Skip to main content

Abstract

Peptides and proteins are made by condensation of amino acids, forming peptide bonds. The sequence of amino acids in a protein is called its primary structure. Secondary structure is determined by the dihedral angles ϕ, ψ of the peptide bonds, the tertiary structure by the folding of protein chains in space. Association of folded polypeptide molecules to complex functional proteins results in quaternary structure. Proteins can be further modified by posttranslational addition of small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Albers, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, J. Wilson, T. Hunt, Molecular Biology of the Cell, 5th edn. (Garland Science, New York, 2008). ISBN 0-8153-4105-9

    Google Scholar 

  2. C. Anfinsen, Principles that govern the folding of protein chains. Science 181, 223–230 (1973). doi: 10.1126/science.181.4096.223

    Article  CAS  PubMed  Google Scholar 

  3. R. Bhattacharyya, P. Chakrabarti, Stereospecific interaction of proline residues in protein structures and complexes. J. Mol. Biol. 331, 925–940 (2003). doi: 10.1016/S0022-2836(03)00759-9

    Article  CAS  PubMed  Google Scholar 

  4. N. Boggetto, M. Reboud-Ravaux, Dimerization inhibitors of HIV-1 protease. Biol. Chem. 383, 1321–1324 (2002). doi: 10.1515/BC.2002.150

    Article  CAS  PubMed  Google Scholar 

  5. C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehman, T.C. Walther, J.V. Olsen, M. Mann, Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834–840 (2009). doi: 10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  6. S. Clarke. Protein methylation. Curr. Opin. Cell Biol., 5, 977–983 (1993). doi: 10.1016/0955-0674(93)90080-A

    Article  CAS  PubMed  Google Scholar 

  7. International Human Genome Sequencing Consortium, Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). doi: 10.1038/35057062

    Google Scholar 

  8. International Human Genome Sequencing Consortium, Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004). doi: 10.1038/nature03001

    Google Scholar 

  9. C. Darwin, On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life (John Murray, London, facsimile edition, 1859). ISBN 978-0-6746-3752-8

    Google Scholar 

  10. M.O. Dayhoff, Computer analysis of protein evolution. Sci. Am. 221(1), 86–95 (1969). doi: 10.1038/scientificamerican0769-86

    Article  CAS  PubMed  Google Scholar 

  11. J.M. Denu, Linking chromatin function with metabolic networks. Sir-2 family of NAD+-dependent deacetylases. TIBS 28, 41–48 (2003). doi: 10.1016/S0968-0004(02) 00005-1

    Google Scholar 

  12. J.M. Forbes, M.E. Cooper, Mechanisms of diabetic complications. Physiol. Rev. 93(1), 137–188 (2013). doi: 10.1152/physrev.00045.2011

    Article  CAS  PubMed  Google Scholar 

  13. F.S. Gimble, Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Let. 185(2), 99–107 (2000). doi: 10.1111/j.1574-6968.2000.tb09046.x

    Article  CAS  Google Scholar 

  14. J.P. Gogarten, A.G. Senejani, O. Zhaxybayeva, L. Olendzenski, E. Hilario, Inteins: structure, function, and evolution. Annu. Rev. Microbiol. 56(1), 263–287 (2002). doi: 10.1146/annurev.micro.56.012302. 160741

    Article  CAS  PubMed  Google Scholar 

  15. E. Granseth, G. van Heijne, A. Elofsson, A study of the membrane-water interface region of membrane proteins. J. Mol. Biol. 346, 377–385 (2005). doi: 10.1016/j.jmb.2004.11.036

    Article  CAS  PubMed  Google Scholar 

  16. V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 27(1), 41–43 (2013). doi: 10.1016/j.blre.2012.12.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. C. Hadley, D.T. Jones, A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. Structure 7(9), 1099–1112 (1999). doi: 10.1016/S0969-2126(99)80177-4

    CAS  PubMed  Google Scholar 

  18. B.K. Ho, A. Thomas, R. Brasseur, Revisiting the Ramachandran plot: Hard-sphere repulsion, electrostatics and H-bonding in the α-helix. Protein Sci. 12(11), 2508–2522 (2003). doi: 10.1110/ps.03235203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. W. Kabsch, C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983). doi: 10.1002/bip.360221211. URL http://zhanglab.ccmb.med.umich.edu/literature/dssp.pdf

  20. C. Levinthal, How to fold graciously. In Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, Monticello, Illinois, ed. by J.T.P. DeBrunner, E. Munck, pp. 22–24 (University of Illinois Press, Urbana, IL, 1969). URL http://www-wales.ch.cam.ac.uk/~mark/levinthal/levinthal.html

  21. H. Lodish et al., Molecular Cell Biology, 7th edn. (W.H. Freeman and Company, New York, 2012). ISBN 978-1-4292-3413-9

    Google Scholar 

  22. C. Luevano-Contreras, K. Chapman-Novakofski, Dietary advanced glycation end products and aging. Nutrients 2(12), 1247–1265 (2010). doi: 10.3390/nu2121247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Y. Matsunaga, H. Fujisaki, T. Terada, T. Furuta, K. Moritsugu, A. Kidera, Minimum free energy path of ligand-induced transition in adenylate kinase. PLoS Comput. Biol. 8(6), e1002555 (2012). doi: 10. 1371/journal.pcbi.1002555

    Google Scholar 

  24. R.V. Pappu, R. Srinivasan, G.D. Rose, The Flory isolated-pair hypothesis is not valid for polypeptide chains: Implications for protein folding. Proc. Natl. Acad. Sci. USA 97, 12565–12570 (2000). doi: 10. 1073/pnas.97.23.12565

    Google Scholar 

  25. H. Paulus, Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000). doi: 10.1146/annurev.biochem. 69.1.447

    Article  CAS  PubMed  Google Scholar 

  26. F. Piarulli, G. Sartore, A. Lapolla, Glyco-oxidation and cardiovascular complications in type 2 diabetes: a clinical update. Acta Diabetol. 50(2), 101–110 (2013). doi: 10.1007/s00592-012-0412-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. G.N. Ramachandran, V. Sasisekharan, Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968). doi: 10.1016/ S0065-3233(08)60402-7

    Article  CAS  PubMed  Google Scholar 

  28. J.S. Richardson, The anatomy and taxonomy of protein structures. Adv. Protein Chem. 34, 167–339 (1981). doi: 10.1016/S0065-3233(08)60520-3

    Article  CAS  PubMed  Google Scholar 

  29. D.R. Sell, V.M. Monnier, Molecular basis of arterial stiffening: Role of glycation. Gerontology 58(3), 227–237 (2012). doi: 10.1159/000334668

    Article  CAS  PubMed  Google Scholar 

  30. J.G. Snedeker, A. Gautieri, The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly. Muscles Ligaments Tendons J. 4(3), 303–308 (2014). URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241420/pdf/303-308.pdf

  31. G. Sorci, F. Riuzzi, I. Giambanco, R. Donato, RAGE in tissue homeostasis, repair and regeneration. Biochim. Biophys. Acta 1833(1), 101–109 (2013). doi: 10.1016/j.bbamcr.2012.10.021

    Article  CAS  PubMed  Google Scholar 

  32. F. Takagi, N. Koga, S. Takada, How protein thermodynamics and folding mechanism are altered by the chaperonin cage: Molecular simulations. Proc. Natl. Acad. Sci. USA 100, 11367–11372 (2003). doi: 10.1073/pnas.1831920100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. H.A. Tissenbaum, L. Guarente, Increased dosage of sir-2 gene extends lifespan in Caenorabditis elegans. Nature 410, 227–230 (2001). doi: 10.1038/35065638

    Google Scholar 

  34. J.S. Valastyan, S. Lindquist, Mechanisms of protein-folding diseases at a glance. Dis. Models Mech. 7(1), 9–14 (2014). doi: 10.1242/dmm.013474

    Article  CAS  Google Scholar 

  35. J.C. Venter et al., The sequence of the human genome. Science 291, 1304–1351 (2001). doi: 10.1126/science.1058040

    Article  CAS  PubMed  Google Scholar 

  36. R.D. Vierstra, The expanding universe of ubiquitin and ubiquitin-like modifiers. Plant Physiol. 160(1), 2–14 (2012). doi: 10.1104/pp.112. 200667

    Google Scholar 

  37. S. Walter, J. Buchner, Molecular chaperones – cellular machines for protein folding. Angew. Chemie Int. Ed. 41, 1098–1113 (2002). doi: 10.1002/1521-3773(20020402)41:7∖ %3C1098::AID-ANIE1098∖%3E3.0.CO;2-9

    Google Scholar 

  38. Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin, J. Yao, H. Li, L. Xie, W. Zhao, Y. Yao, Z.-B. Ning, R. Zeng, Y. Xiong, K.-L. Guan, S. Zhao, G.-P. Zhao, Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 237, 1004–1007 (2010). doi: 10.1126/science.1179687

    Article  Google Scholar 

  39. C.M. Wilmot, J.M. Thornton, Analysis and prediction of the different types of \(\upbeta\)-turns in proteins. J. Mol. Biol. 203, 221–232 (1988). doi: 10.1016/ 0022-2836(88)90103-9

    Article  CAS  PubMed  Google Scholar 

  40. M.D. Yoder, F. Jurnak, The parallel \(\upbeta\) helix and other coiled folds. FASEB J. 9(5), 335–342 (1995). URL http://www.fasebj.org/content/9/5/335.abstract

  41. A.Q. Zhou, C.S. O’Hern, L. Regan, Revisiting the Ramachandran plot from a new angle. Protein Sci. 20(7), 1166–1171 (2011). doi: 10.1002/ pro.644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. L. Zhou, Y. Zeng, H. Li, Y. Li, J. Shi, W. An, S.M. Hancock, F. He, L. Qin, J. Chin, P. Yang, X. Chen, Q. Lei, Y. Xiong, K.-L. Guan, Regulation of cellular metabolism by protein lysine acetylation. Science 237, 1000–1004 (2010). doi: 10.1126/science.1179689

    Article  Google Scholar 

  43. R. Zwanzig, A. Szabo, B. Bagchi, Levinthal’s paradox. Proc. Natl. Acad. Sci. USA 89, 20–22 (1992). doi: 10.1073/pnas.89.1.20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buxbaum, E. (2015). Protein Structure. In: Fundamentals of Protein Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-19920-7_2

Download citation

Publish with us

Policies and ethics