Skip to main content

Targeted Therapies For Intestinal Tumorigenesis

  • Chapter
  • First Online:
Intestinal Tumorigenesis

Abstract

Novel therapies for colorectal cancer based on discoveries made over the last three decades are moving into clinical practice. These therapies have extended the lives of patients with advanced colorectal cancer and are anticipated to ultimately lead to improved cure rates. The majority of the new therapies are based on targeting key signaling pathways that are deregulated in colorectal cancer, including the MAPK signaling pathway, PI3K signaling pathway, VEGF signaling pathway, and mTOR signaling pathway. The best results to date have come from targeting the EGF-MAPK and VEGF signaling pathways, although many other promising targeted therapies are in early phase clinical studies. An emerging area in the management of colorectal cancer is immunotherapy. In this chapter, we highlight some of the areas of novel therapy development, notably signal pathway targeted therapies and tumor immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venook AP (2005) Epidermal growth factor receptor-targeted treatment for advanced colorectal carcinoma. Cancer 103:2435–2446

    Article  CAS  PubMed  Google Scholar 

  2. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  CAS  PubMed  Google Scholar 

  3. Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7:504–516

    Article  CAS  PubMed  Google Scholar 

  4. Ewing GP, Goff LW (2010) The insulin-like growth factor signaling pathway as a target for treatment of colorectal carcinoma. Clin Colorectal Cancer 9:219–223

    Article  PubMed  Google Scholar 

  5. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337

    Article  CAS  Google Scholar 

  7. Bertotti A, Burbridge MF, Gastaldi S et al (2009) Only a subset of Met-activated pathways are required to sustain oncogene addiction. Sci Signal 2:er11

    Article  PubMed  Google Scholar 

  8. Chin L, Tam A, Pomerantz J et al (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400:468–472

    Article  CAS  PubMed  Google Scholar 

  9. Dry JR, Pavey S, Pratilas CA et al (2010) Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res 70:2264–2273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sharma SV, Gajowniczek P, Way IP et al (2006) A common signaling cascade may underlie “addiction” to the Src, BCR-ABL, and EGF receptor oncogenes. Cancer Cell 10:425–435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Torti D, Trusolino L (2011) Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 3:623–636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Weinstein IB (2002) Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  13. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    CAS  PubMed  Google Scholar 

  14. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  15. Lu Y, Zi X, Zhao Y et al (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857

    Article  CAS  PubMed  Google Scholar 

  16. Buck E, Eyzaguirre A, Rosenfeld-Franklin M et al (2008) Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res 68:8322–8332

    Article  CAS  PubMed  Google Scholar 

  17. Hu YP, Patil SB, Panasiewicz M et al (2008) Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Can Res 68:8004–8013

    Article  CAS  Google Scholar 

  18. Huang F, Xu LA, Khambata-Ford S (2012) Correlation between gene expression of IGF-1R pathway markers and cetuximab benefit in metastatic colorectal cancer. Clin Cancer Res 18:1156–1166

    Article  CAS  PubMed  Google Scholar 

  19. Jameson MJ, Beckler AD, Taniguchi LE et al (2011) Activation of the insulin-like growth factor-1 receptor induces resistance to epidermal growth factor receptor antagonism in head and neck squamous carcinoma cells. Mol Cancer Ther 10:2124–2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hakam A, Yeatman TJ, Lu L et al (1999) Expression of insulin-like growth factor-1 receptor in human colorectal cancer. Human Pathol 30:1128–1133

    Article  CAS  Google Scholar 

  21. Ouban A, Muraca P, Yeatman T et al (2003) Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Human Pathol 34:803–808

    Article  CAS  Google Scholar 

  22. Pollak MN, Perdue JF, Margolese RG et al (1987) Presence of somatomedin receptors on primary human breast and colon carcinomas. Cancer Lett 38:223–230

    Article  CAS  PubMed  Google Scholar 

  23. Chang CH, Wang Y, Trisal P et al (2012) Evaluation of a novel hexavalent humanized anti-IGF-1R antibody and its bivalent parental IgG in diverse cancer cell lines. PLoS ONE 7:e44235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hassan AB, Howell JA (2000) Insulin-like growth factor II supply modifies growth of intestinal adenoma in Apc(Min/ + ) mice. Cancer Res 60:1070–1076

    CAS  PubMed  Google Scholar 

  25. Yang XF, Beamer WG, Huynh H et al (1996) Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res 56:1509–1511

    CAS  PubMed  Google Scholar 

  26. Giovannucci E, Michaud D (2007) The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 132:2208–2225

    Article  CAS  PubMed  Google Scholar 

  27. Calle EE, Rodriguez C, Walker-Thurmond K et al (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  28. Noto H, Goto A, Tsujimoto T et al (2013) Latest insights into the risk of cancer in diabetes. J Diabetes Investig 4:225–232

    Article  PubMed Central  PubMed  Google Scholar 

  29. Becerra CR, Salazar R, Garcia-Carbonero R et al (2014) Figitumumab in patients with refractory metastatic colorectal cancer previously treated with standard therapies: a nonrandomized, open-label, phase II trial. Cancer Chemother Pharmacol 73:695–702

    Article  CAS  PubMed  Google Scholar 

  30. Cohn AL, Tabernero J, Maurel J et al (2013) A randomized, placebo-controlled phase 2 study of ganitumab or conatumumab in combination with FOLFIRI for second-line treatment of mutant KRAS metastatic colorectal cancer. Ann Oncol 24:1777–1785

    Article  CAS  PubMed  Google Scholar 

  31. Reidy DL, Vakiani E, Fakih MG et al (2010) Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer. J Clin Oncol 28:4240–4246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Guha M (2013) Anticancer IGF1R classes take more knocks. Nat Rev Drug Discov 12:250

    Article  CAS  PubMed  Google Scholar 

  33. Carden CP, Molife LR, De Bono JS (2009) Predictive biomarkers for targeting insulin-like growth factor-I (IGF-I) receptor. Mol Cancer Ther 8:2077–2078

    Article  CAS  PubMed  Google Scholar 

  34. Zha J, O’brien C, Savage H et al (2009) Molecular predictors of response to a humanized anti-insulin-like growth factor-I receptor monoclonal antibody in breast and colorectal cancer. Mol Cancer Ther 8:2110–2121

    Article  CAS  PubMed  Google Scholar 

  35. Blumenschein GR Jr, Mills GB, Gonzalez-Angulo AM (2012) Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J Clin Oncol 30:3287–3296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Di Renzo MF, Olivero M, Giacomini A et al (1995) Overexpression and amplification of the Met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1:147–154

    CAS  PubMed  Google Scholar 

  37. Samame Perez-Vargas JC, Biondani P, Maggi C et al (2013) Role of cMET in the development and progression of colorectal cancer. Int J Molecular Sci 14:18056–18077

    Article  CAS  Google Scholar 

  38. Takeuchi H, Bilchik A, Saha S et al (2003) c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res 9:1480–1488

    CAS  PubMed  Google Scholar 

  39. Zeng ZS, Weiser MR, Kuntz E et al (2008) c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett 265:258–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Toiyama Y, Miki C, Inoue Y et al (2009) Serum hepatocyte growth factor as a prognostic marker for stage II or III colorectal cancer patients. Int J Cancer 125:1657–1662

    Article  CAS  PubMed  Google Scholar 

  41. Bardelli A, Corso S, Bertotti A et al (2013) Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 3:658–673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  43. Ritchie ME, Trask RV, Fontanet HL et al (1991) Multiple positive and negative elements regulate human brain creatine kinase gene expression. Nucl Acids Res 19:6231–6240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Sakata H, Takayama H, Sharp R et al (1996) Hepatocyte growth factor/scatter factor overexpression induces growth, abnormal development, and tumor formation in transgenic mouse livers. Cell Growth Differ 7:1513–1523

    CAS  PubMed  Google Scholar 

  45. Stabile LP, Lyker JS, L and SR et al (2006) Transgenic mice overexpressing hepatocyte growth factor in the airways show increased susceptibility to lung cancer. Carcinogenesis 27:1547–1555

    Article  CAS  PubMed  Google Scholar 

  46. Takayama H, Larochelle WJ, Sharp R et al (1997) Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 94:701–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhang YW, Staal B, Essenburg C et al (2010) MET kinase inhibitor SGX523 synergizes with epidermal growth factor receptor inhibitor erlotinib in a hepatocyte growth factor-dependent fashion to suppress carcinoma growth. Cancer Res 70:6880–6890

    Article  CAS  PubMed  Google Scholar 

  48. Dienstmann R, Serpico D, Rodon J et al (2012) Molecular profiling of patients with colorectal cancer and matched targeted therapy in phase I clinical trials. Mol Cancer Ther 11:2062–2071

    Article  CAS  PubMed  Google Scholar 

  49. Van Cutsem E, Eng C, Nowara E et al (2014) Randomized phase Ib/II trial of rilotumumab or ganitumab with panitumumab versus panitumumab alone in patients with wild-type KRAS metastatic colorectal cancer. Clin Cancer Res 20:4240–4250

    Article  CAS  PubMed  Google Scholar 

  50. Bendell JC, Ervin TJ, Gallinson D et al (2013) Treatment rationale and study design for a randomized, double-blind, placebo-controlled phase II study evaluating onartuzumab (MetMAb) in combination with bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal cancer. Clin Colorectal Cancer 12:218–222

    Article  CAS  PubMed  Google Scholar 

  51. Santoro A, Rimassa L, Borbath I et al (2013) Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol 14:55–63

    Article  CAS  PubMed  Google Scholar 

  52. Scagliotti GV, Novello S, Schiller JH et al (2012) Rationale and design of MARQUEE: a phase III, randomized, double-blind study of tivantinib plus erlotinib versus placebo plus erlotinib in previously treated patients with locally advanced or metastatic, nonsquamous, non-small-cell lung cancer. Clin Lung Cancer 13:391–395

    Article  CAS  PubMed  Google Scholar 

  53. Yakes FM, Chen J, Tan J et al (2011) Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 10:2298–2308

    Article  CAS  PubMed  Google Scholar 

  54. Elisei R, Schlumberger MJ, Muller SP et al (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31:3639–3646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol 6:322–327

    Article  CAS  PubMed  Google Scholar 

  56. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  CAS  PubMed  Google Scholar 

  57. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

    Article  CAS  PubMed  Google Scholar 

  58. Chen D, Huang JF, Liu K et al (2014) BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis. PLoS ONE 9:e90607

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Baines AT, Xu D, Der CJ (2011) Inhibition of Ras for cancer treatment: the search continues. Future Med Chem 3:1787–1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ostrem JM, Peters U, Sos ML et al (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Burns MC, Sun Q, Daniels RN et al (2014) Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc Natl Acad Sci U S A 111:3401–3406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Maurer T, Garrenton LS, Oh A et al (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci U S A 109:5299–5304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Shima F, Yoshikawa Y, Ye M et al (2013) In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci U S A 110:8182–8187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Turajlic S, Ali Z, Yousaf N et al (2013) Phase I/II RAF kinase inhibitors in cancer therapy. Expert Opin Investig Drugs 22:739–749

    Article  CAS  PubMed  Google Scholar 

  65. Lito P, Rosen N, Solit DB (2013) Tumor adaptation and resistance to RAF inhibitors. Nat Med 19:1401–1409

    Article  CAS  PubMed  Google Scholar 

  66. Corcoran RB, Ebi H, Turke AB et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2:227–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Prahallad A, Sun C, Huang S et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103

    Article  CAS  PubMed  Google Scholar 

  68. Connolly K, Brungs D, Szeto E et al (2014) Anticancer activity of combination targeted therapy using cetuximab plus vemurafenib for refractory BRAF (V600E)-mutant metastatic colorectal carcinoma. Curr Oncol 21:e151–e154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Akinleye A, Furqan M, Mukhi N et al (2013) MEK and the inhibitors: from bench to bedside. J Hematol Oncol 6:27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Poulikakos PI, Solit DB (2011) Resistance to MEK inhibitors: should we co-target upstream? Sci Signal 4:pe16

    Article  CAS  Google Scholar 

  71. Rinehart J, Adjei AA, Lorusso PM et al (2004) Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol 22:4456–4462

    Article  CAS  PubMed  Google Scholar 

  72. Little AS, Balmanno K, Sale MJ et al (2011) A correction to the research article titled: “Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells” by A. S. Little, K. Balmanno, M. J. Sale, S. Newman, J. R. Dry, M. Hampson, P. A. W. Edwards, P. D. Smith, S. J. Cook. Sci Signal 4:er2

    Article  PubMed  CAS  Google Scholar 

  73. Yamaguchi T, Kakefuda R, Tajima N et al (2011) Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol 39:23–31

    CAS  PubMed  Google Scholar 

  74. Ascierto PA, Schadendorf D, Berking C et al (2013) MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. Lancet Oncol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  75. Flaherty KT, Infante JR, Daud A et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367:1694–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Morris EJ, Jha S, Restaino CR et al (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3:742–750

    Article  CAS  PubMed  Google Scholar 

  77. Hatzivassiliou G, Liu B, O’brien C et al (2012) ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther 11:1143–1154

    Article  CAS  PubMed  Google Scholar 

  78. Nissan MH, Rosen N, Solit DB (2013) ERK pathway inhibitors: how low should we go? Cancer Discov 3:719–721

    Article  CAS  PubMed  Google Scholar 

  79. Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–5510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Zhang J, Roberts TM, Shivdasani RA (2011) Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology 141:50–61

    Article  CAS  PubMed  Google Scholar 

  81. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  82. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  83. Kandoth C, Mclellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Vilar E, Mukherjee B, Kuick R et al (2009) Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. Clin Cancer Res 15:2829–2839

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Shapiro GI, Rodon J, Bedell C et al (2014) Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin Cancer Res 20:233–245

    Article  CAS  PubMed  Google Scholar 

  86. Rodon J, Brana I, Siu LL et al (2014) Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Investig New Drugs 32(4):670–81

    Google Scholar 

  87. Agarwal E, Chaudhuri A, Leiphrakpam PD et al (2014) Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer 14:145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Sangai T, Akcakanat A, Chen H et al (2012) Biomarkers of response to Akt inhibitor MK-2206 in breast cancer. Clin Cancer Res 18:5816–5828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Yap TA, Yan L, Patnaik A et al (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29:4688–4695

    Article  CAS  PubMed  Google Scholar 

  90. Bendell JC, Nemunaitis J, Vukelja SJ et al (2011) Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J Clin Oncol 29:4394–4400

    Article  CAS  PubMed  Google Scholar 

  91. Kim DD, Eng C (2012) The promise of mTOR inhibitors in the treatment of colorectal cancer. Expert Opin Investig Drugs 21:1775–1788

    Article  CAS  PubMed  Google Scholar 

  92. Blaser B, Waselle L, Dormond-Meuwly A et al (2012) Antitumor activities of ATP-competitive inhibitors of mTOR in colon cancer cells. BMC Cancer 12:86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Deming DA, Leystra AA, Farhoud M et al (2013) mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers. PLoS ONE 8:e60709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Ng K, Tabernero J, Hwang J et al (2013) Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res 19:3987–3995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Spindler KL, Sorensen MM, Pallisgaard N et al (2013) Phase II trial of temsirolimus alone and in combination with irinotecan for KRAS mutant metastatic colorectal cancer: outcome and results of KRAS mutational analysis in plasma. Acta Oncol 52:963–970

    Article  CAS  PubMed  Google Scholar 

  96. Burris HA 3rd (2013) Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol 71:829–842

    Article  CAS  PubMed  Google Scholar 

  97. Liao X, Lochhead P, Nishihara R et al (2012) Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. New Eng J Med 367:1596–1606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Domingo E, Church DN, Sieber O et al (2013) Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol 31:4297–4305

    Article  CAS  PubMed  Google Scholar 

  99. Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64:104–117

    Article  Google Scholar 

  100. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  CAS  PubMed  Google Scholar 

  101. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Eng J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  102. Alberts SR, Sargent DJ, Nair S et al (2012) Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 307:1383–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Allegra CJ, Yothers G, O’connell MJ et al (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 29:11–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174

    Article  CAS  PubMed  Google Scholar 

  105. Mendelsohn J (1992) Epidermal growth factor receptor as a target for therapy with antireceptor monoclonal antibodies. J Natl Cancer Inst Monogr 125–131

    Google Scholar 

  106. Mendelsohn J, Baselga J (2006) Epidermal growth factor receptor targeting in cancer. Semin Oncol 33:369–385

    Article  CAS  PubMed  Google Scholar 

  107. Bournazou E, Bromberg J (2013) Targeting the tumor microenvironment: JAK-STAT3 signaling. Jak-Stat 2:e23828

    Article  PubMed Central  PubMed  Google Scholar 

  108. Saltz LB, Meropol NJ, Loehrer PJ Sr et al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208

    Article  CAS  PubMed  Google Scholar 

  109. Sobrero AF, Maurel J, Fehrenbacher L et al (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319

    Article  CAS  PubMed  Google Scholar 

  110. Meyerhardt JA, Zhu AX, Enzinger PC et al (2006) Phase II study of capecitabine, oxaliplatin, and erlotinib in previously treated patients with metastastic colorectal cancer. J Clin Oncol 24:1892–1897

    Article  CAS  PubMed  Google Scholar 

  111. Rothenberg ML, Lafleur B, Levy DE et al (2005) Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol 23:9265–9274

    Article  CAS  PubMed  Google Scholar 

  112. Berge E, Thompson C, Messersmith W (2011) Development of novel targeted agents in the treatment of metastatic colorectal cancer. Clin Colorectal Cancer 10:266–278

    Article  CAS  PubMed  Google Scholar 

  113. Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664

    Article  CAS  PubMed  Google Scholar 

  114. Lievre A, Bachet JB, Boige V et al (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 26:374–379

    Article  CAS  PubMed  Google Scholar 

  115. Forbes S, Clements J, Dawson E et al (2006) Cosmic 2005. Brit J Cancer 94:318–322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:459–465

    Article  CAS  PubMed  Google Scholar 

  117. Andreyev HJ, Norman AR, Cunningham D et al (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Nat Cancer Inst 90:675–684

    Article  CAS  PubMed  Google Scholar 

  118. Jonker DJ, O’callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. New Eng J Med 357:2040–2048

    Article  CAS  PubMed  Google Scholar 

  119. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. New Eng J Med 359:1757–1765

    Article  CAS  PubMed  Google Scholar 

  120. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  CAS  PubMed  Google Scholar 

  121. Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–2096

    Article  PubMed  Google Scholar 

  122. Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. New Eng J Med 360:1408–1417

    Article  CAS  PubMed  Google Scholar 

  123. Van Cutsem E, Kohne CH, Lang I et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29:2011–2019

    Article  CAS  PubMed  Google Scholar 

  124. Maughan TS, Adams RA, Smith CG et al (2011) Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377:2103–2114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Tveit KM, Guren T, Glimelius B et al (2012) Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 30:1755–1762

    Article  CAS  PubMed  Google Scholar 

  126. Bokemeyer C, Bondarenko I, Hartmann JT et al (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 22:1535–1546

    Article  CAS  PubMed  Google Scholar 

  127. Bokemeyer C, Bondarenko I, Makhson A et al (2009) Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 27:663–671

    Article  CAS  PubMed  Google Scholar 

  128. Folprecht G, Gruenberger T, Bechstein W et al (2014) Survival of patients with initially unresectable colorectal liver metastases treated with FOLFOX/cetuximab or FOLFIRI/cetuximab in a multidisciplinary concept (CELIM-study). Ann Oncol 25(5):1018–25

    Google Scholar 

  129. Folprecht G, Gruenberger T, Bechstein WO et al (2010) Tumour response and secondary resectability of colorectal liver metastases following neoadjuvant chemotherapy with cetuximab: the CELIM randomised phase 2 trial. Lancet Oncol 11:38–47

    Article  CAS  PubMed  Google Scholar 

  130. Ocvirk J, Brodowicz T, Wrba F et al (2010) Cetuximab plus FOLFOX6 or FOLFIRI in metastatic colorectal cancer: CECOG trial. World J Gastroenterol 16:3133–3143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369:1023–1034

    Article  CAS  PubMed  Google Scholar 

  132. Douillard JY, Siena S, Cassidy J et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28:4697–4705

    Article  CAS  PubMed  Google Scholar 

  133. Heinemann V, Fischer Von Weikersthal L, Decker T et al (2013) Randomized comparison of FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment of KRAS wild-type metastatic colorectal cancer: German AIO study KRK-0306 (FIRE-3). J Clin Oncol LBA3506

    Google Scholar 

  134. Stintzing S, Jung A, Rossius L et al (2013) Analysis of KRAS/NRAS and BRAF mutations in FIRE-3: a randomized phase III study of FOLFIRI plus cetuximab or bevacizumab as first-line treatment for wild-type KRAS (exon 2) metastatic colorectal cancer patients. Eur J Cancer 49 (Suppl) 3, abstract 17

    Google Scholar 

  135. Schwartzberg LS, Rivera F, Karthaus M et al (2014) PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 32 (21):2240-7

    Google Scholar 

  136. Venook AP, Niedzwiecki D, Lenz AJ et al (2014) CALGB/SWOG 80405: phase III trial of irinotecan/5-FU/leucovorin (FOLFIRI) or oxaliplatin/5-FU/leucovorin (mFOLFOX6) with bevacizumab or cetuximab for patients with KRAS wild-type untreated metastatic adenocarcinoma of the colon or rectum. ASCO J Clin Oncol 32:5s (suppl; abstr LBA3), Chicago

    Article  CAS  Google Scholar 

  137. Peeters M, Price TJ, Cervantes A et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28:4706–4713

    Article  CAS  PubMed  Google Scholar 

  138. Meyers MB, Yu P, Mendelsohn J (1993) Crosstalk between epidermal growth factor receptor and P-glycoprotein in actinomycin D-resistant Chinese hamster lung cells. Biochem Pharmacol 46:1841–1848

    Article  CAS  PubMed  Google Scholar 

  139. Xu Y, Villalona-Calero MA (2002) Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Annals Oncol 13:1841–1851

    Article  CAS  Google Scholar 

  140. Sclabas GM, Fujioka S, Schmidt C et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7:37–43; discussion 43

    Article  PubMed  Google Scholar 

  141. Bandyopadhyay D, Mandal M, Adam L et al (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273:1568–1573

    Article  CAS  PubMed  Google Scholar 

  142. Peeters M, Oliner KS, Parker A et al (2013) Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res 19:1902–1912

    Article  CAS  PubMed  Google Scholar 

  143. Vaughn CP, Zobell SD, Furtado LV et al (2011) Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer. Genes Chromosomes Cancer 50:307–312

    Article  CAS  PubMed  Google Scholar 

  144. Hecht JR, Mitchell E, Chidiac T et al (2009) A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J Clin Oncol 27:672–680

    Article  CAS  PubMed  Google Scholar 

  145. Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. New Eng J Med 360:563–572

    Article  CAS  PubMed  Google Scholar 

  146. Rodemann HP, Dittmann K, Toulany M (2007) Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Rad Biol 83:781–791

    Article  CAS  PubMed  Google Scholar 

  147. Dewdney A, Cunningham D, Tabernero J et al (2012) Multicenter randomized phase II clinical trial comparing neoadjuvant oxaliplatin, capecitabine, and preoperative radiotherapy with or without cetuximab followed by total mesorectal excision in patients with high-risk rectal cancer (EXPERT-C). J Clin Oncol 30:1620–1627

    Article  CAS  PubMed  Google Scholar 

  148. Fokas E, Conradi L, Weiss C et al (2013) Preoperative chemoradiation therapy with capecitabine/oxaliplatin and cetuximab in rectal cancer: long-term results of a prospective phase 1/2 study. Int J Radiat Oncol Biol Phys 87:992–999

    Article  CAS  PubMed  Google Scholar 

  149. Velenik V, Ocvirk J, Oblak I et al (2012) Cetuximab in preoperative treatment of rectal cancer—term outcome of the XERT trial. Radiol Oncol 46:252–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. Weiss C, Arnold D, Dellas K et al (2010) Preoperative radiotherapy of advanced rectal cancer with capecitabine and oxaliplatin with or without cetuximab: a pooled analysis of three prospective phase I-II trials. Int J Rad Oncol Biol Phys 78:472–478

    Article  CAS  Google Scholar 

  151. Helbling D, Bodoky G, Gautschi O et al (2013) Neoadjuvant chemoradiotherapy with or without panitumumab in patients with wild-type KRAS, locally advanced rectal cancer (LARC): a randomized, multicenter, phase II trial SAKK 41/07. Ann Oncol 24:718–725

    Article  CAS  PubMed  Google Scholar 

  152. Pinto C, Di Fabio F, Maiello E et al (2011) Phase II study of panitumumab, oxaliplatin, 5-fluorouracil, and concurrent radiotherapy as preoperative treatment in high-risk locally advanced rectal cancer patients (StarPan/STAR-02 Study). Ann Oncol 22:2424–2430

    Article  CAS  PubMed  Google Scholar 

  153. Chung KY, Shia J, Kemeny NE et al (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810

    Article  CAS  PubMed  Google Scholar 

  154. Cappuzzo F, Finocchiaro G, Rossi E et al (2008) EGFR FISH assay predicts for response to cetuximab in chemotherapy refractory colorectal cancer patients. Ann Oncol 19:717–723

    Article  CAS  PubMed  Google Scholar 

  155. Moroni M, Veronese S, Benvenuti S et al (2005) Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 6:279–286

    Article  CAS  PubMed  Google Scholar 

  156. Sartore-Bianchi A, Moroni M, Veronese S et al (2007) Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 25:3238–3245

    Article  CAS  PubMed  Google Scholar 

  157. Bertotti A, Migliardi G, Galimi F et al (2011) A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov 1:508–523

    Article  CAS  PubMed  Google Scholar 

  158. Barber TD, Vogelstein B, Kinzler KW et al (2004) Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 351:2883

    Article  CAS  PubMed  Google Scholar 

  159. Metzger B, Chambeau L, Begon DY et al (2011) The human epidermal growth factor receptor (EGFR) gene in European patients with advanced colorectal cancer harbors infrequent mutations in its tyrosine kinase domain. BMC Med Genet 12:144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Matar P, Rojo F, Cassia R et al (2004) Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 10:6487–6501

    Article  CAS  PubMed  Google Scholar 

  161. Weickhardt AJ, Price TJ, Chong G et al (2012) Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol 30:1505–1512

    Article  CAS  PubMed  Google Scholar 

  162. Jacobs B, De Roock W, Piessevaux H et al (2009) Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 27:5068–5074

    Article  CAS  PubMed  Google Scholar 

  163. Jonker DJ, Karapetis CS, Harbison C et al (2014) Epiregulin gene expression as a biomarker of benefit from cetuximab in the treatment of advanced colorectal cancer. Br J Cancer 110:648–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25:3230–3237

    Article  CAS  PubMed  Google Scholar 

  165. Lu Y, Li X, Liang K et al (2007) Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res 67:8240–8247

    Article  CAS  PubMed  Google Scholar 

  166. Wheeler DL, Huang S, Kruser TJ et al (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27:3944–3956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Tejpar S, Celik I, Schlichting M et al (2012) Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol 30:3570–3577

    Article  CAS  PubMed  Google Scholar 

  168. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  CAS  PubMed  Google Scholar 

  169. Popovici V, Budinska E, Tejpar S et al (2012) Identification of a poor-prognosis BRAF-mutant-like population of patients with colon cancer. J Clin Oncol 30:1288–1295

    Article  CAS  PubMed  Google Scholar 

  170. Sartore-Bianchi A, Martini M, Molinari F et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69:1851–1857

    Article  CAS  PubMed  Google Scholar 

  171. Frattini M, Signoroni S, Pilotti S et al (2005) Phosphatase protein homologue to tensin expression and phosphatidylinositol-3 phosphate kinase mutations in colorectal cancer. Cancer Res 65:11227

    Article  CAS  PubMed  Google Scholar 

  172. Ogino S, Nosho K, Kirkner GJ et al (2009) PIK3CA mutation is associated with poor prognosis among patients with curatively resected colon cancer. J Clin Oncol 27:1477–1484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3:1221–1224

    Article  CAS  PubMed  Google Scholar 

  174. Jhawer M, Goel S, Wilson AJ et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–1961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Laurent-Puig P, Cayre A, Manceau G et al (2009) Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer. J Clin Oncol 27:5924–5930

    Article  CAS  PubMed  Google Scholar 

  176. Perrone F, Lampis A, Orsenigo M et al (2009) PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 20:84–90

    Article  CAS  PubMed  Google Scholar 

  177. Bibeau F, Lopez-Crapez E, Di Fiore F et al (2009) Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27:1122–1129

    Article  CAS  PubMed  Google Scholar 

  178. Fuchs BC, Fujii T, Dorfman JD et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68:2391–2399

    Article  CAS  PubMed  Google Scholar 

  179. Oliveras-Ferraros C, Vazquez-Martin A, Cufi S et al (2011) Stem cell property epithelial-to-mesenchymal transition is a core transcriptional network for predicting cetuximab (Erbitux) efficacy in KRAS wild-type tumor cells. J Cell Biochem 112:10–29

    Article  CAS  PubMed  Google Scholar 

  180. Cappuzzo F, Varella-Garcia M, Finocchiaro G et al (2008) Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients. Brit J Cancer 99:83–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Misale S, Yaeger R, Hobor S et al (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    PubMed Central  CAS  PubMed  Google Scholar 

  182. Misale S, Arena S, Lamba S et al (2014) Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci Transl Med 6:224ra226

    Article  CAS  Google Scholar 

  183. Valtorta E, Misale S, Sartore-Bianchi A et al (2013) KRAS gene amplification in colorectal cancer and impact on response to EGFR-targeted therapy. Int J Cancer 133:1259–1265

    Article  CAS  PubMed  Google Scholar 

  184. Perkins G, Lievre A, Ramacci C et al (2010) Additional value of EGFR downstream signaling phosphoprotein expression to KRAS status for response to anti-EGFR antibodies in colorectal cancer. Int J Cancer 127:1321–1331

    Article  CAS  PubMed  Google Scholar 

  185. Takahashi Y, Kitadai Y, Bucana CD et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55:3964–3968

    CAS  PubMed  Google Scholar 

  186. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  187. Pidgeon GP, Barr MP, Harmey JH et al (2001) Vascular endothelial growth factor (VEGF) upregulates BCL-2 and inhibits apoptosis in human and murine mammary adenocarcinoma cells. Br J Cancer 85:273–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Gabrilovich DI, Ishida T, Nadaf S et al (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970

    CAS  PubMed  Google Scholar 

  189. Griffioen AW (2008) Anti-angiogenesis: making the tumor vulnerable to the immune system. Cancer Immunol Immunother 57:1553–1558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Kandalaft LE, Motz GT, Busch J et al (2011) Angiogenesis and the tumor vasculature as antitumor immune modulators: the role of vascular endothelial growth factor and endothelin. Curr Top Microbiol Immunol 344:129–148

    CAS  PubMed  Google Scholar 

  191. Beinert T, Binder D, Oehm C et al (2000) Further evidence for oxidant-induced vascular endothelial growth factor up-regulation in the bronchoalveolar lavage fluid of lung cancer patients undergoing radio-chemotherapy. J Cancer Res Clin Oncol 126:352–356

    Article  CAS  PubMed  Google Scholar 

  192. Saltz LB, Clarke S, Diaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26:2013–2019

    Article  CAS  PubMed  Google Scholar 

  193. Bendell JC, Bekaii-Saab TS, Cohn AL et al (2012) Treatment patterns and clinical outcomes in patients with metastatic colorectal cancer initially treated with FOLFOX-bevacizumab or FOLFIRI-bevacizumab: results from ARIES, a bevacizumab observational cohort study. Oncologist 17:1486–1495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Falcone A, Cremolini C, Masi G et al (2013) FOLFOXIRI/bevacizumab versus FOLFIRI/bevacizumab as first-line treatment in unresectable metastatic colorectal cancer patients; results of the phase III TRIBE trial by GONO Group. J Clin Oncol 31 Suppl 3505

    Google Scholar 

  195. Loupakis F, Cremolini C, Salvatore L et al (2014) FOLFOXIRI plus bevacizumab as first-line treatment in BRAF mutant metastatic colorectal cancer. Eur J Cancer 50:57–63

    Article  CAS  PubMed  Google Scholar 

  196. Cunningham D, Lang I, Marcuello E et al (2013) Bevacizumab plus capecitabine versus capecitabine alone in elderly patients with previously untreated metastatic colorectal cancer (AVEX): an open-label, randomised phase 3 trial. Lancet Oncol 14:1077–1085

    Article  CAS  PubMed  Google Scholar 

  197. Kabbinavar FF, Schulz J, Mccleod M et al (2005) Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 23:3697–3705

    Article  CAS  PubMed  Google Scholar 

  198. Giantonio BJ, Catalano PJ, Meropol NJ et al (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25:1539–1544

    Article  CAS  PubMed  Google Scholar 

  199. Bennouna J, Sastre J, Arnold D et al (2013) Continuation of bevacizumab after first progression in metastatic colorectal cancer (ML18147): a randomised phase 3 trial. Lancet Oncol 14:29–37

    Article  CAS  PubMed  Google Scholar 

  200. Van Cutsem E, Tabernero J, Lakomy R et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30:3499–3506

    Article  CAS  PubMed  Google Scholar 

  201. Pericay C, Folprecht G, Saunders G et al (2012) Phase 2 randomized, non-comparative, open-label study of aflibercept and modified FOLFOX6 in the first-line treatment of metastatic colorectal cancer (AFFIRM). Ann Oncol 23(Suppl 4) (Abstract O-0024)

    Google Scholar 

  202. Wilhelm SM, Dumas J, Adnane L et al (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129:245–255

    Article  CAS  PubMed  Google Scholar 

  203. Strumberg D, Scheulen ME, Schultheis B et al (2012) Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 106:1722–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Grothey A, Van Cutsem E, Sobrero A et al (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303–312

    Article  CAS  PubMed  Google Scholar 

  205. Hurwitz HI, Douglas PS, Middleton JP et al (2013) Analysis of early hypertension and clinical outcome with bevacizumab: results from seven phase III studies. Oncologist 18:273–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  206. Osterlund P, Soveri LM, Isoniemi H et al (2011) Hypertension and overall survival in metastatic colorectal cancer patients treated with bevacizumab-containing chemotherapy. Br J Cancer 104:599–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  207. Scartozzi M, Galizia E, Chiorrini S et al (2009) Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann Oncol 20:227–230

    Article  CAS  PubMed  Google Scholar 

  208. Hurwitz HI, Yi J, Ince W et al (2009) The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 14:22–28

    Article  CAS  PubMed  Google Scholar 

  209. Ince WL, Jubb AM, Holden SN et al (2005) Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J Natl Cancer Inst 97:981–989

    Article  CAS  PubMed  Google Scholar 

  210. Bates DO, Catalano PJ, Symonds KE et al (2012) Association between VEGF splice isoforms and progression-free survival in metastatic colorectal cancer patients treated with bevacizumab. Clin Cancer Res 18:6384–6391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Longo R, Gasparini G (2007) Challenges for patient selection with VEGF inhibitors. Cancer Chemother Pharmacol 60:151–170

    Article  CAS  PubMed  Google Scholar 

  212. Hegde PS, Jubb AM, Chen D et al (2013) Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin Cancer Res 19:929–937

    Article  CAS  PubMed  Google Scholar 

  213. Grothey A, Hedrick EE, Mass RD et al (2008) Response-independent survival benefit in metastatic colorectal cancer: a comparative analysis of N9741 and AVF2107. J Clin Oncol 26:183–189

    Article  CAS  PubMed  Google Scholar 

  214. Jubb AM, Hurwitz HI, Bai W et al (2006) Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 24:217–227

    Article  CAS  PubMed  Google Scholar 

  215. Jubb AM, Oates AJ, Holden S et al (2006) Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 6:626–635

    Article  CAS  PubMed  Google Scholar 

  216. Price Tj TA, Bruhn M et al (2014) Assessment of IL-6, IL-8, bFGF, PDGF-BB, and VEGF-A as prognostic and predictive biomarkers for anti-VEGF in metastatic colorectal cancer. Gastrointestinal cancers symposium. J Clin Oncol 32, 2014 (suppl 3; abstr 502)

    Google Scholar 

  217. Cremolini C, Loupakis F, Bocci G et al (2014) Biomarkers and response to bevacizumab—letter. Clin Cancer Res 20:1056–1057

    Article  PubMed  Google Scholar 

  218. Masi G, Loupakis F, Salvatore L et al (2012) A randomized phase III study evaluating the continuation of bevacizumab beyond progression in metastatic colorectal cancer patients who received bevacizumab as part of first-line treatment: results of the BEBYP trial by Gruppo Oncologico Nord Ovest (GONO). Ann Oncol 23 supplement 9 (9)

    Google Scholar 

  219. Foernzler D, Delmar P, Kockx M et al (2010) Tumor tissue based biomarker analysis in NO16966: a randomized phase III study of first-line bevacizumab in combination with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. In: Oncol JC (ed) Gastrointestinal cancers symposium. Abstract 374

    Google Scholar 

  220. Aoyagi Y, Iinuma H, Horiuchi A et al (2010) Association of plasma VEGF-A, soluble VEGFR-1 and VEGFR-2 levels and clinical response and survival in advanced colorectal cancer patients receiving bevacizumab with modified FOLFOX6. Oncology Lett 1:253–259

    CAS  Google Scholar 

  221. Jurgensmeier JM, Schmoll HJ, Robertson JD et al (2013) Prognostic and predictive value of VEGF, sVEGFR-2 and CEA in mCRC studies comparing cediranib, bevacizumab and chemotherapy. Br J Cancer 108:1316–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  222. Formica V, Palmirotta R, Del Monte G et al (2011) Predictive value of VEGF gene polymorphisms for metastatic colorectal cancer patients receiving first-line treatment including fluorouracil, irinotecan, and bevacizumab. Int J Colorectal Dis 26:143–151

    Article  PubMed  Google Scholar 

  223. Loupakis F, Ruzzo A, Salvatore L et al (2011) Retrospective exploratory analysis of VEGF polymorphisms in the prediction of benefit from first-line FOLFIRI plus bevacizumab in metastatic colorectal cancer. BMC Cancer 11:247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  224. Loupakis F, Cremolini C, Yang D et al (2013) Prospective validation of candidate SNPs of VEGF/VEGFR pathway in metastatic colorectal cancer patients treated with first-line FOLFIRI plus bevacizumab. PLoS ONE 8:e66774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Chionh Fjm GV, Chueh AC et al (2014) Single nucleotide polymorphisms (SNPs) in vascular endothelial growth factor (VEGF) family genes as predictive or prognostic biomarkers in patients with metastatic colorectal cancer: analysis of the phase III MAX study. J Clin Oncol 32:5s (suppl; abstr 3609)

    Article  CAS  Google Scholar 

  226. Dhodapkar MV (2013) Personalized immune-interception of cancer and the battle of two adaptive systems—when is the time right? Cancer Prev Res 6:173–176

    Article  Google Scholar 

  227. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Abbas AK, Lichtman AH, Pillai S (2014) Basic immunology: functions and disorders of the immune system. Elsevier Saunders, Philadelphia

    Google Scholar 

  229. Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Cavallo F, De Giovanni C, Nanni P et al (2011) 2011: the immune hallmarks of cancer. Cancer Immunol Immunother 60:319–326

    Article  CAS  Google Scholar 

  231. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  CAS  PubMed  Google Scholar 

  232. Pihl E, Nairn RC, Milne BJ et al (1980) Lymphoid hyperplasia: a major prognostic feature in 519 cases of colorectal carcinoma. Am J Pathol 100:469–480

    PubMed Central  CAS  PubMed  Google Scholar 

  233. Ohtani H (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human colorectal cancer. Cancer Immun 7:4

    PubMed Central  PubMed  Google Scholar 

  234. Pages F, Galon J, Dieu-Nosjean MC et al (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102

    Article  CAS  PubMed  Google Scholar 

  235. Pages F, Kirilovsky A, Mlecnik B et al (2009) In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol 27:5944–5951

    Article  CAS  PubMed  Google Scholar 

  236. Halama N, Michel S, Kloor M et al (2011) Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res 71:5670–5677

    Article  CAS  PubMed  Google Scholar 

  237. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32:463–488

    Article  CAS  PubMed  Google Scholar 

  238. Lin EY, Nguyen AV, Russell RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  239. Zhang Y, Sime W, Juhas M et al (2013) Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer 49:3320–3334

    Article  CAS  PubMed  Google Scholar 

  240. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  CAS  PubMed  Google Scholar 

  241. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171

    Article  CAS  PubMed  Google Scholar 

  242. Atkins D, Breuckmann A, Schmahl GE et al (2004) MHC class I antigen processing pathway defects, ras mutations and disease stage in colorectal carcinoma. Int J Cancer 109:265–273

    Article  CAS  PubMed  Google Scholar 

  243. Volonte A, Di Tomaso T, Spinelli M et al (2013) Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J Immunol 192:523–532

    Article  PubMed  CAS  Google Scholar 

  244. Mapara MY, Sykes M (2004) Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 22:1136–1151

    Article  CAS  PubMed  Google Scholar 

  245. Staveley-O’carroll K, Sotomayor E, Montgomery J et al (1998) Induction of antigen-specific T cell anergy: an early event in the course of tumor progression. Proc Natl Acad Sci U S A 95:1178–1183

    Article  PubMed Central  PubMed  Google Scholar 

  246. Orsini G, Legitimo A, Failli A et al (2013) Defective generation and maturation of dendritic cells from monocytes in colorectal cancer patients during the course of disease. Int J Mol Sci 14:22022–22041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  247. Pinzon-Charry A, Maxwell T, Lopez JA (2005) Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 83:451–461

    Article  CAS  PubMed  Google Scholar 

  248. Coley WB (1893) II. Hawkins on tubercular peritonitis. Ann Surg 17:462–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  249. Rosenberg SA, Yang JC, Topalian SL et al (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271:907–913

    Article  CAS  PubMed  Google Scholar 

  250. Hodi FS, O’day SJ, Mcdermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Eng J Med 363:711–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  251. Higano CS, Small EJ, Schellhammer P et al (2010) Sipuleucel-T. Nat Rev Drug Discov 9:513–514

    Article  CAS  PubMed  Google Scholar 

  252. Burgdorf SK, Fischer A, Myschetzky PS et al (2008) Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine. Oncol Rep 20:1305–1311

    PubMed  Google Scholar 

  253. Sakakibara M, Kanto T, Hayakawa M et al (2011) Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide. Cancer Immunol Immunother 60:1565–1575

    Article  CAS  PubMed  Google Scholar 

  254. Loveland BE, Zhao A, White S et al (2006) Mannan-MUC1-pulsed dendritic cell immunotherapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res 12:869–877

    Article  CAS  PubMed  Google Scholar 

  255. Harrop R (2006) Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res 12:3416–3424

    Article  CAS  PubMed  Google Scholar 

  256. Toubaji A, Achtar M, Provenzano M et al (2008) Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57:1413–1420

    Article  CAS  PubMed  Google Scholar 

  257. Correale P, Fulfaro F, Marsili S et al (2005) Gemcitabine (GEM) plus oxaliplatin, folinic acid, and 5-fluorouracil (FOLFOX-4) in patients with advanced gastric cancer. Cancer Chemother Pharmacol 56:563–568

    Article  CAS  PubMed  Google Scholar 

  258. Correale P, Montagnani F, Miano S et al (2008) Biweekly triple combination chemotherapy with gemcitabine, oxaliplatin, levofolinic acid and 5-fluorouracil (GOLF) is a safe and active treatment for patients with inoperable pancreatic cancer. J Chemother 20:119–125

    Article  CAS  PubMed  Google Scholar 

  259. Carlson RH (2011) Advanced colorectal cancer: GOLFIG shows benefit over FOLFOX-4. Oncol Times UK 8:11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Grady MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chiorean, E., Coveler, A., Grim, J., Grady, W. (2015). Targeted Therapies For Intestinal Tumorigenesis. In: Yang, V., Bialkowska, A. (eds) Intestinal Tumorigenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-19986-3_13

Download citation

Publish with us

Policies and ethics