (2012)

    Article  Google Scholar 

  15. A. de la Escosura-Muñiz, W. Chunglok, W. Surareungchai, A. Merkoçi, Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens. Bioelectron. 40, 24–31 (2013)

    Article  Google Scholar 

  16. A. de la Escosura-Muñiz, M. Espinoza-Castañeda, M. Hasegawa, L. Philippe, A. Merkoçi, Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing. Nano Res. 8(4), 1180–1184 (2015)

    Google Scholar 

  17. Y. Ding et al., Nanoimprint Lithography, in Lithography, ed. by M. Wang (In Tech, Croatia, 2010), pp. 458–494

    Google Scholar 

  18. J. Elias, C. Lévy-Clément, M. Bechelany, J. Michler, G.Y. Wang, Z. Wang, L. Philippe, Hollow urchin-like ZnO thin films by electrochemical deposition. Adv. Mater. 22, 1607–1612 (2010)

    Article  Google Scholar 

  19. M. Espinoza-Castañeda, A. de la Escosura-Muñiz, A. Chamorro, C. de Torres, A. Merkoçi, Nanochannel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosens. Bioelectron. 67, 107–114 (2015)

    Google Scholar 

  20. T.R.B. Foong, A. Sellinger, X. Hu, Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass. ACS Nano 2, 2250–2256 (2008)

    Article  Google Scholar 

  21. V.M. Guérin, J. Elias, T.T. Nguyen, L. Philippe, T. Pauporté, Ordered networks of ZnO-nanowire hierarchical urchin-like structures for improved dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14, 12948–12955 (2012)

    Article  Google Scholar 

  22. A. Hiraki, H. Ueoka, A. Bessho, Y. Segawa, N. Takigawa, K. Kiura, K. Eguchi, T. Yoneda, M. Tanimoto, M. Harada, Parathyroid hormone-related protein measured at the time of first visit is an indicator of bone metastases and survival in lung carcinoma patients with hypercalcemia. Cancer 95, 1706–1713 (2002)

    Article  Google Scholar 

  23. C. Horn, C. Steinem, Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes. Biophys. J. 89(2), 1046–1054 (2005)

    Article  Google Scholar 

  24. X. Hou, W. Guo, L. Jiang, Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 40, 2385–2401 (2011)

    Article  Google Scholar 

  25. S. Howorka, S. Cheley, H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores. Nat. Biotechnol. 19, 636–639 (2001)

    Article  Google Scholar 

  26. Z. Jin, F. Meng, J. Liu, M. Li, L. Kong, J. Liu, A novel porous anodic alumina based capacitive sensor towards trace detection of PCBs. Sens. Actuators, B 157(2), 641–646 (2011)

    Article  Google Scholar 

  27. L. Juhász, J. Mizsei, Humidity sensor structures with thin film porous alumina for on-chip integration. Thin Solid Films 517, 6198–6201 (2009)

    Article  Google Scholar 

  28. K. Kant, J. Yu, C. Priest, J.G. Shapter, D. Losic, Impedance nanopore biosensor: influence of pore dimensions on biosensing performance. Analyst 139, 1134–1140 (2014)

    Article  Google Scholar 

  29. V. Khatko, G. Gorokh, A. Mozalev, D. Solovei, E. Llobet, X. Vilanova, X. Correig, Tungsten trioxide sensing layers on highly ordered nanoporous alumina template. Sens. Actuators, B 118, 255–265 (2006)

    Article  Google Scholar 

  30. A.A. Karyakin, Prussian Blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13, 813–819 (2001)

    Article  Google Scholar 

  31. A.K. Kasi, J.K. Kasi, N. Afzulpurkar et al., Bending and branching of anodic aluminum oxide nanochannels and their applications. J. Vac. Sci. Technol., B 30(031805), 1–6 (2012)

    Google Scholar 

  32. J. Kasianowicz, E. Brandin, D. Branton, D. Deamer, Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773 (1996)

    Article  Google Scholar 

  33. J.J. Kasianowicz, J.W.F. Robertson, E.R. Chan, J.E. Reiner, V.M. Stanford, Nanoscopic porous sensors. Annu. Rev. Anal. Chem. 1, 737–766 (2008)

    Article  Google Scholar 

  34. G. Koh, S. Agarwal, P.-S. Cheow, C.-S. Toh, Development of a membrane-based electrochemical immunosensor. Electrochim. Acta 53, 803–810 (2007)

    Article  Google Scholar 

  35. T. Kumeria, A. Santos, D. Losic, Ultrasensitive nanoporous interferometric sensor for label-free detection of gold (III) ions. ACS Appl. Mater. Interfaces. 5, 11783–11790 (2013)

    Article  Google Scholar 

  36. H. Kurz, Status and prospects of UV-nanoimprint technology. Microelectron. Eng. 83, 827–830 (2006)

    Article  Google Scholar 

  37. C.A. Lundgren, R.W. Murray, Observations on the composition of Prussian Blue films and their electrochemistry. Inorg. Chem. 27, 933–939 (1988)

    Article  Google Scholar 

  38. H. Masuda, H. Tanaka, N. Baba, Preparation of porous material by replacing microstructure of anodic alumina film with metal. Chem. Lett. 4, 621–622 (1990)

    Article  Google Scholar 

  39. D.J. Munroe, T.J.R. Harris, Third-generation sequencing fireworks at marco island. Nat. Biotechnol. 28, 426–428 (2010)

    Article  Google Scholar 

  40. G. Oukhaled, J. Mathé, A.L. Biance, L. Bacri, J.M. Betton, D. Lairez, J. Pelta, L. Auvray, Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys. Rev. Lett. 98, 158101–158104 (2007)

    Article  Google Scholar 

  41. R.F. Purnell, J.J. Schmidt, Discrimination of single base substitutions in a DNA strand immobilized in a biological nanopore. ACS Nano 3, 2533–2538 (2009)

    Article  Google Scholar 

  42. L. Qian, R. Mookherjee, Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 4, 1117–1128 (2011)

    Article  Google Scholar 

  43. D. Rotem, L. Jayasinghe, M. Salichou, H. Bayley, Protein detection by nanopores equipped with aptamers. J. Am. Chem. Soc. 134, 2781–2787 (2012)

    Article  Google Scholar 

  44. A. Santos, G. Macías, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl. Mater. Interfaces 4, 3584–3588 (2012)

    Article  Google Scholar 

  45. A. Santos, P. Formentín, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Nanoporous anodic alumina obtained without protective oxide layer by hard anodization. Mater. Lett. 67(1), 296–299 (2012)

    Article  Google Scholar 

  46. A. Santos, T. Kumeria, D. Losic, Optically optimized photoluminescent and interferometric biosensors based on nanoporous anodic alumina: a comparison. Anal. Chem. 85, 7904–7911 (2013)

    Article  Google Scholar 

  47. A. Santos, T. Kumeria, D. Losic, Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal. Chem. 44, 25–38 (2013)

    Article  Google Scholar 

  48. A.L. Sisson, M.R. Shah, S. Bhosale, S. Matile, Synthetic ion channels and pores (2004–2005). Chem. Soc. Rev. 35, 1269–1286 (2006)

    Article  Google Scholar 

  49. Z.S. Siwy, S. Howorka, Engineered voltage-responsive nanopores. Chem. Soc. Rev. 39, 1115–1132 (2010)

    Article  Google Scholar 

  50. L.J. Suva, G.A. Winslow, R.E. Wettenhall, R.G. Hammonds, J.M. Moseley, H. Diefenbach-Jagger, C.P. Rodda, B.E. Kemp, H. Rodriguez, E.Y. Chen, A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 237, 893–896 (1987)

    Article  Google Scholar 

  51. P. Takmakov, I. Vlassiouk, S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Analyst 131, 1248–1253 (2006)

    Article  Google Scholar 

  52. F. Tan, P.H.M. Leung, Z. Liu, Y. Zhang, L. Xiao, W. Ye, X. Zhang, L. Yi, M. Yang, A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibody-immobilized nanoporous membrane. Sens. Actuators, B 159, 328–335 (2011)

    Article  Google Scholar 

  53. T. Uemura, S. Kitagawa, Prussian blue nanoparticles protected by poly(vinylpyrrolidone. J. Am. Chem. Soc. 125, 7814–7815 (2003)

    Article  Google Scholar 

  54. B.M. Venkatesan, R. Bashir, Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011)

    Article  Google Scholar 

  55. W.A. Vercoutere, S. Winters-Hilt, V.S. DeGuzman, D. Deamer, S.E. Ridino, J.T. Rodgers, H.E. Olsen, A. Marziali, M. Akeson, Discrimination among individual WatsonCrick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res. 31, 1311–1318 (2003)

    Article  Google Scholar 

  56. I. Vlassiouk, P. Takmakov, S. Smirnov, Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir 21, 4776–4778 (2005)

    Article  Google Scholar 

  57. A. Walcarius, E. Sibottier, M. Etienne, J. Ghanbaja, Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 6, 602–608 (2007)

    Article  Google Scholar 

  58. A. Walcarius, A. Kuhn, Ordered porous thin films in electrochemical analysis. Trends Anal. Chem. 27, 593–603 (2008)

    Article  Google Scholar 

  59. Y. Wan, D. Zhao, On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–6280 (2007)

    Article  Google Scholar 

  60. W.W. Ye, J.Y. Shi, C.Y. Chan, Y. Zhang, M. Yang, A nanoporous membrane based impedance sensing platform for DNA sensing with gold nanoparticle amplification. Sens. Actuators, B 193, 877–882 (2014)

    Article  Google Scholar 

  61. L. Wen, Z. Sun, C. Han, B. Imene, D. Tian, H. Li, L. Jiang, Fabrication of layer-by-layer assembled biomimetic nanochannels for highly sensitive acetylcholine sensing. Chem. Eur. J. 19, 7686–7690 (2013)

    Article  Google Scholar 

  62. Z. Yang, S. Si, C. Zhang, Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Micropor. Mesopor. Mater. 111, 359–366 (2008)

    Article  Google Scholar 

  63. K. Zhu, D. Wang, J. Liu, Self-assembled materials for catalysis. Nano Res. 2, 1–29 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support of the Spanish MINECO under Project MAT2011–25870 and through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-0295.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arben Merkoçi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de la Escosura-Muñiz, A., Espinoza-Castañeda, M., Merkoçi, A. (2015). Protein and DNA Electrochemical Sensing Using Anodized Aluminum Oxide Nanochannel Arrays. In: Losic, D., Santos, A. (eds) Nanoporous Alumina. Springer Series in Materials Science, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-20334-8_9

Download citation

Publish with us

Policies and ethics