Skip to main content

Isotope Fractionation Processes of Selected Elements

  • Chapter
  • First Online:
Stable Isotope Geochemistry

Abstract

The foundations of stable isotope geochemistry were laid in 1947 by Urey’s classic paper on the thermodynamic properties of isotopic substances and by Nier’s development of the ratio mass spectrometer. Before discussing details of the naturally occurring variations in stable isotope ratios, it is useful to describe some generalities that are pertinent to the field of non-radiogenic isotope geochemistry as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Suzuki T, Fujii Y, Hada M, Hirao K (2008) An ab initio molecular orbital study oft he nuclear volume effects in uranium isotope fractionations. J Chem Phys 129:164309

    Google Scholar 

  • Abelson PH, Hoering TC (1961) Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA 47:623

    Google Scholar 

  • Abouchami W, Galer S et al (2013) A common reference material for cadmium isotope studies—NIST SRM 3108. Geostand Geoanal Res 37:5–17

    Google Scholar 

  • Abouchami W, Galer S, de Baar H, Alderkamp A, Middag R, Laan P, Feldmann H, Andreae M (2011) Modulation of the southern ocean cadmium isotope signature by ocean circulation and primary productivity. Earth Planet Sci Lett 305:83–91

    Google Scholar 

  • Ader M, Chaudhuri S, Coates JD, Coleman M (2008) Microbial perchlorate reduction: a precise laboratory determination of the chlorine isotope fractionation and its possible biochemical basis. Earth Planet Sci Lett 269:604–612

    Google Scholar 

  • Aharon P, Fu B (2000) Microbial sulfate reduction rates and sulfur and oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico. Geochim Cosmochim Acta 64:233–246

    Google Scholar 

  • Amini M, Eisenhauer A, Böhm F, Fietzke J, Bach W, Garbe-Schoenberg D, Rosner M, Bock B, Lackschewitz K, Hauff F (2008) Calcium isotope (δ44/40Ca) fractionation along hydrothermal pathways, Logatchev field (Mid-Atlantic Ridge, 14°45´N). Geochim Cosmochim Acta 72:4107–4122

    Google Scholar 

  • Amrani A, Sessions AL, Adkins JF (2009) Compound-specific δ34S analysis of volatile organics by coupled GC/Multicollector-ICPMS. Anal Chem 81:9027–9034

    Google Scholar 

  • Anbar AD (2004a) Iron stable isotopes: beyond biosignatures. Earth Planet Sci Lett 217:223–236

    Google Scholar 

  • Anbar AD (2004b) Molybdenum stable isotopes: observations, interpretations and directions. Rev Mineral Geochem 55:429–454

    Google Scholar 

  • Anbar AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O) 3+6 and Fe(H2O) 2+6 : implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Google Scholar 

  • Anbar AD, Rouxel O (2007) Metal stable isotopes in paleoceanography. Ann Rev Earth Planet Sci 35:717–746

    Google Scholar 

  • Andersen MB, Vance D, Archer C, Anderson RF, Ellwood MJ, Allen CS (2011) The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater. Earth Planet Sci Lett 301:137–145

    Google Scholar 

  • Andre L, Cardinal D, Alleman LY, Moorbath S (2006) Silicon isotopes in 3.8 Ga west Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth Planet Sci Lett 245:162–173

    Google Scholar 

  • Antler G, Turchyn AV, Rennie V, Herut B, Sivan O (2013) Coupled sulphur and oxygen isotope insight into bacterial sulphate reduction in the natural environment. Geochim Cosmochim Acta 118:98–117

    Google Scholar 

  • Archer C, Vance D (2006) Coupled Fe and S isotope evidence for Archean microbial Fe(III) and sulphate reduction. Geology 34:153–156

    Google Scholar 

  • Archer C, Vance D (2008) The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci 1:597–600

    Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004a) Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304:87–90

    Google Scholar 

  • Arnold GL, Weyer S, Anbar AD (2004b) Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. Anal Chem 76:322–327

    Google Scholar 

  • Azmy K, Lavoie D, Wang Z, Brand U, Al-Aasm I, Jackson S, Girard I (2013) Magnesium-isotope and REE compositions of Lower Ordovician carbonates from eastern Laurentia: implications for the origin of dolomites and limestones. Chem Geol 356:64–75

    Google Scholar 

  • Bachinski DJ (1969) Bond strength and sulfur isotope fractionation in coexisting sulfides. Econ Geol 64:56–65

    Google Scholar 

  • Baker L, Franchi IA, Maynard J, Wright IP, Pillinger CT (2002) A technique for the determination of 18O/16O and 17O/16O isotopic ratios in water from small liquid and solid samples. Anal Chem 74:1665–1673

    Google Scholar 

  • Baker RG, Rehkämper M, Hinkley TK, Nielsen SG, Poutain JP (2009) Investigation of thallium fluxes from subaerial volcanism- implications for the present and past mass balance of thallium in the oceans. Geochim Cosmochim Acta 73:6340–6359

    Google Scholar 

  • Baker RG, Rehkämper M, Ihlenfeld C, Oates CJ, Coggon R (2010) Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, northern Chile. Geochim Cosmochim Acta 74:4405–4416

    Google Scholar 

  • Balci N, Bullen TD, Witte-Lien K, Shanks WC, Motelica M, Mandernack KW (2006) Iron isotope fractionation during microbially simulated Fe(II) oxidation and Fe(III) precipitation. Geochim Cosmochim Acta 70:622–639

    Google Scholar 

  • Balistrieri L, Borrok DM, Wanty RB, Ridley WI (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim Cosmochim Acta 72:311–328

    Google Scholar 

  • Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789

    Google Scholar 

  • Bao H (2015) Sulfate: a time capsule for bEarth’s O2, O3 and H2O. Chem Geol 395:108–118

    Google Scholar 

  • Bao H, Thiemens MH (2000) Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous δ18O and δ17O analysis. Anal Chem 72:4029–4032

    Google Scholar 

  • Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectr 19:3737–3742

    Google Scholar 

  • Barling J, Arnold GL, Anbar AD (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457

    Google Scholar 

  • Barnes JD, Paulick H, Sharp ZD, Bach W, Beaudoin G (2009) Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209). Lithos 110:83–94

    Google Scholar 

  • Barnes JD, Sharp ZD, Fischer TP (2006) Chlorine stable isotope systematics and geochemistry along the Central American and Izu-Bonin-Mariana volcanic arc. Eos Trans AGU 87(52), Fall Meet Suppl V52B-08

    Google Scholar 

  • Barth S (1998) Application of boron isotopes for tracing source of anthropogenic contamination in groundwater. Water Res 32:685–690

    Google Scholar 

  • Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402

    Google Scholar 

  • Basu A, Sanford RA, Johnson TM, Lundstrom CC, Löffler FE (2014) Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates. Geochim Cosmochim Acta 136:100–113

    Google Scholar 

  • Baumgartner LP, Rumble D (1988) Transport of stable isotopes. I. Development of a kinetic continuum theory for stable isotope transport. Contr Mineral Petrol 98:417–430

    Google Scholar 

  • Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionationbetween aqueous ferrous iron and goethite. Earth Planet Sci Lett 295:241–250

    Google Scholar 

  • Beard BL, Johnson CM (1999) High-precision iron isotope measurements of terrestrial and lunar materials. Geochim Cosmochim Acta 63:1653–1660

    Google Scholar 

  • Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient Earth and other planetary bodies. Rev Mineral Geoch 55:319–357

    Google Scholar 

  • Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C (1999) Iron isotope biosphere. Science 285:1889–1892

    Google Scholar 

  • Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117

    Google Scholar 

  • Beaudoin G, Taylor BE (1994) High precision and spatial resolution sulfur-isotope analysis using MILES laser microprobe. Geochim Cosmochim Acta 58:5055–5063

    Google Scholar 

  • Beaudoin G, Taylor BE, Rumble D, Thiemens M (1994) Variations in the sulfur isotope composition of troilite from the Canyon Diablo iron meteorite. Geochim Cosmochim Acta 58:4253–4255

    Google Scholar 

  • Bebout GE, Fogel ML (1992) Nitrogen isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim Cosmochim Acta 56:2839–2849

    Google Scholar 

  • Bebout GE, Idleman BD, Li L, Hilkert A (2007) Isotope-ratio-monitoring gas chromatography methods for high-precision isotopic analysis of nanomole quantities of silicate nitrogen. Chem Geol 240:1–10

    Google Scholar 

  • Beck WC, Grossman EL, Morse JW (2005) Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40 °C. Geochim Cosmochim Acta 69:3493–3503

    Google Scholar 

  • Benson BB, Parker PDM (1961) Nitrogen/argon and nitrogen isotope ratios in aerobic sea water. Deep Sea Res 7:237–253

    Google Scholar 

  • Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83:397–410

    Google Scholar 

  • Bergquist BA, Blum JD (2009) The odds and evens of mercury isotopes: applications of mass-dependent and mass-independent isotope fractionation. Elements 5:353–357

    Google Scholar 

  • Bergquist BA, Boyle EA (2006) Iron isotopes in the Amazon River system:weathering and transport signatures. Earth Planet Sci Lett 248:54–68

    Google Scholar 

  • Bermin J, Vance D, Archer C, Statham PJ (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297

    Google Scholar 

  • Berna EC, Johnson TM, Makdisi RS, Basu A (2010) Cr stable isotopes as indicators of Cr (VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ Sci Technol 44:1043–1048

    Google Scholar 

  • Bickle MJ, Baker J (1990) Migration of reaction and isotopic fronts in infiltration zones: assessments of fluid flux in metamorphic terrains. Earth Planet Sci Lett 98:1–13

    Google Scholar 

  • Bidigare RR et al (1997) Consistent fractionation of 13C in nature and in the laboratory: growth-rate effects in some haptophyte algae. Global Biogeochem Cycles 11:279–292

    Google Scholar 

  • Bigeleisen J (1965) Chemistry of isotopes. Science 147:463–471

    Google Scholar 

  • Bigeleisen J, Perlman ML, Prosser HC (1952) Conversion of hydrogenic materials for isotopic analysis. Anal Chem 24:1356

    Google Scholar 

  • Biswas A, Blum JD, Bergquist BA, Keeler GJ, Xie Z (2008) Natural mercury isotope variation in coal deposits and organic soils. Environ Sci Technol 42:8303–8309

    Google Scholar 

  • Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WD (2008) Magnesium isotope fractionation during plant growth. Environ Sci Tech 42:7831–7836

    Google Scholar 

  • Black JR, Kavner A, Schauble EA (2011) Calculation of equilibrium stable isotope partition function ratios for aqueous zinc complexes and metallic zinc. Geochim Copsmochim Acta 75:769–783

    Google Scholar 

  • Blanchard M, Poitrasson F, Meheut M, Lazzari M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578

    Google Scholar 

  • Blattner P, Lassey KR (1989) Stable isotope exchange fronts, Damköhler numbers and fluid to rock ratios. Chem Geol 78:381–392

    Google Scholar 

  • Blum JD, Sherman LS, Johnson MW (2014) Mercury isotopes in earth and environmental sciences. Ann Rev Earth Planet Sci 42:249–269

    Google Scholar 

  • Blum JD (2011) Applications of stable mercury isotopes to biogeochemistry. In: Baskaran M (Ed) Handbook of environmental isotope geochemistry. Springer, New York, pp 229–246

    Google Scholar 

  • Bolliger C, Schroth MH, Bernasconi SM, Kleikemper J, Zeyer J (2001) Sulfur isotope fractionation during microbial reduction by toluene-degrading bacteria. Geochim Cosmochim Acta 65:3289–3299

    Google Scholar 

  • Bonifacie M, Jendrzejewski N, Agrinier P, Humler E, Coleman M, Javoy M (2008) The chlorine isotope composition of the Earth’s mantle. Science 319:1518–1520

    Google Scholar 

  • Bonnand P, James RH, Parkinson IJ, Connelly DP, Fairchild IJ (2013) The chromium isotopic composition of seawater and marine carbonates. Earth Planet Sci Lett 382:10–20

    Google Scholar 

  • Bopp CJ, Lundstrom CC, Johnson TM, Glessner JJ (2009) Variations in 238U/235U in uranium ore deposits: isotopic signatures of the U reduction process? Geology 37:611–614

    Google Scholar 

  • Borrok DM, Nimick DA, Wanty RB, Ridley WI (2008) Isotope variations of dissolved copper and zinc in stream water affected by historical mining. Geochim Cosmochim Acta 72:329–344

    Google Scholar 

  • Borrok DM, Wanty RB, Ridley WI, Lamothe PJ, Kimball BA, Verplanck PL, Runkel RL (2009) Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed. Appl Geochem 24:1270–1277

    Google Scholar 

  • Borthwick J, Harmon RS (1982) A note regarding ClF3 as an alternative to Br F5 for oxygen isotope analysis. Geochim Cosmochim Acta 46:1665–1668

    Google Scholar 

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water-vapor. Geochim Cosmochim Acta 33:49–64

    Google Scholar 

  • Boudreau BP, Westrich JT (1984) The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochim Cosmochim Acta 48:2503–2516

    Google Scholar 

  • Boulou-Bi EB, Poszwa A, Leyval C, Vigier N (2010) Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim Cosmochim Acta 74:2523–2537

    Google Scholar 

  • Bourdon B, Tipper ET, Fitoussi C, Stracke A (2010) Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta 74:5069–5083

    Google Scholar 

  • Bowman JR, Willett SD, Cook SJ (1994) Oxygen isotope transport and exchange during fluid flow. Am J Sci 294:1–55

    Google Scholar 

  • Brand W, Coplen TB et al (2009a) Comprehensive inter-laboratory calibration of reference materials for δ18O versus VSMOW using various on-line high-temperature conversion techniques. Rapid Comm Mass Spectrom 23:999–1019

    Google Scholar 

  • Brand W, Geilmann H, Crosson ER, Rella CW (2009b) Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry: a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures. Rapid Comm Mass Spectrom 23:1879–1884

    Google Scholar 

  • Brand W (2002) Mass spectrometer hardware for analyzing stable isotope ratios. In: de Groot P (ed) Handbook of stable isotope analytical techniques. Elsevier, New York

    Google Scholar 

  • Bremner JM, Keeney DR (1966) Determination and isotope ratio analysis of different forms of nitrogen in soils, III. Soil Sci Soc Am Proc 30:577–582

    Google Scholar 

  • Brennecka GA, Wasylenki LE, Bargar JR, Weyer S, Anbar AD (2011) Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environ Sci Technol 45:1370–1375

    Google Scholar 

  • Brennikmeijer CAM, Kraft MP, Mook WG (1983) Oxygen isotope fractionation between CO2 and H2O. Isotope Geosci 1:181–190

    Google Scholar 

  • Brooker R, Blundy J, James R (2004) Trace element and Li isotope systematics in zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204

    Google Scholar 

  • Brunner B, Bernasconi SM, Kleikemper J, Schroth MH (2005) A model of oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction. Geochim Cosmochim Acta 69:4773–4785

    Google Scholar 

  • Brunner B, Contreras S and 9 others (2013) Nitrogen isotope effects induced by anammox bacteria. PNAS 1310488110

    Google Scholar 

  • Brüchert V, Knoblauch C, Jörgensen BB (2001) Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments. Geochim Cosmochim Acta 65:763–776

    Google Scholar 

  • Bucharenko AI (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A105:9995–10011

    Google Scholar 

  • Buhl D, Immenhauser A, Smeulders G, Kabiri L, Richter DK (2007) Time series δ26Mg analysis in speleothem calcite: kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research. Chem Geol 244:715–729

    Google Scholar 

  • Burgoyne TW, Hayes JM (1998) Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Anal Chem 70:5136–5141

    Google Scholar 

  • Burton KW, Vigier N (2011) Lithium isotopes as tracers in marine and terrestrial environments. In: Baskaran M (ed) Handbook environment isotope geochemistry. Springer, New York, pp 41–59

    Google Scholar 

  • Busigny V, Bebout GE (2013) Nitrogen in the silicate earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9:353–358

    Google Scholar 

  • Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236:430–442

    Google Scholar 

  • Böhlke JK, Sturchio NC, Gu B, Horita J, Brown GM, Jackson WA, Batista J, Hatzinger PB (2005) Perchlorate isotope forensics. Anal Chem 77:7838–7842

    Google Scholar 

  • Böhm F, Eisenhauer A, Tang J, Dietzel M, Krabbenhöft A, Kisakürek B, Horn C (2012) Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim Cosmochim Acta 93:300–314

    Google Scholar 

  • Böttcher ME (1996) 18O/16O and 13C/12C fractionation during the reaction of carbonates with phosphoric acid: effects of cationic substitution and reaction temperature. Isotopes Environ Health Stud 32:299–305

    Google Scholar 

  • Böttcher ME, Brumsack HJ, Lange GJ (1998) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters from the eastern Mediterranean. Proc Ocean Drill Progr, Scientific Res 160:365–373

    Google Scholar 

  • Böttcher ME, Thamdrup B, Vennemann TW (2001) Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochim Cosmochim Acta 65:1601–1609

    Google Scholar 

  • Böttcher M, Geprägs P, Neubert N, von Allmen K, Pretet C, Samankassou E, Nägler Tf (2012) Barium isotope fractionation during experimental formation of the double carbonate BaMn(CO3)2 at ambient temperature. Isotopes in environmental and health studies. doi:10.1080/10256016.2012.673489

  • Cameron V, Vance D, Archer C, House CH (2009) A biomarker based on the stable isotopes of nickel. PNAS 106:10944–10948

    Google Scholar 

  • Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and oceans. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Canfield DE (2001a) Biogeochemistry of sulfur isotopes. Rev Mineral 43:607–636

    Google Scholar 

  • Canfield DE (2001b) Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta 65:1117–1124

    Google Scholar 

  • Canfield DE, Farquhar J, Zerkle AL (2010) High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology 38:415–418

    Google Scholar 

  • Canfield DE, Olsen CA, Cox RP (2006) Temperature and ist control of isotope fractionation by a sulfate reducing bacterium. Geochim Cosmochim Acta 70:548–561

    Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382:127–132

    Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S depleted sulfide during bacterial disproportion to elemental sulfur. Science 266:1973–1975

    Google Scholar 

  • Cardinal D, Gaillardet J, Hughes HJ, Opfergelt S, Andre L (2010) Contrasting silicon isotope signetures in rivers from the Congo Basin and the specific behaviour of organic-rich waters. Geophys Res Lett 37:L12403

    Google Scholar 

  • Carignan J, Estrade N, Sonke J, Donard O (2009) Odd isotope deficit in atmospheric Hg measured in lichens. Environ Sci Technol 43:5660–5664

    Google Scholar 

  • Carignan J, Wen H (2007) Scaling NIST SRM 3149 for Se isotope analysis and isotopic variations of natural samples. Chem Geol 242:347–350

    Google Scholar 

  • Caro G, Papanastassiou DA, Wasserburg GJ (2010) 40K/40Ca isotopic constraints on the oceanic calcium cycle. Earth Planet Sci Lett 296:124–132

    Google Scholar 

  • Cartigny P (2005) Stable isotopes and the origin of diamond. Elements 1:79–84

    Google Scholar 

  • Cartigny P, Boyd SR, Harris JW, Javoy M (1997) Nitrogen isotopes in peridotitic diamonds from Fuxian, China: the mantle signature. Terra Nova 9:175–179

    Google Scholar 

  • Cartigny P, Marty B (2013) Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9:359–366

    Google Scholar 

  • Cartwright I, Valley JW (1991) Steep oxygen isotope gradients at marble-metagranite contacts in the NW Adirondacks Mountains, N.Y. Earth Planet Sci Lett 107:148–163

    Google Scholar 

  • Casciotti KL (2009) Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim Cosmochim Acta 73:2061–2076

    Google Scholar 

  • Casciotti KL, Sigman DM, Galanter Hastings M, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912

    Google Scholar 

  • Catanzaro EJ, Murphy TJ (1966) Magnesium isotope ratios in natural samples. J Geophys Res 71:1271

    Google Scholar 

  • Cenki-Tok B, Chabaux F, Lemarchand D, Schmitt A, Pierret M, Viville D, Bagard M, Stille P (2009) The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case). Geochim Cosmochim Acta 73:2215–2228

    Google Scholar 

  • Cerling TE, Sharp ZD (1996) Stable carbon and oxygen isotope analyses of fossil tooth enamel using laser ablation. Palaeo Palaeo Palaeoecol 126:173–186

    Google Scholar 

  • Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleocogical studies. Oecologia 120:347–363

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon fractionation factors applicable to geologic systems. Rev Mineral Geochem 43:1–81

    Google Scholar 

  • Chacko T, Riciputi LR, Cole DR, Horita J (1999) A new technique for determining equilibrium hydrogen isotope fractionation factors using the ion microprobe: application to the epidote-water system. Geochim Cosmochim Acta 63:1–10

    Google Scholar 

  • Chakrabarti B, Jacobsen S (2010) Silicon isotopes in the inner solar system: implications for core formation, solar nebula processes and partial melting. Geochim Cosmochim Acta 74:6921–6933

    Google Scholar 

  • Chan LH, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Google Scholar 

  • Chan LH, Edmond JM, Thompson G (1993) A lithium isotope study of hot-springs and metabasalts from midocean ridge hydrothermal systems. J Geophys Res 98:9653–9659

    Google Scholar 

  • Charlier BL, Nowell GM, Parkinson IJ, Kelley SP, Pearson DG, Burton KW (2012) High temperature strontium stable isotope behaviour in the early solar system and planetary bodies. Earth Planet Sci Lett 329–330:31–40

    Google Scholar 

  • Chaussidon M, Albarede F (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108:229–241

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1987) Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330:242–244

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1989) Sulphur isotope variations in the mantle from ion microprobe analysis of microsulphide inclusions. Earth Planet Sci Lett 92:144–156

    Google Scholar 

  • Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386

    Google Scholar 

  • Chen JB, Gaillardet J, Louvat P (2008) Zinc isotopes in the Seine river waters, France: a probe of anthropogenic contamination. Environ Sci Technol 42:6494–6501

    Google Scholar 

  • Chen JB, Hintelmann H, Feng XB, Dimcock B (2012) Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim Cosmochim Acta 90:33–46

    Google Scholar 

  • Chen H, Nguyen BM, Moynier F (2013b) Zinc isotopic composition of iron meteorites: absence of isotope anomalies and origin of the volatile element depletion. Meteor Panet Sci 48:2441–2450

    Google Scholar 

  • Chen H, Savage PS, Teng FZ, Helz RT, Moynier F (2013a) Zinc isotopic fractionation during magmatic differentiation and the isotopic composition of bulk Earth. Earth Planet Sci Lett 369–370:34–42

    Google Scholar 

  • Chen H, Savage PS, Valdes M, Puchtel IS, Day JM, Moreira M, Jackson M, Moynier F (2014) Heterogeneity of calcium isotopes in Earth’s mantle. Goldschmidt 2014 Abstracts, p 400

    Google Scholar 

  • Chetelat B, Gaillardet J, Freydier F (2009) Use of B isotopes as a tracer of anthropogenic emissions in the atmosphere of Paris, France. Appl Geochem 24:810–820

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Google Scholar 

  • Chmeleff J, Horn I, Steinhöfel G, von Blanckenburg F (2008) In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS. Chem Geol 249:155–160

    Google Scholar 

  • Claire MW, Kasting JF, Domagal-Goldman SD, Stueken EE, Buick R, Meadows VS (2014) Modeling the signature of sulphur mass-independent fractionation produced in the Archean atmosphere. Geochim Cosmochim Acta 141:365–380

    Google Scholar 

  • Clayton RN, Anderson P, Gale NH, Gills G, Whitehouse MJ (2002) Precise determination of the isotopic composition of Sn using MC-ICP-MS. J Anal At Spectrom 17:1248–1256

    Google Scholar 

  • Clayton RN, Epstein S (1958) The relationship between 18O/16O ratios in coexisting quartz, carbonate and iron oxides from various geological deposits. J Geol 66:352–373

    Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27:43–52

    Google Scholar 

  • Cloquet C, Carignan J, Lehmann MF, Vanhaecke F (2008) Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences: a review. Anal Bioanal Chem 390:451–463

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G, Sterckeman T, Perdrix E (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40:2525–2530

    Google Scholar 

  • Cobert F, Schmitt AD, Bourgeade P, Labolle F, Badot PM, Chabaux F, Stille P (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482

    Google Scholar 

  • Cole DR (2000) Isotopic exchange in mineral-fluid systems IV: the crystal chemical controls on oxygen isotope exchange rates in carbonate-H2O and layer silicate-H2O systems. Geochim Cosmochim Acta 64:921–933

    Google Scholar 

  • Coleman ML, Sheppard TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Google Scholar 

  • Cook DL, Wadhwa M, Clayton RN, Dauphas N, Janney PE, Davis AM (2007) Mass-dependent fractionation of nickel isotopes in meteoritic metal. Meteorit Planet Sci 42:2067–2077

    Google Scholar 

  • Coplen TB et al (2002) Isotope abundance variations of selected elements. Pure Appl Chem 74:1987–2017

    Google Scholar 

  • Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane. I. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310

    Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238

    Google Scholar 

  • Craddock PR, Dauphas N (2010) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35:101–123

    Google Scholar 

  • Craddock PR, Rouxel OJ, Ball LA, Bach W (2008) Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem Geol 253:102–113

    Google Scholar 

  • Craig H (1961a) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Craig H (1961b) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833–1834

    Google Scholar 

  • Criss RE, Gregory RT, Taylor HP (1987) Kinetic theory of oxygen isotopic exchange between minerals and water. Geochim Cosmochim Acta 51:1099–1108

    Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, Oxford

    Google Scholar 

  • Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1227–1242

    Google Scholar 

  • Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Fe(II)-Fe(III) electron/atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Tech 39:6698–6704

    Google Scholar 

  • Crosby HA, Roden EE, Johnson CE, Beard BL (2007) The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology 5:169–189

    Google Scholar 

  • Crowe DE, Valley JW, Baker KL (1990) Micro-analysis of sulfur isotope ratios and zonation by laser microprobe. Geochim Cosmochim Acta 54:2075–2092

    Google Scholar 

  • Crowley SF (2010) Effect of temperature on the oxygen isotope composition of carbon dioxide (δ 18CO2 O) prepared from carbonate minerals by reaction with polyphosphoric acid: an example of the rhombohedral CaCO3-MgCO3 group minerals. Geochim Cosmochim Acta 74:6406–6421

    Google Scholar 

  • Crowson RA, Showers WJ, Wright EK, Hoering TC (1991) Preparation of phosphate samples for oxygen isotope analysis. Anal Chem 63:2397–2400

    Google Scholar 

  • Czamanske GK, Rye RO (1974) Experimentally determined sulfur isotope fractionations between sphalerite and galena in the temperature range 600 °C to 275 °C. Econ Geol 69:17–25

    Google Scholar 

  • Dahl TW, Anbar AD, Gordon GW, Rosing MT, Frei R, Canfield DE (2010a) The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta 74:144–163

    Google Scholar 

  • Dahl TW, Canfield DE, Rosing MT, Frei RE, Gordon GW, Knoll AH, Anbar AD (2011) Molybdenum evidence for expansive sulfidic water masses in ≈ 750 Ma oceans. Earth Planet Sci Lett 311:264–274

    Google Scholar 

  • Dahl TW, Hammarlund EU et al (2010b) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107:17911–17915

    Google Scholar 

  • Dauphas N, Craddock PR, Asimov PD, Bennett VC, Nutman A, Ohnenstetter D (2009a) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288:255–267

    Google Scholar 

  • Dauphas N, Pourmand A, Teng FZ (2009b) Routine isotopic analysis of iron by HR-MC-ICPMS: how precise and how accurate? Chem Geol 267:175–184

    Google Scholar 

  • Dauphas N, Roskosz M et al (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotope fractionation factors: application to goethite and jarosite. Geochim Cosmochim Acta 94:254–275

    Google Scholar 

  • Dauphas N, Rouxel O (2006) Mass spectrometry and natural variations in iron isotopes. Mass Spectrom Rev 25:515–550

    Google Scholar 

  • De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PD (2003) Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl Chem 75:683–2000

    Google Scholar 

  • De La Rocha C (2003) Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water. Geology 31:423–426

    Google Scholar 

  • De La Rocha CL, Brzezinski MA, De Niro MJ (1997) Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochim Cosmochim Acta 61:5051–5056

    Google Scholar 

  • De La Rocha CL, Brzezinski MA, De Niro MJ, Shemesh A (1998) Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395:680–683

    Google Scholar 

  • De La Rocha CL, De Paolo DJ (2000) Isotopic evidence for variations in the marine calcium cycle over the Cenozoic. Science 289:1176–1178

    Google Scholar 

  • De Souza GF, Reynolds B, Kiczka M, Bourdon B (2010) Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim Cosmochim Acta 74:2596–2614

    Google Scholar 

  • DeNiro MJ, Epstein S (1977) Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197:261–263

    Google Scholar 

  • DePaolo D (2004) Calcium isotope variationsproduced by biological, kinetic, radiogenic and nucleosynthetic processes. Rev Mineral Geochem 55:255–288

    Google Scholar 

  • DePaolo D (2011) Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solution. Geochim Cosmochim Acta 75:1039–1056

    Google Scholar 

  • Demarest MS, Brzezinski MA, Beucher CP (2009) Fractionation of silicon isotopes during biogenic silica dissolution. Geochim Cosmochim Acta 73:5572–5583

    Google Scholar 

  • Desaulniers DE, Kaufmann RS, Cherry JO, Bentley HW (1986) 37Cl-35Cl variations in a diffusion-controlled groundwater system. Geochim Cosmochim Acta 50:1757–1764

    Google Scholar 

  • Dideriksen K, Baker JA, Stipp SLS (2008) Equilibrium Fe isotope fractionaqtion between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth Planet Sci Lett 269:280–290

    Google Scholar 

  • Ding T, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50

    Google Scholar 

  • Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68:205–216

    Google Scholar 

  • Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and ist significance tot he biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395

    Google Scholar 

  • Ding T et al (1996) Silicon isotope geochemistry. Geological Publishing House, Beijing

    Google Scholar 

  • Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part !: Experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74:274–292

    Google Scholar 

  • Dos Santos Pinheiro GM, Poitraason F, Sondag F, Cochonneau G, Cruz Vieira L (2014) Contrasting iron isotopic compositions in river suspended particulate matter: the Negro and the Amazon annual river cycles. Earth Planet Sci Lett 394:168–178

    Google Scholar 

  • Dossing LN, Dideriksen K, Stipp SL, Frei R (2011) Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments. Chem Geol

    Google Scholar 

  • Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458

    Google Scholar 

  • Driesner T (1997) The effect of pressure on deuterium-hydrogen fractionation in high-temperature water. Science 277:791–794

    Google Scholar 

  • Driesner T, Seward TM (2000) Experimental and simulation study of salt effects and pressure/density effects on oxygen and hydrogen stable isotope liquid-vapor fractionation for 4–5 molal aqueous NaCl and KCl solutions to 400° C. Geochim Cosmochim Acta 64:1773–1784

    Google Scholar 

  • Dugan JP, Borthwick J, Harmon RS, Gagnier MA, Glahn JE, Kinsel EP, McLeod S, Viglino JA (1985) Guadinine hydrochloride method for determination of water oxygen isotope ratios and the oxygen-18 fractionation between carbon dioxide and water at 25 °C. Anal Chem 57:1734–1736

    Google Scholar 

  • Dziony W, Horn I, Lattard D, Koepke J, Steinhoefel G, Schuessler J, Holtz F (2014) In-situ Fe isotope ratio determination in Fe-Ti oxides and sulphides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific. Chem Geol 363:101–113

    Google Scholar 

  • Eastoe CJ, Gilbert JM, Kaufmann RS (1989) Preliminary evidence for fractionation of stable chlorine isotopes in ore-forming hydrothermal deposits. Geology 17:285–288

    Google Scholar 

  • Eastoe CJ, Guilbert JM (1992) Stable chlorine isotopes in hydrothermal processes. Geochim Cosmochim Acta 56:4247–4255

    Google Scholar 

  • Eastoe CJ, Long A, Knauth LP (1999) Stable chlorine isotopes in the Palo Duro basin, Texas: evidence for preservation of Permian evaporate brines. Geochim Cosmochim Acta 63:1375–1382

    Google Scholar 

  • Eastoe CJ, Long A, Land LS, Kyle JR (2001) Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution. Chem Geol 176:343–360

    Google Scholar 

  • Eastoe CJ, Peryt TM, Petrychenko OY, Geisler-Cussey D (2007) Stable chlorine isotopes in Phanerozoic evaporates. Appl Geochem 22:575–588

    Google Scholar 

  • Egan KE, Rickaby RE, Leng H, Hendry KE, Hemoso M, Sloane HJ, Bostock H, Halliday RN (2012) Diatom silicon isotopes as a proxy for silicic acid utilisation: a southern ocean core top calibration. Geochim Cosmochim Acta 96: 174–192

    Google Scholar 

  • Eggenkamp HGM, Coleman M (2000) Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem Geol 167:393–402

    Google Scholar 

  • Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporates. Geochim Cosmochim Acta 59:5169–5175

    Google Scholar 

  • Eggenkamp HGM (1994) δ37Cl: the geochemistry of chlorine isotopes. Thesis, University of Utrecht

    Google Scholar 

  • Eggenkamp HGM (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, New York

    Google Scholar 

  • Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chem Geol 209:259–269

    Google Scholar 

  • Eisenhauer A et al (2004) Proposal for an international agreement on Ca notation as result of the discussion from the workshops on stable isotope measurements in Davos (Goldschmidt 2002) and Nice (EUG 2003). Geostand Geoanal Res 28:149–151

    Google Scholar 

  • Eisenhauer A, Kisakürek B, Böhm F (2009) Marine calcification: an alkali earth metal isotope perspective. Elements 5:365–368

    Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Both RA, Walshe JL, Ohmoto H (1988) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. I. An example from the Rammelsberg ore body. Econ Geol 83:443–449

    Google Scholar 

  • Eldridge CS, Williams IS, Walshe JL (1993) Sulfur isotope variability in sediment hosted massive sulfide deposits as determined using the ion microprobe SHRIMP. II. A study of the H.Y.C. deposit at McArthur River, Northern Territory. Australia. Econ Geol. 88:1–26

    Google Scholar 

  • Elliott T, Jeffcoate AB, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2002) Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295:2060–2062

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ Sci Technol 38:3604–3607

    Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Google Scholar 

  • Engstrom E, Rodushkin I, Baxter DC, Ohlander B (2006) Chromatographic purification for the determination of dissolved silicon isotopic compositions in natural waters by high-resolution multicollector inductively coupled mass spectrometry. Anal Chem 78:250–257

    Google Scholar 

  • Estrade N, Carignan J, Sonke JE, Donard O (2009) Mercury isotope fractionation during liquid-vapor evaporation experiments. Geochim Cosmochim Acta 73:2693–2711

    Google Scholar 

  • Eugster O, Tera F, Wasserburg GJ (1969) Isotopic analyses of barium in meteorites and in terrestrial samples. J Geophys Res 74:3897–3908

    Google Scholar 

  • Fantle MS (2010) Evaluating the Ca isotope proxy. Am J Sci 310:194–210

    Google Scholar 

  • Fantle MS, de Paolo DJ (2005) Variations in the marine Ca cycle over the past 20 million years. Earth Planet Sci Lett 237:102–117

    Google Scholar 

  • Fantle MS, Tipper ET (2014) Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth Sci Rev 129:148–177

    Google Scholar 

  • Farkas J, Buhl D, Blenkinsop J, Veizer J (2007) Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ44/40 Ca of marine skeletal carbonates. Earth Planet Sci Lett 253:96–111

    Google Scholar 

  • Farkas J, Chrastny V, Novak M, Cadkova E, Pasava J, Chakrabarti R, Jacobsen S, Ackerman L, Bullen TD (2013) Chromium isotope variations (d53/52Cr) in mantle-derived sources and their weathering products: implications for environmental studies and the evolution of d53/52Cr in the Earth’s mantle over geologic time. Geochim Cosmochim Acta 123:74–92

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–759

    Google Scholar 

  • Farquhar J, Day JM, Hauri EH (2013) Anomaleous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotope interpretations for biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Google Scholar 

  • Farquhar J, Kim ST, Masterson A (2007) Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars. Earth Planet Sci Lett 264:1–8

    Google Scholar 

  • Farrell JW, Pedersen TF, Calvert SE, Nielsen B (1995) Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377:514–517

    Google Scholar 

  • Fehr MA, Rehkämper M, Halliday AN (2004) Application of MC-ICP-MS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulphides. Inter J Mass Spectr 232:83–94

    Google Scholar 

  • Feng C, Qin T, Huang S, Wu Z, Huang F (2014) First principles investigations of equilibrium calcium isotope fractionation between clinopyroxene and Ca-doped orthopyroxene. Geochim Cosmochim Acta 143:132–142

    Google Scholar 

  • Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14:49–60

    Google Scholar 

  • Fietzke J, Eisenhauer A et al (2004) Direct measurement of 44Ca/40Ca ratios nby MC-ICP-MS using the cool plasma technique. Chem Geol 206:11–20

    Google Scholar 

  • Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem Geophys Geosys 7(8). doi:10.1029/2006GC001243

  • Fogel ML, Cifuentes LA (1993) Isotope fractionation during primary production. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 73–98

    Google Scholar 

  • Fornadel AP, Spry GP, Jackson SE, Mathur RD, Chapman JB, Girard I (2014) Methods for the determination of stable Te isotopes of minerals in the system Au-Ag-Te by MC-ICP-MS. J Anal At Spectrom 29:623–637

    Google Scholar 

  • Foster GI, Pogge von Strandmann PA, Rae JW (2010) Boron and magnesium isotopic compositions of seawater. Geochem Geophys Geosys 11. doi:10.1029/2010GC003201

  • Freeman KH (2001) Isotopic biogeochemistry of marine organic carbon. Rev Mineral Geochem 43:579–605

    Google Scholar 

  • Frei R, Gaucher C, Dossing LN, Sial AN (2011) Chromium isotopes in carbonates—a tracer for climate change and for reconstructing the redox state of ancient seawater. Earth Planet Sci Lett 312:114–125

    Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Google Scholar 

  • Frei R, Poiret D, Frei KM (2014) Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective. Chem Geol 381:110–124

    Google Scholar 

  • Frei R, Polat A (2013) Chromium isotope fractionation during oxidative weathering—implications from the study of a paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada. Precam Res 224:434–453

    Google Scholar 

  • Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103

    Google Scholar 

  • Friedrich AJ, Beard BL, Scherer MM, Johnson CM (2014) Determination of the Fe(II)aq-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium. Earth Planet Sci Lett 391:77–86

    Google Scholar 

  • Fritz P, Basharmel GM, Drimmie RJ, Ibsen J, Qureshi RM (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem Geol 79:99–105

    Google Scholar 

  • Fry B, Ruf W, Gest H, Hayes JM (1988) Sulphur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chem Geol 73:205–210

    Google Scholar 

  • Fujii T, Moynier F, Dauphas N, Abe M (2011b) Theoretical and experimental investigation of nickel isotope fractionation in species relevant to modern and ancient oceans. Geochim Cosmochim Acta 75:469–482

    Google Scholar 

  • Fujii T, Moynier F, Pons ML, Albarede F (2011a) The origin of Zn isotope fractionation in sulfides. Geochim Cosmochim Acta 75:7632–7643

    Google Scholar 

  • Gagnevin D, Boyce AJ, Barrie CD, Menuge JF, Blakeman RJ (2012) Zn, Fe, and S isotope fractionation in a large hydrothermal system. Geochim Cosmochim Acta 88:183–198

    Google Scholar 

  • Galimov EM (2006) Isotope organic geochemistry. Org Geochem 37:1200–1262

    Google Scholar 

  • Galimov EM (1985a) The biological fractionation of isotopes. Academic Press Inc, Orlando

    Google Scholar 

  • Gall L, Williams HM, Siebert C, Halliday AN, Herrington RJ, Hein JR (2013) Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects. Earth Planet Sci Lett

    Google Scholar 

  • Galy A et al (2003) Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectr 18:1352–1356

    Google Scholar 

  • Galy A, Bar-Matthews M, Halicz L, O’Nions RK (2002) Mg isotopic composition of carbonate: insight from speleothem formation. Earth Planet Sci Lett 201:105–115

    Google Scholar 

  • Galy A, Belshaw NS, Halicz L, O’Nions RK (2001) High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry. Inter J Mass Spectr 208:89–98

    Google Scholar 

  • Ganeshram RS, Pedersen TF, Calvert SE, McNeill GW, Fontugue MR (2000) Glacial-interglacial variability in denitrification in the world’s oceans: causes and consequences. Paleoceanography 15:361–376

    Google Scholar 

  • Gao Y, Casey JF (2011) Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2. Geostand Geoanal Res 36:75–81

    Google Scholar 

  • Gao Y, Vils F et al (2012) Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochem Geophys Geosystems 13. doi:10.1029/2012GC004207

  • Garlick GD (1966) Oxygen isotope fractionation in igneous rocks. Earth Planet Sci Lett 1:361–368

    Google Scholar 

  • Gault-Ringold M, Adu T, Stirling C, Frew RD, Hunter KA (2012) Anomalous biogeochemical behaviour of cadmium in subantarctic surface waters: mechanistic constraints from cadmium isotopes. Earth Planet Sci Lett 341–344:94–103

    Google Scholar 

  • Gehre M, Hoefling R, Kowski P, Strauch G (1996) Sample preparation device for quantitative hydrogen isotope analysis using chromium metal. Anal Chem 68:4414–4417

    Google Scholar 

  • Gehrke GE, Blum JD, Meyers PA (2009) The geochemical behaviour and isotope composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim Cosmochim Acta 73:1651–1665

    Google Scholar 

  • Gelabert A, Pokrovsky OS, Viers J, Schott J, Boudou A, Feurtet-Mazel A (2006) Interaction between zinc and marine diatom species: surface complexation and Zn isotope fractionation. Geochim Cosmochim Acta 70:839–857

    Google Scholar 

  • Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106

    Google Scholar 

  • Georg RB, Reynolds BC, Frank M, Halliday AN (2006) Mechanisms controlling the silicon isotopic compositions of river water. Earth Planet Sci Lett 249:290–306

    Google Scholar 

  • Georg RB, Zhu C, Reynolds BC, Halliday AN (2009) Stable silicon isotopes of groundwater, feldspars and clay coating in the Navajo sandstone aquifer, Black Mesa, Arizona, USA. Geochim Cosmochim Acta 73:2229–2241

    Google Scholar 

  • Geske A, Goldstein RH, Mavromatis V, Richter DK, Buhl D, Kluge T, John CM, Immenhauser A (2015) The magnesium isotope (δ26Mg) signature of dolomites. Geochim Cosmochim Acta 149:131–151

    Google Scholar 

  • Ghosh S, Schauble EA, Lacrampe Coulome G, Blum JD, Bergquist BA (2013) Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiment. Chem Geol 366:5–12

    Google Scholar 

  • Giesemann A, Jäger HA, Norman AL, Krouse HR, Brand WA (1994) On-line sulphur isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal Chem 66:2816–2819

    Google Scholar 

  • Giletti BJ (1985) The nature of oxygen transport within minerals in the presence of hydrothermal water and the role of diffusion. Chem Geol 53:197–206

    Google Scholar 

  • Godfrey JD (1962) The deuterium content of hydrous minerals from the East Central Sierra Nevada and Yosemite National Park. Geochim Cosmochim Acta 26:1215–1245

    Google Scholar 

  • Goldhaber MB, Kaplan IR (1974) The sedimentary sulfur cycle. In: Goldberg EB (ed) The sea, vol IV. Wiley and Sons, New York

    Google Scholar 

  • Gordon GW, Lyons TW, Arnold GL, Roe J, Sageman BB, Anbar AD (2009) When do black shales tell molybdenum isotope tales? Geology 37:535–538

    Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Graham CM, Sheppard SMF, Heaton THE (1980) Experimental hydrogen isotope studies. I. Systematics of hydrogen isotope fractionation in the systems epidote-H2O, zoisite-H2O and AlO(OH)-H2O. Geochim Cosmochim Acta 44:353–364

    Google Scholar 

  • Greber ND, Hofmann BD, Voegelin AR, Villa IM, Nägler TF (2011) Mo isotope compositions in Mo-rich high- und low-T hydrothermal systems from the Swiss Alps. Geochim Cosmochim Acta 75:6600–6609

    Google Scholar 

  • Greber ND, Pettke T, Nägler TF (2014) Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190–191:104–110

    Google Scholar 

  • Gregory RT, Criss RE, Taylor HP (1989) Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chem Geol 75:1–42

    Google Scholar 

  • Griffith EM, Paytan A, Eisenhauer A, Bullen TD, Thomas E (2011) Seawater calcium isotope ratios across the Eocene-Oligocene transition. Geology 39:683–686

    Google Scholar 

  • Griffith EM, Paytan A, Kozdon R, Eisenhauer A, Ravelo AC (2008a) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136

    Google Scholar 

  • Griffith EM, Payton A, Caldeira K, Bullen TD, Thomas E (2008c) A dynamic marine calcium cycle during the past 28 million years. Science 322:1671–1674

    Google Scholar 

  • Griffith EM, Schauble EA, Bullen TD, Paytan A (2008b) Characterization of calcium isotopes in natural and synthetic barite. Geochim Cosmochim Acta 72:5641–5658

    Google Scholar 

  • Grossman EL, Ku T-L (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59–74

    Google Scholar 

  • Gueguen B, Rouxel O, Ponzevera E, Bekker A, Fouquet Y (2013) Nickel isotope variations in terrestrial silicate rocks and geological reference materials measured by MC-ICP-MS. Geostand Geoanal Res 37:297–317

    Google Scholar 

  • Guelke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci Technol 41:1896–1901

    Google Scholar 

  • Guelke M, von Blanckenburg F, Schoenberg R, Staubwasser M, Stuetzel H (2010) Determining the stable Fe isotope signature of plant-available iron in soils. Chem Geol 277:269–280

    Google Scholar 

  • Guelke-Stelling M, von Blanckenburg F (2012) Fe isotope fractionation caused by translocation of iron during growth of bean and oat as models of strategy I and II plants. Plant Soil 352:217–231

    Google Scholar 

  • Guerrot C, Millot R, Robert M, Negrel P (2011) Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune). Geostand Geoanal Res 35:275–284

    Google Scholar 

  • Guilbaud R, Butler IB, Ellam RM (2011) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332:1548–1551

    Google Scholar 

  • Gussone N et al (2003) Model for kinetic effects on calcium isotope fractionations (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta 67:1375–1382

    Google Scholar 

  • Gussone N et al (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494

    Google Scholar 

  • Habicht KS, Canfield DE (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim Cosmochim Acta 61:5351–5361

    Google Scholar 

  • Habicht KS, Canfield DE (2001) Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29:555–558

    Google Scholar 

  • Haendel D, Mühle K, Nitzsche HIM, Stiehl G, Wand U (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim Cosmochim Acta 50:749–758

    Google Scholar 

  • Halevy I, Johnston DT, Schrag DP (2010) Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329:204–207

    Google Scholar 

  • Halicz L, Galy A, Belshaw N et al (1999) High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). J Anal At Spectr 14:1835–1838

    Google Scholar 

  • Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008b) Strontium stable isotopes fractionate in the soil environment? Earth Planet Sci Lett 272:405–411

    Google Scholar 

  • Halicz L, Yang L, Teplyakov N, Burg A, Sturgeon R, Kolodny Y (2008a) High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS. J Anal At Spectrom 23:1622–1627

    Google Scholar 

  • Han R, Qin L, Brown ST, Christensen JN, Beller HR (2012) Differential isotopic fractionation during Cr(VI) reduction by an aquifer-derived bacterium under aerobic versus denitrifying conditions. Appl Environ Microbiol 78:2462–2464

    Google Scholar 

  • Handler MR, Baker JA, Schiller M, Bennett VC, Yaxley GM (2009) Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet Sci Lett 282:306–313

    Google Scholar 

  • Hannah JL, Stein HJ, Wieser ME, de Laeter JR, Varner MD (2007) Molybdenum isotope variations in molybdenite: vapor transport and Rayleigh fractionation of Mo. Geology 35:703–706

    Google Scholar 

  • Harouaka K, Eisenhauer A, Fantle MS (2014) Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation. Geochim Cosmochim Acta 129:157–176

    Google Scholar 

  • Harrison AG, Thode HG (1957a) Kinetic isotope effect in chemical reduction of sulphate. Faraday Soc Trans 53:1648–1651

    Google Scholar 

  • Harrison AG, Thode HG (1957b) Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Faraday Soc Trans 54:84–92

    Google Scholar 

  • Hastings MG, Jarvis JC, Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. Science 324:1238

    Google Scholar 

  • Hastings MG, Casciotti KL, Elliott EM (2013) Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts. Elements 9: 339–34

    Google Scholar 

  • Haustein M, Gillis C, Pernicka E (2010) Tin isotopy – a new method for solving old questions. Archaeometry 52:816–832

    Google Scholar 

  • Hayes JM (1993) Factors controlling 13C contents of sedimentary organic compounds: principle and evidence. Mar Geol 113:111–125

    Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125

    Google Scholar 

  • Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43:225–277

    Google Scholar 

  • He Y, Ke S, Teng FZ, Wang T, Wu H, Lu Y, Li S (2015) High precision iron isotope analysis of geological standards by high resolution MC-ICPMS. Geostand Geoanal Res (in press)

    Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol 59:87–102

    Google Scholar 

  • Heck PR, Huberty JM, Kita NT, Ushikubo T, Kozdon R, Valley JW (2011) SIMS analysis of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochim Cosmochim Acta 75:5879–5891

    Google Scholar 

  • Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72:4379–4396

    Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition in modern marine carbonates. Geochim Cosmochim Acta 56:537–543

    Google Scholar 

  • Hendry KR, Andersen MB (2013) The zinc isotopic composition of siliceous marine sponges: investigating nature’s sediment traps. Chem Geol 354:33–41

    Google Scholar 

  • Hendry KR, Georg RB, Rickaby R, Robinson LR, Halliday AN (2010) Deep ocean nutrients during the last glacial maximum deduced from sponge silicon isotopic compositions. Earth Planet Sci Lett 292:290–300

    Google Scholar 

  • Herbel MJ, Johnson TM, Oremland RS, Bullen TD (2000) Fractionation of selenium isotopes during bacterial respiratory reduction of selenium oxyanions. Geochim Cosmochim Acta 64:3701–3710

    Google Scholar 

  • Herrmann AD, Kendall B, Algeo TJ, Gordon GW, Wasylenki LE, Anbar AD (2012) Anomalous molybdenum isotope trends in Upper Pennsylvanian euxinic facies: significance for the use of δ98Mo as a global marine redox proxys. Chem Geol 324–325:87–98

    Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Mineral 87:769–774

    Google Scholar 

  • Hesse R, Egeberg PK, Frape SK (2006) Chlorine stable isotope ratios as tracer for pore-water advection rates in a submarine gas-hydrate field: implication for hydrate concentration. Geofluids 6:1–7

    Google Scholar 

  • Hettmann K, Marks MA, Kreissig K, Zack T, Wenzel T. Rehkämper M, Jacob DE, Markl G (2014) The geochemistry of Tl and its isotopes during magmatic and hydrothermal processes: the peralkaline Ilimaussaq complex. southwest Greenland. Chem Geol

    Google Scholar 

  • Heuser A, Eisenhauer A (2008) The calcium isotope composition (d44/40Ca) of NIST SRM 915a and NIST SRM 1486. Geostand Newslett J Geostand Geoanal 32:311–315

    Google Scholar 

  • Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335:1610–1614

    Google Scholar 

  • Higgins JA, Schrag DP (2010) Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta 74:5039–5053

    Google Scholar 

  • Hill P, Schauble E (2008) Modeling the effects of bond environment on equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 72:1939–1958

    Google Scholar 

  • Hill P, Schauble E, Shahar A, Tonui E, Young ED (2009) Experimental studies of equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 73:2366–2381

    Google Scholar 

  • Hill P, Schauble E, Young ED (2010) Effects of changing solution chemistry on Fe3+/Fe2+ isotope fractionation in aqueous Fe-Cl solution. Geochim Cosmochim Acta 74:6669–6705

    Google Scholar 

  • Hin RC, Schmidt MW, Bourdon B (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1GPA and 1250-1300 °C and its cosmochemical consequences. Geochim Cosmochim Acta 93:164–181

    Google Scholar 

  • Hindshaw RS, Reynolds BC, Wiederhold JG, Kiczka M, Kretzschmar R, Bourdon B (2013) Calcium isotope fractionation in alpine plants. Biogeochemistry 112:373–388

    Google Scholar 

  • Hindshaw RS, Reynolds BC, Wiederhold JG, Kretzschmar R, Bourdon B (2011) Calcium isotopes in a proglacial weathering environment: Damma glacier, Switzerland. Geochim Cosmochim Acta 75:106–118

    Google Scholar 

  • Hinojosa JL, Brown ST, Chen J, DePaolo DJ, Paytan A, Shen SZ, Payne J (2012) Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology

    Google Scholar 

  • Hippler D, Buhl D, Witbaard R, Richter DK, Immenhauser A (2009) Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates. Geochim Cosmochim Acta 73:6134–6146

    Google Scholar 

  • Hippler D, Eisenhauer A, Nägler TF (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka. Geochim Cosmochim Acta 70:90–100

    Google Scholar 

  • Hitzfeld KL, Gehre M, Richnow HH (2011) A novel online approach to the determination of isotope ratios for organically bound chlorine, bromine and sulphur. Rapid Commun Mass Spectr 25:3114–3122

    Google Scholar 

  • Hoering T, Parker PL (1961) The geochemistry of the stable isotopes of chlorine. Geochim Cosmochim Acta 23:186–199

    Google Scholar 

  • Hofmann A, Bekker A, Dirks P, Gueguen B, Rumble D, Rouxel O (2014) Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron and nickel isotope data. Miner Deposita 49:75–100

    Google Scholar 

  • Holmden C (2009) Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston basin: Implications for subsurface dolomitization and local Ca cycling. Chem Geol 268:180–188

    Google Scholar 

  • Holmden C, Belanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Acta 74:995–1015

    Google Scholar 

  • Holmstrand H, Unger M, Carrizo D, Andersson P, Gustafsson Ö (2010) Compound specific bromine isotope analysis of brominated diphenyl ethers using GC-ICP-MC-MS. Rapid Commun Mass Spectr 24:2135–2142

    Google Scholar 

  • Homoky WB, Severmann S, Mills RA, Statham PJ, Fones GR (2011) Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments. Geology 37:751–754

    Google Scholar 

  • Horita J (1988) Hydrogen isotope analysis of natural waters using an H2-water equilibration method: a special implication to brines. Chem Geol 72:89–94

    Google Scholar 

  • Horita J, Driesner T, Cole DR (1999) Pressure effect on hydrogen isotope fractionation between brucite and water at elevated temperatures. Science 286:1545–1547

    Google Scholar 

  • Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437

    Google Scholar 

  • Horita J, Wesolowski DJ, Cole DR (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions. I. Vapor-liquid water equilibration of single salt solutions from 50 to 100 °C. Geochim Cosmochim Acta 57:2797–2817

    Google Scholar 

  • Horner TJ, Schönbächler M, Rehkämper M et al (2010) Ferromanganese crusts as archives of deep water Cd isotope composition. Geochem Geophys Geosyst 11:Q04001

    Google Scholar 

  • Horner T, Rickaby R, Henderson G (2011) Isotopic fractionation of cadmium into calcite. Earth Planet Sci Lett 312:243–253

    Google Scholar 

  • Horst A, Andersson P, Thornton BJ, Holmstrand H, Wishkerman A, Keppler F, Gustafsson Ö (2014) Stable bromine isotope composition of methyl bromide released from plant matter. Geochim Cosmochim Acta 125:186–195

    Google Scholar 

  • Horst A, Thornton BJ, Holmstrand H, Andersson P, Crill PM, Gustafsson Ö (2013) Stable bromine isotopic composition of atmospheric CH3Br. Tellus Ser B Chem Phys Meteor 65:21040

    Google Scholar 

  • Hu GX, Rumble D, Wang PL (2003) An ultraviolet laser microprobe for the in-situ analysis of multisulfur isotopes and its use in measuring Archean sulphur isotope mass-independent anomalies. Geochim Cosmochim Acta 67:3101–3118

    Google Scholar 

  • Huang S, Farkas J, Jacobsen SB (2010) Calcium isotopic fractionation between clinopyroxene and orthopyroxene from mantle peridotites. Earth Planet Sci Lett 292:337–344

    Google Scholar 

  • Huang S, Farkas J, Jacobsen S (2011) Stable calcium isotopic compositions of Hawaiian shield lavas: evidence for recycling of ancient marine carbonates into the mantle. Geochim Cosmochim Acta 75:4987–4997

    Google Scholar 

  • Huang KJ, Teng FZ, Wei GJ, Ma JL, Bao ZY (2012) Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China. Earth Planet Sci Lett 359–360:73–83

    Google Scholar 

  • Huang F, Wu Z, Huang S, Wu F (2014) First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim Cosmochim Acta 140:509–520

    Google Scholar 

  • Huh Y, Chan L-H, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers; implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051

    Google Scholar 

  • Icopini GA, Anbar AD, Ruebush SS, Tien M, Brantley SL (2004) Iron isotope fractionation during microbial reduction of iron: the importance of adsorption. Geology 32:205–208

    Google Scholar 

  • Ikehata K, Hirata T (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Econ Geol 107:1489–1497

    Google Scholar 

  • Immenhauser A, Buhl D, Richter D, Niedermayer A, Riechelmann D, Dietzel M, Schulte U (2010) Magnesium isotope fractionation during low-Mg calcite precipitation in a limestone cave – field study and experiments. Geochim Cosmochim Acta 74:4346–4364

    Google Scholar 

  • Ingraham NL, Criss RE (1998) The effect of vapor pressure on the rate of isotopic exchange between water and vapour. Chem Geol 150:287–292

    Google Scholar 

  • Izbicki JA, Bullen TD, Martin P, Schroth B (2012) Delta chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl Geochem 27:841–853

    Google Scholar 

  • James RH, Palmer MR (2000) The lithium isotope composition of international rock standards. Chem Geol 166:319–326

    Google Scholar 

  • Jang JH, Mathur R, LiermannLJ Ruebush S, Brantley SL (2008) An iron isotope signature related to electron transfer between aqueous ferrous iron and goethite. Chem Geol 250:40–48

    Google Scholar 

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Google Scholar 

  • Jeffcoate AB, Elliott T, Thomas A, Bouman C (2004) Precise, small sample size determination of lithium isotope isotopic compositions of geological reference materials and moders seawater by MC-ICP-MS. Geostand Geoanal Res 28:161–172

    Google Scholar 

  • Jendrzejewski N, Eggenkamp HGM, Coleman ML (2001) Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems. Appl Geochem 16:1021–1031

    Google Scholar 

  • Jia Y (2006) Nitrogen isotope fractionations during progressive metamorphism: A case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochim Cosmochim Acta 70:5201–5214

    Google Scholar 

  • Jiang SY, Palmer MR (1998) Boron isotope systematics of tourmaline from granites and tourmalines: a synthesis. Eur J Mineral 10:1253–1265

    Google Scholar 

  • John SG, Geis RW, Saito MA, Boyle EA (2007a) Zinc isotope fractionation during high-affinity and low-affinity ziinc transport by the marine diatom Thalassiosira oceanica. Limnol Oceanogr 52:2710–2714

    Google Scholar 

  • John SG, Park JG, Zhang Z, Boyle EA (2007b) The isotopic composition of some common forms of anthropogenic zinc. Chem Geol 245:61–69

    Google Scholar 

  • John SG, Rouxel OJ, Craddock PR, Engwall AM, Boyle EA (2008) Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth Planet Sci Lett 269:17–28

    Google Scholar 

  • John SG, Adkins J (2012) The vertical distribution of iron stable isotopes in the North Atlantic near Bermuda. Global Biogeochem Cycles 26:GB2034

    Google Scholar 

  • John T, Layne GD, Haase KM, Barnes JD (2010) Chlorine isotope evidence for crustal recycling into the Earth’s mantle. Earth Planet Sci Lett

    Google Scholar 

  • Johnson TM (2004) A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chem Geol 204:201–214

    Google Scholar 

  • Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int J Mass Spectr 193:87–99

    Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Ann Rev Earth Planet Sci 36:457–493

    Google Scholar 

  • Johnson TM, Bullen TD (2003) Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust). Geochim Cosmochim Acta 67:413–419

    Google Scholar 

  • Johnson TM, Herbel MJ, Bullen TD, Zawislanski PT (1999) Selenium isotope ratios as indicators of selenium sources and oxyanion reduction. Geochim Cosmochim Acta 63:2775–2783

    Google Scholar 

  • Johnston DT (2011) Multiple sulphur isotopes and the evolution of the Earth’s sulphur cycle. Earth Sci Rev 106:161–183

    Google Scholar 

  • Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE, Habicht KS (2005) Multiple sulphur isotope fractionations in biological systems: a case study with sulphate reducers and sulphur disproportionators. Am J Sci 305:645–660

    Google Scholar 

  • Jouvin D, Louvat P, Juillot F, Marechal CN, Benedetti MF (2009) Zinc isotopic fractionation: why organic matters. Environ Sci Tech 43:5747–5754

    Google Scholar 

  • Jouvin D, Weiss DJ, Mason TF, Bravin MN, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti MF (2012) Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptional models for isotopic fractionation processes. Environ Sci Technol 46:2652–2660

    Google Scholar 

  • Juillot F, Marechal C, Ponthieu M, Cacaly S, Morin G, Benedetti M, Hazemann JL, Proux O, Guyot F (2008) Zn isotopic fractionation caused by sorption on goethite and 2-Lines ferrihydrite. Geochim Cosmochim Acta 72:4886–4900

    Google Scholar 

  • Jǿrgensen BB, Böttcher MA, Lüschen H, Neretin LN, Volkov II (2004) Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim Cosmochim Acta 68:2095–2118

    Google Scholar 

  • Kakihana H, Kotaka M, Shohei S, Nomura M, Okamoto N (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Japan 50:158–163

    Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbiological fractionation of sulphur isotopes. J Gen Microbiol 34:195–212

    Google Scholar 

  • Kasemann SA, Jeffcoate AB, Elliott T (2005a) Lithium isotope composition of basalt glass reference material. Ann Chem 77:5251–5257

    Google Scholar 

  • Kasemann S, Schmidt D, Pearson P et al (2008) Biological and ecological insights into Ca isotopes in planktic foraminifera as a paleotemperature proxy. Earth Planet Sci Lett 271:292–302

    Google Scholar 

  • Kasemann SA, Hawkesworth CJ, Prave AR, Fallick AE, Pearson PN (2005b) Boron and calcium isotope composition in Neproterozoic carbonate rocks from Namibia: evidence for extreme environmental change. Earth Planet Sci Lett 231:73–86

    Google Scholar 

  • Kaufmann RS, Long A, Bentley H, Campbell DJ (1986) Chlorine isotope distribution of formation water in Texas and Louisiana. Bull Am Assoc Petrol Geol 72:839–844

    Google Scholar 

  • Kaufmann RS, Long A, Bentley H, Davis S (1984) Natural chlorine isotope variations. Nature 309:338–340

    Google Scholar 

  • Kelley SP, Fallick AE (1990) High precision spatially resolved analysis of δ34S in sulphides using a laser extraction technique. Geochim Cosmochim Acta 54:883–888

    Google Scholar 

  • Kelley KD, Wilkinson JJ, Chapman JB, Crowther HL, Weiss DJ (2009) Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, northern Alaska. Econ Geol 104:767–773

    Google Scholar 

  • Kemp ALW, Thode HG (1968) The mechanism of the bacterial reduction of sulphate and of sulphite from isotopic fractionation studies. Geochim Cosmochim Acta 32:71–91

    Google Scholar 

  • Kendall B, Brennecka GA, Weyer S, Anbar AD (2013) Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem Geol 362:105–114

    Google Scholar 

  • Kendall C, Grim E (1990) Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal Chem 62:526–529

    Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science, Amsterdam, pp 519–576

    Google Scholar 

  • Kerstel ER, Gagliardi G, Gianfrani L, Meijer HA, van Trigt R, Ramaker R (2002) Determination of the 2H/1H, 17O/16O and 18O/16O isotope ratios in water by means of tunable diode laser spectroscopy at 1.39 μ. Spectrochim Acta A 58:2389–2396

    Google Scholar 

  • Kiczka M, Wiederhold JG, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during Fe uptake and translocation in Alpine plants. Environ Sci Techn 44:6144–6150

    Google Scholar 

  • Kieffer SW (1982) Thermodynamic and lattice vibrations of minerals: 5. Application to phase equilibria, isotopic fractionation and high-pressure thermodynamic properties. Rev Geophys Space Phys 20:827–849

    Google Scholar 

  • Kim S-T, Mucci A, Taylor BE (2007) Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C. Chem Geol 246:135–146

    Google Scholar 

  • Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Google Scholar 

  • Kimball BE, Mathur R, Dohnalkova AC, Wall AJ, Runkel RL, Brantley SL (2009) Copper isotope fractionation in acid mine drainage. Geochim Cosmochim Acta 73:1247–1263

    Google Scholar 

  • Kirshenbaum I, Smith JS, Crowell T, Graff J, McKee R (1947) Separation of the nitrogen isotopes by the exchange reaction between ammonia and solutions of ammonium nitrate. J Chem Phys 15:440–446

    Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol 264:43–57

    Google Scholar 

  • Kitchen JW, Johnson TM, Bullen TD, Zhu J, Raddatz A (2012) Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules. Geochim Cosmochim Acta 89:190–201

    Google Scholar 

  • Kitchen NE, Valley JW (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J Metamorph Geol 13:577–594

    Google Scholar 

  • Kiyosu Y, Krouse HR (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochemical J 24:21–27

    Google Scholar 

  • Klochko K, Kaufman AJ, Yao W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:276–285

    Google Scholar 

  • Kohn MJ, Schoeninger MJ, Valley JW (1996) Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim Cosmochim Acta 60:3889–3896

    Google Scholar 

  • Kohn MJ, Valley JW (1998a) Oxygen isotope geochemistry of amphiboles: isotope effects of cation substitutions in minerals. Geochim Cosmochim Acta 62:1947–1958

    Google Scholar 

  • Kohn MJ, Valley JW (1998b) Effects of cation substitutions in garnet and pyroxene on equilibrium oxygen isotope fractionations. J Metam Geol 16:625–639

    Google Scholar 

  • Kohn MJ, Valley JW (1998c) Obtaining equilibrium oxygen isotope fractionations from rocks: theory and examples. Contr Mineral Petrol 132:209–224

    Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game. Earth Planet Sci Lett 64:393–404

    Google Scholar 

  • Konhauser KO, Lalonde SV et al (2011) Aerobic bacterial pyrite oxidation and acid rock drainage during the great oxidation event. Nature 478:369–374

    Google Scholar 

  • Kowalski N, Dellwig O et al (2013) Pelagic molybdenum concentration anomalies and the impact of sediment resuspension on the molybdenum budget in two tidal systems of the North Sea. Geochim Cosmochim Acta 119:198–211

    Google Scholar 

  • Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high p and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123

    Google Scholar 

  • Kozdon R, Kita RN, Huberty JM, Fournelle JH, Johnson CA, Valley JW (2010) In situ sulfur isotope analysis of sulfide minerals by SIMS: precision and accuracy with application to thermometry of similar to 3.5 Ga Pilbara cherts. Chem Geol 275:243–253

    Google Scholar 

  • Krabbenhöft A, Eisenhauer A et al (2010) Constraining the marine strontium budget with natural isotope fractionations (87Sr/86Sr, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim Cosmochim Acta 74:4097–4109

    Google Scholar 

  • Krabbenhöft A, Fietzke J, Eisenhauer A, Liebetrau V, Böhm F, Vollstaedt H (2009) Determination of radiogenic and stable strontium isotope ratios (87Sr/86Sr; δ88/86Sr) by thermal ionization mass spectrometry applying an 87Sr/84Sr double spike. J Anal At Spectr 24:1267–1271

    Google Scholar 

  • Kritee K, Barkay T, Blum JD (2009) Mass-dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monoethylmercury. Geochim Cosmochim Acta 73:1285–1296

    Google Scholar 

  • Kritee K, Blum JD, Johnson MW, Bergquist BA, Barkay T (2007) Mercury stable isotope fractionation during reduction of Hg(II) to Hg(0) by mercury resistant microorganisms. Environ Sci Technol 41:1889–1895

    Google Scholar 

  • Krouse HR, Thode HG (1962) Thermodynamicproperties and geochemistry of isotopic compounds of selenium. Can J Chem 40:367–375

    Google Scholar 

  • Krouse HR, Viau CA, Eliuk LS, Ueda A, Halas S (1988) Chemical and isotopic evidence of thermochemical sulfate reduction by light hydrocarbon gases in deep carbonate reservoirs. Nature 333:415–419

    Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Google Scholar 

  • Kunzmann M, Halverson GP, Sossi PA, Raub TD, Payne JL, Kirby J (2013) Zn isotope evidence for immediate resumption of primary productivity after snowball Earth. Geology 41:27–30

    Google Scholar 

  • Lacan F, Francois R, Ji Y, Sherrell RM (2006) Cadmium isotopic composition in the ocean. Geochim Cosmochim Acta 70:5104–5118

    Google Scholar 

  • Lambelet M, Rehkämper M, van de Flierdt T, Xue Z, Kreissig K, Coles B, Porecelli D, Andersson P (2013) Isotopic analysis of Cd in the mixing zone of Siberian rivers with the Arctic Ocean—new constraints on marine Cd cycling and the isotopic composition of riverine Cd. Earth Planet Sci Lett 361:64–73

    Google Scholar 

  • Land LS (1980) The isotopic and trace element geochemistry of dolomite: the state of the art. In: Concepts and models of dolomitization. Soc Econ Paleontol Min Spec Publ 28:87–110

    Google Scholar 

  • Larson PB, Maher K, Ramos FC, Chang Z, Gaspar M, Meinert LD (2003) Copper isotope ratios in magmatic and hydrothermal ore-forming processes. Chem Geol 201:337–350

    Google Scholar 

  • Lauretta DS, Klaue B, Blum JD, Buseck PR (2001) Mercury abundances and isotopic compositions in the Murchison (CM) and Allende (CV) carbonaceous chondrites. Geochim Cosmochim Acta 65:2807–2816

    Google Scholar 

  • Laws EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO2 concentration on carbon isotope fractionation by the marine diatom Phaeodactylum tricornutum. Limnol Oceanogr 42:1552–1560

    Google Scholar 

  • Laws EA, Popp BN, Bidigare RR, Kennicutt MC, Macko SA (1995) Dependence of phytoplankton carbon isotopic composition on growth rate and CO2aq: theoretical considerations and experimental results. Geochim Cosmochim Acta 59:1131–1138

    Google Scholar 

  • Layton-Matthews D, Leybourne M, Peter JM, Scott SD, Cousens B, Eglington BM (2013) Multiple sources of selenium in ancient seafloor hydrothermal systems: compositional and Se, S and Pb isotopic evidence from volcanic-hosted and volcanic-sediment hosted massive sulphide deposits of the Finlayson Lake district, Yukon, Canada. Geochim Cosmochim Acta 117:313–331

    Google Scholar 

  • Lazar C, Young ED, Manning CE (2012) Experimental determination of equilibrium nickel isotope fractionation between metal and silicate from 500 °C to 950 °C. Geochim Cosmochim Acta 86:276–295

    Google Scholar 

  • Le Roux PJ, Shirey SB, Benton L, Hauri EH, Mock TD (2004) In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level. Chem Geol 203:123–138

    Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212:101–124

    Google Scholar 

  • Lehmann M, Siegenthaler U (1991) Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J Glaciol 37:23–26

    Google Scholar 

  • Lemarchand D, Gaillardet J, Lewin E, Allegre CJ (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954

    Google Scholar 

  • Lemarchand D, Gaillardet J, Lewin E, Allègre CJ (2002) Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem Geol 190:123–140

    Google Scholar 

  • Lemarchand E, Schott J, Gaillardet J (2005) Boron isotopic fractionation related to boron sorption on humic acid and the structure of surface complexes formed. Geochim Cosmochim Acta 69:3519–3533

    Google Scholar 

  • Lemarchand E, Schott J, Gaillardet J (2007) How surface complexes impact boron isotopic fractionation: evidence from Fe and Mn oxides sorption experiments. Earth Planet Sci Lett 260:277–296

    Google Scholar 

  • Lemarchand D, Wasserburg GJ, Papanastassiou DA (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68:4665–4678

    Google Scholar 

  • Letolle R (1980) Nitrogen-15 in the natural environment. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 407–433

    Google Scholar 

  • Levin NE, Raub TD, Dauphas N, Eiler JM (2014) Triple-oxygen-isotope variations in sedimentary rocks. Geochim Cosmochim Acta 139:173–189

    Google Scholar 

  • Li W, Chakraborty S, Beard BL, Romanek CS, Johnson CM (2012) Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth Planet Sci Lett 333–314:304–316

    Google Scholar 

  • Li W, Jackson SE, Pearson NJ, Alard O, Chappell BW (2009a) The Cu isotope signature of granites from the Lachlan Fold Belt, SE Australia. Chem Geol 258:38–49

    Google Scholar 

  • Li X, Liu Y (2010) First principles study of Ge isotopic fractionation during adsorption onto Fe(III)-oxyhydroxidessurfaces. Chem Geol 278:15–22

    Google Scholar 

  • Li W-Y, Teng F-Z, Ke S, Rudnick R, Gao S, Wu F-Y, Chappell B (2010) Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta 74:6867–6884

    Google Scholar 

  • Li X, Zhao H, Tang M, Liu Y (2009b) Theoretical prediction for several important equilibrium Ge isotope fractionation factors and geological implications. Earth Planet Sci Lett 287:1–11

    Google Scholar 

  • Li W-Y, Teng FZ, Wing BA, Xiao Y (2014) Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem Geophys Geosys 15(10). doi:10.1002/2013GC004992

  • Liebscher A, Meixner A, Romer R, Heinrich W (2005) Liquid-vapor fractionation of boron and boron isotopes: experimental calibration at 400 °C/23 Mpa to 450 °C/42Mpa. Geochim Cosmochim Acta 69:5693–5704

    Google Scholar 

  • Little SH, Vance D, Walker-Brown C, Landing WM (2014) The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim Cosmochim Acta 125:653–672

    Google Scholar 

  • Liu Y, Spicuzza MJ, Craddock PR, Day JM, Valley JW, Dauphas N, Taylor LA (2010a) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262

    Google Scholar 

  • Liu SA, Teng FZ, He Y, Ke S, Li S (2010b) Investigation of magnesium isotope fractionation during granite differentiation: implication for Mg isotopic composition of the continental crust. Earth Planet Sci Lett 297:646–654

    Google Scholar 

  • Liu SA, Teng FZ, Yang W, Wu FY (2011) High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth Planet Sci Lett 308:131–140

    Google Scholar 

  • Lobo L, Degryse P, Shortland A, Vanhaeke F (2013) Isotopic analysis of antimony using multi-collector ICP-mass spectrometry for provenance determination of Roman glass. J Anal At Spectrom 28: 1213–129

    Google Scholar 

  • Long A, Eastoe CJ, Kaufmann RS, Martin JG, Wirt L, Fincey JB (1993) High precision measurement of chlorine stable isotope ratios. Geochim Cosmochim Acta 57:2907–2912

    Google Scholar 

  • Longinelli A, Craig H (1967) Oxygen-18 variations in sulfate ions in sea-water and saline lakes. Science 156:56–59

    Google Scholar 

  • Louvat P, Bouchez J, Paris G (2011) MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): optimisation and application to boron in seawater and carbonate samples. Geostand Geoanal Res 35:75–88

    Google Scholar 

  • Luais B (2012) Germanium chemistry and MC-ICPMS isotopic measurements of Fe-Ni, Zn alloys and silicate matrices: insights into deep Earth processes. Chem Geol

    Google Scholar 

  • Luck JM, Ben Othman D, Albarede F (2005) Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim Cosmochim Acta 69:5351–5363

    Google Scholar 

  • Lundstrom CC, Chaussidon M, Hsui AT, Keleman P, Zimmermann M (2005) Observations of Li isotope variations in the Trinity ophiolite: evidence for isotope fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751

    Google Scholar 

  • Luz B, Barkan E (2010) Variations of 17O/16O and 18O/16O in meteoric waters. Geochim Cosmochim Acta 74:6276–6286

    Google Scholar 

  • Lécuyer C, Grandjean P, Reynard B, Albarede F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to bron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55

    Google Scholar 

  • Ma J, Hintelmann H, Kirk JL, Muir DC (2013) Mercury concentrations and mercury isotope compositionin lake sediment cores Chem Geol. 336:96–102

    Google Scholar 

  • Machel HG, Krouse HR, Sassen P (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl Geochemistry 10:373–389

    Google Scholar 

  • MacrisCA Young ED, Manning CE (2013) Experimental determination of equilibrium magnesium isotope fractionation between spinel, forsterite and magnesite from 600 to 800 °C. Geochim Cosmochim Acta 118:18–32

    Google Scholar 

  • Magenheim AJ, Spivack AJ, Michael PJ, Gieskes JM (1995) Chlorine stable isotope composition of the oceanic crust: implications for earth’s distribution of chlorine. Earth Planet Sci Lett 131:427–432

    Google Scholar 

  • Magenheim AJ, Spivack AJ, Volpe C, Ranson B (1994) Precise determination of stable chlorine isotope ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121

    Google Scholar 

  • Maher K, Jackson S, Mountain B (2011) Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250 °C and 300 °C. Chem Geol 286:229–239

    Google Scholar 

  • Maher K, Larson P (2007) Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru. Econ Geol 102:225–237

    Google Scholar 

  • Malinovskiy D, Moens L, Vanhaecke F (2009) Isotopic fractionation of Sn during methylation and demethylation in aqueous solution. Environ Sci Tech 43: 4399–4404

    Google Scholar 

  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles, illustration for the denitrification and nitrification processes. Plant Soil 62:413–430

    Google Scholar 

  • Markl G, von Blanckenburg F, Wagner T (2006b) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030

    Google Scholar 

  • Markl G, Lahaye Y, Schwinn G (2006a) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim Cosmochim Acta 70:4215–4228

    Google Scholar 

  • Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624

    Google Scholar 

  • Marschall HR, Altherr R, Kalt A, Ludwig T (2008) Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry. Contr Mineral Petrol 155:703–717

    Google Scholar 

  • Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Google Scholar 

  • Marty B, Humbert F (1997) Nitrogen and argon isotopes in oceanic basalts. Earth Planet Sci Lett 152:101–112

    Google Scholar 

  • Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid-ocean ridge basalts: assesment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta 63:3619–3633

    Google Scholar 

  • Maréchal CN, Albarede F (2002) Ion-exchange fractionation of copper and zinc isotopes. Geochim Cosmochim Acta 66:1499–1509

    Google Scholar 

  • Maréchal CN, Télouk P, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273

    Google Scholar 

  • Maréchal CN, Nicolas E, Douchet C, Alabarède F (2000) Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem Geophys Geosys G3 1:1999GC000029

    Google Scholar 

  • Mason TFD et al (2005) Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chem Geol 221:170–187

    Google Scholar 

  • Mathur R, Brantley S, Anbar A, Munizaga F, Maksaev R, Vervoort J, Hart G (2010a) Variations of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Mineral Deposita 45:43–50

    Google Scholar 

  • Mathur R, Dendas M, Titley S, Phillips A (2010b) Patterns in the copper isotope composition of minerals in porphyry copper deposits in southwestern United States. Econ Geol 105:1457–1467

    Google Scholar 

  • Mathur R, Jin L, Prush V, Paul J, Ebersole C, Fornadel A, Williams JZ, Brantley S (2012) Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Huntington County, Pennsylvania (USA). Chem Geol 304–305:175–184

    Google Scholar 

  • Mathur R, Ruiz J, Titley S, Liermann L, Buss H, Brantley S (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim Cosmochim Acta 69:5233–5246

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983a) Oxygen isotope fractionation between zoisite and water. Geochim Cosmochim Acta 47:645–654

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983b) On the mechanics and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geol Soc Am Bull 94:396–412

    Google Scholar 

  • Matthews DE, Hayes JM (1978) Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem 50:1465–1473

    Google Scholar 

  • McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotope composition of amino acids in plankton. Ecology 83:2173–2180

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • McCready RGL (1975) Sulphur isotope fractionation by Desulfovibrio and Desulfotomaculum species. Geochim Cosmochim Acta 39:1395–1401

    Google Scholar 

  • McCready RGL, Kaplan IR, Din GA (1974) Fractionation of sulfur isotopes by the yeast Saccharomyces cerevisiae. Geochim Cosmochim Acta 38:1239–1253

    Google Scholar 

  • McIlivin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77:5589–5595

    Google Scholar 

  • McKibben MA, Riciputi LR (1998) Sulfur isotopes by ion microprobe. In: Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:121–140

    Google Scholar 

  • McManus J et al (2006) Molybdenum and uranium geochemistry in continental margin sediments: palaeoproxy potential. Geochim Cosmochim Acta 70:4643–4662

    Google Scholar 

  • McManus J, Nägler T, Siebert C, Wheat CG, Hammond D (2002) Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge flank alteration. Geochem Geophys Geosyst 3:1078. doi:10.1029/2002GC000356

  • McMullen CC, Cragg CG, Thode HG (1961) Absolute ratio of 11B/10B in Searles Lake borax. Geochim Cosmochim Acta 23:147

    Google Scholar 

  • Miller MF, Franchi IA, Sexton AS, Pillinger CT (1999) High precision δ17O isotope measurements of oxygen from silicates and other oxides: method and applications. Rapid Commun Mass Spect 13:1211–1217

    Google Scholar 

  • Millet MA, Baker JA, Payne CE (2012) Ultra-precise stable Fe isotope measurements by high resolution multi-collector inductively coupled mass spectrometry with a 57Fe-58Fe double spike. Chem Geol 304–305:18–25

    Google Scholar 

  • Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28:153–159

    Google Scholar 

  • Millot R, Petelet-Giraud E, Guerrot C, Negrel P (2010b) Multi-isotopic composition (δ7Li-δ11B-δD-δ18O) of rainwaters in France: origin and spatio-temporal characterization. Appl Geochem 25:1510–1524

    Google Scholar 

  • Millot R, Vigier N, Gaillardet J (2010a) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta 74:3897–3912

    Google Scholar 

  • Misra S, Froelich PN (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335:818–823

    Google Scholar 

  • Mitchell K, Couture RM, Johnson TM, Mason PRD, Van Cappellen P (2013) Selenium sorption and isotope fractionation: iron(III) oxides versus iron (II) sulfides. Chem Geol 342:21–28

    Google Scholar 

  • Mitchell K, Mason P, Van Cappellen P, Johnson TM, Gill BC, Owens JD, Diaz J, Ingall E, Reichart GJ, Lyons T (2012) Selenium as paleo-oceanographic proxy: a first assessment. Geochim Cosmochim Acta 89:302–317

    Google Scholar 

  • Mizutani Y, Rafter TA (1973) Isotopic behavior of sulfate oxygen in the bacterial reduction of sulfate. Geochem J 6:183–191

    Google Scholar 

  • Monson KD, Hayes JM (1982) Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim Cosmochim Acta 46:139–149

    Google Scholar 

  • Montoya-Pino C, Weyer S, Anbar AD, Pross J, Oschmann J, van de Schootbrugge B, Arz HW (2010) Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: a quantitative approach using U isotopes. Geology 38:315–318

    Google Scholar 

  • Mook WG, Bommerson JC, Stavermann WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–174

    Google Scholar 

  • Moriguti T, Nakamura E (1998) Across-arc variation of Li-isotopes in lavas and implications for crust /mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174

    Google Scholar 

  • Moynier F, Agranier A, Hezel DC, Bouvier A (2010) Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth Planet Sci Lett 300:359–366

    Google Scholar 

  • Moynier F, Yin QZ, Schauble E (2011) Isotopic evidence of Cr partitioning into Earth’s core. Science 331:1417–1420

    Google Scholar 

  • Moynier F, Pichat S, Pons ML, Fike D, Balter V, Albarède F (2008) Isotope fractionation and transport mechanisms of Zn in plants. Chem Geol 267:125–130

    Google Scholar 

  • Murphy MJ, Stirling CH, Kaltenbach A, Turner SP, Schaefer BF (2014) Fractionation of 238U/235U by reduction during low temperature uranium mineralization processes. Earth Planet Sci Lett 388:306–317

    Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2010) First-principles calculation of H/D isotopic fractionation between hydrous minerals and water. Geochim Cosmochim Acta 74:3874–3882

    Google Scholar 

  • Möller K, Schoenberg R, Pedersen RB, Weiss D, Dong S (2012) Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostand Geoanal Res 36:177–199

    Google Scholar 

  • Nabelek PI, Labotka TC (1993) Implications of geochemical fronts in the Notch Peak contact-metamorphic aureole, Utah, USA. Earth Placet Sci Lett 119:539–559

    Google Scholar 

  • Nabelek PI (1991) Stable isotope monitors. In: Contact metamorphism. Rev Mineral 26:395–435

    Google Scholar 

  • Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252

    Google Scholar 

  • Navarette JU, Borrok DM, Viveros M, Elzey JT (2011) Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta 75:784–799

    Google Scholar 

  • Needham AW, Porcelli D, Russell SS (2009) An Fe isotope study of ordinary chondrites. Geochim Cosmochim Acta 73:7399–7413

    Google Scholar 

  • Neretin LN, Böttcher ME, Grinenko VA (2003) Sulfur isotope geochemistry of the Black Sea water column. Chem Geol 200:59–69

    Google Scholar 

  • Neubert N, Heri AR, Voegelin AR, Schlunegger F, Villa IM (2011) The molybdenum isotopic composition in river water; constraints from small catchments. Earth Planet Sci Lett 304:180–190

    Google Scholar 

  • Neubert N, Nägler TF, Böttcher ME (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–778

    Google Scholar 

  • Neymark LA, Premo WR, Mel’nikov NN, Emsbo P (2014) Precise determination of δ88Sr in rocks, minerals and waters by double-spike TIMS: a powerful tool in the study of geological, hydrological and biological processes. J Anal At Spectr 29:65–75

    Google Scholar 

  • Nielsen SG et al (2005) Thallium isotope composition of the upper continental crust and rivers—an investigation of the continental sources of dissolved marine thallium. Geochim Cosmochim Acta 69:2007–2019

    Google Scholar 

  • Nielsen SG, Goff M, Hesselbo SP, Jenkyns HC, LaRowe DE, Lee CT (2011b) Thallium isotopes in early diagentic pyrite—a paleoredox proxy? Geochim Cosmochim Acta 75:6690–6704

    Google Scholar 

  • Nielsen H (1979) Sulfur isotopes. In: Jager E, Hunziker J (eds) Lectures in isotope geology. Springer, Berlin, pp 283–312

    Google Scholar 

  • Nielsen SG, Mar-Gerrison S, Gannoun A, LaRowe D, Klemm V, Halliday A, Burton KW, Hein JR (2009) Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth Planet Sci Lett 278:297–307

    Google Scholar 

  • Nielsen SG, Prytulak J, Halliday AN (2011c) Determination of precise and accurate 51V/50V isotope ratios by MC-ICP-MS, Part 1: Chemical separation of vanadium and mass spectrometric protocols. Geostand Geoanal Res 35:293–306

    Google Scholar 

  • Nielsen SG, Prytulak J, Wood BJ, Halliday AN (2014) Vanadium isotopic difference between the silicate Earth and meteorites. Earth Planet Sci Lett 389:167–175

    Google Scholar 

  • Nielsen SG, Rehkämper M, Brandon AD, Norman MD, Turner S, O’Reilly SY (2007) Thallium isotopes in Iceland and Azores lavas—implications for the role of altered crust and mantle geochemistry. Earth Planet Sci Lett 264:332–345

    Google Scholar 

  • Nielsen SG, Rehkämper M, Norman MD, Halliday AN, Harrison D (2006) Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–317

    Google Scholar 

  • Nielsen SG, Rehkämper M (2011) Thallium isotopes and their application to problems in earth and environmental science. In: Baskaran M (ed) Handbook of environmental isotope geochemistry, vol 1. Springer, New York, pp 247–269

    Google Scholar 

  • Nielsen LC, Druhan JL, Yang W, Brown ST, DePaolo DJ (2011) Calcium isotopes as tracers of biogeochemical processes. In: Handbook of environmental isotope geochemistry. Springer, New York, pp 105–124

    Google Scholar 

  • Nishio Y, Nakai S, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotope systematics of the mantle derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Letters 217:245–261

    Google Scholar 

  • Nitzsche HM, Stiehl G (1984) Untersuchungen zur Isotopenfraktionierung des Stickstoffs in den Systemen Ammonium/Ammoniak und Nitrid/Stickstoff. ZFI Mitt 84:283–291

    Google Scholar 

  • Noordmann J, Weyer S, Montoya-Pino C, Dellwig O, Neubert N, Eckert S, Paetzel M, Böttcher ME (2015) Uranium and molybdenum isotope systematics in modern euxinic basins: case studies from the central Baltic Sea and the Kyllaren fjord (Norway). Chem Geol (in press)

    Google Scholar 

  • Nägler TF et al (2014) Proposal for an international molybdenum isotope reference standard and data representation. Geostand Geoanal Res 38:149–151

    Google Scholar 

  • Nägler TF, Neubert N, Böttcher ME, Dellwig O, Schnetger B (2011) Molybedenum isotope fractionation in pelagic euxinia: evidence from the modern Black and Baltic Seas. Chem Geol 289:1–11

    Google Scholar 

  • Nägler TF, Siebert C, Lüschen H, Böttcher ME (2005) Sedimentary Mo isotope records across the Holocene fresh-brackish water transition of the Black Sea. Chem Geol 219:283–295

    Google Scholar 

  • Nägler TF, Eisenhauer A, Müller A, Hemleben C, Kramers J (2000) The δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction ofpast sea surface temperatures. Geochem Geophys Geosyst G3 1(2000GC000091)

    Google Scholar 

  • Ockert C, Gussone N, Kaufhold S, Teichert BM (2013) Isotope fractionation during Ca exchange on clay minerals in a marine environment. Geochim Cosmochim Acta 112:374–388

    Google Scholar 

  • Oelze M, von Blanckenburg F, Hoellen D, Dietzel M, Bouchez J (2014) Si stable isotope fractionation during adsorption and the competition between kinetic and equilibrium isotope fractionation: implications for weathering systems. Chem Geol (in press)

    Google Scholar 

  • Oeser M, Weyer S, Horn I, Schuth S (2014) High-precision Fe and Mg isotope ratios of silicate reference glasses determined in situ by femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS. Geostand Geoanal Res 38:311–328

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–559

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley Interscience, New York, pp 435–486

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Geochemistry of hydrothermal ore deposits, 2nd edn. Holt Rinehart and Winston, New York

    Google Scholar 

  • Ono S, Shanks WC, Rouxel OJ, Rumble D (2007) S-33 constraints on the seawater sulphate contribution in modern seafloor hydrothermal vent sulfides. Geochim Cosmochim Acta 71:1170–1182

    Google Scholar 

  • Ono S, Wing BA, Johnston D, Farquhar J, Rumble D (2006) Mass-dependent fractionation of quadruple sulphur isotope system as a new tracer of sulphur biogeochemical cycles. Geochim Cosmochim Acta 70:2238–2252

    Google Scholar 

  • Opfergelt S, Georg RB, Delvaux B, Cabidoche YM, Burton KW, Halliday AN (2012) Mechanism of magnesium isotope fractionation in volcanicsoil weathering sequences, Guadeloupe. Earth Planet Sci Lett 341–344:176–185

    Google Scholar 

  • Owens NJP (1987) Natural variations in15N in the marine environment. Adv Mar Biol 24:390–451

    Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Google Scholar 

  • O’Neil JR, Epstein S (1966) A method for oxygen isotope analysis of milligram quantities of water and some of its applications. J Geophys Res 71:4955–4961

    Google Scholar 

  • O’Neil JR, Roe LJ, Reinhard E, Blake RE (1994) A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Isr J Earth Sci 43:203–212

    Google Scholar 

  • O’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • O’Neil JR, Truesdell AH (1991) Oxygen isotope fractionation studies of solute-water interactions. In: Stable isotope geochemistry: a tribute to Samuel Epstein. Geochemical Soc Spec Publ 3:17–25

    Google Scholar 

  • Pack A, Herwartz D (2014) The triple oxygen isotope composition of the Earth mantle and Δ17O variations in terrestrial rocks. Earth Planet Sci Lett (inpress)

    Google Scholar 

  • Pagani M, Lemarchand D, Spivack A, Gaillardet j (2005) A critical evaluation of the boron isotope-pH proxy: the accuracy of ancient ocean pH estimates. Geochim Cosmochim Acta 69:953–961

    Google Scholar 

  • Page B, Bullen T, Mitchell M (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13

    Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contr Mineral Petrol 103:434–451

    Google Scholar 

  • Palmer MR, Spivack AJ, Edmond JM (1987) Temperature and pH controls over isotopic fractionation during the absorption of boron on marine clays. Geochim Cosmochim Acta 51:2319–2323

    Google Scholar 

  • Paniello RC, Day JM, Moynier F (2012) Zinc isotopic evidence for the origin of the Moon. Nature 490:376–379

    Google Scholar 

  • Paris G, Sessions A, Subhas AV, Adkins JF (2013) MC-ICP-MS measurement of d34S and D33S in small amounts of dissolved sulphate. Chem Geol 345:50–61

    Google Scholar 

  • Park R, Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geochim Cosmochim Acta 21:110–126

    Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Google Scholar 

  • Passey BH, Hu H, Ji H, Montanari S, Li G, Henkes GA, Levin NE (2014) Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochim Cosmochim Acta 141:1–25

    Google Scholar 

  • Payne JL, Turchyn AV, Paytan A, DePaolo DJ, Lehrmann DJ, Yu M, Wei J (2010) Calcium isotope constraints on the end-Permian mass exttinction. PNAS 107:8543–8548

    Google Scholar 

  • Pearce CR, Burton KW, Pogge von Strandmann PA, James RH, Gislason SR (2010) Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth Planet Sci Lett 295:104–114

    Google Scholar 

  • Pearce CR, Cohen AS, Coe AL, Burton KW (2008) Molybdenum isotope evidence for global ocean anoxia coupled with perturbationsto the carbon cycle during the Early Jurassic. Geology 36:231–234

    Google Scholar 

  • Pearson PN, Palmer MR (1999) Middle Eocene seawater pH and atmospheric carbon dioxide. Science 284:1824–1826

    Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320

    Google Scholar 

  • Pichat S, Douchet C, Albarede F (2003) Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth Planet Sci Lett 210:167–178

    Google Scholar 

  • Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339

    Google Scholar 

  • Plessen B, Harlov DE, Henry D, Guidotti CV (2010) Ammonium loss and nitrogen isotopic fractionation in biotite as a function of metamorphic grade in metapelites from western Main, USA. Geochim Cosmochim Acta 74:4759–4771

    Google Scholar 

  • Pogge von Strandmann PA, Forshaw J, Schmidt DN (2014) Modern and Cenozoic records of magnesium behaviour from foraminiferal Mg isotopes. Biogeosci Discuss 11:7451–7464

    Google Scholar 

  • Pogge von Strandmann PA, Burton KW, James RH, van Calsteren P, Gislason SR, Sigfusson B (2008) The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth Planet Sci Lett 276:187–197

    Google Scholar 

  • Poitrasson F, Cruz Vieira L et al (2014) Iron isotope composition of the bulk waters and sediments from the Amazon River basin. Chem Geol 377:1–11

    Google Scholar 

  • Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147

    Google Scholar 

  • Poitrasson F, Roskosz M, Corgne A (2009) No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: experimental evidence and implications for planery differentiation and accretion. Earth Planet Sci Lett 278:376–385

    Google Scholar 

  • Pokrovsky OS, Viers J, Emnova EE, Kompantseva EI, Freydier R (2008) Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: possible structural control. Geochim Cosmochim Acta 72:1742–1757

    Google Scholar 

  • Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals:reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846

    Google Scholar 

  • Polyakov VB, Mineev SD, Clayton RN, Hu G, Mineev KS (2005) Determination of tin equilibrium fractionation factors from synchrotron radiation experiments. Geochim Cosmochim Acta 69:5531–5536

    Google Scholar 

  • Polyakov VB, Soultanov DM (2011) New data on equilibrium iron isotope fractionation among sulfides: constraints on mechanisms of sulfide formation in hydrothermal and igneous systems. Geochim Cosmochim Acta 75:1957–1974

    Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotope fractionation. Geochim Cosmochim Acta 62:69–77

    Google Scholar 

  • Porter SJ, Selby D, Cameron V (2014) Characterising the nickel isotopic composition of organic-rich marine sediments. Chem Geol 387:12–21

    Google Scholar 

  • Poulson RL, Siebert C, McManus J, Berelson WM (2006) Authigenic molybdenum isotope signatures in marine sediments. Geology 34:617–620

    Google Scholar 

  • Poulson-Brucker RL, McManus J, Severmann S, Berelson WM (2009) Molybdenum behaviour during early diagenesis: insights from Mo isotopes. Geochem Geophys Geosys 10(Q06010):1–25

    Google Scholar 

  • Pretet C, van Zuilen K, Nägler TF, Reynaud S, Immenhauser A, Böttcher ME, Samankassou E (2015) The barium isotope composition of corals: a potential proxy for seaweater? Chem Geol (in press)

    Google Scholar 

  • Prytulak J, Nielsen SG et al (2013b) The stable vanadium isotope composition of the mantle and mafic lavas. Earth Planet Sci Lett 365:177–189

    Google Scholar 

  • Prytulak J, Nielsen RG, Halliday AN (2011) Determination of precise and accurate 51V/50V isotope ratios by multi-collector ICP-MS, Part 2: Isotope composition of six reference materials plus the Allende chondrite and verification tests. Geostand Geoanal Res 35:307–318

    Google Scholar 

  • Prytulak J, Nielsen SG, Plank T, Barker M, Elliott T (2013a) Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc. Chem Geol 345:139–149

    Google Scholar 

  • Puchelt H, Sabels BR, Hoering TC (1971) Preparation of sulfur hexafluoride for isotope geochemical analysis. Geochim Cosmochim Acta 35:625–628

    Google Scholar 

  • Qi HW, Rouxel O, Hu RZ, Bi XW, Wen HJ (2011) Germanium isotopic systematics in Ge-rich coal from the Lincang Ge deposit, Yunnan, Southwestern China. Chem Geol. 286:252–265

    Google Scholar 

  • Ra K (2010) Determination of Mg isotopes in chlorophyll a for marine bulk phytoplankton from the northwestern Pacific ocean. Geochem Geophys Geosys 11(12):Q12011. doi:10.1029/2010GC003350

    Google Scholar 

  • Ra K, Kitagawa H (2007) Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS. J Anal At Spectrom 22:817–821

    Google Scholar 

  • Raddatz J, Liebetrau V et al (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol 352:143–152

    Google Scholar 

  • Radic A, Lacan F, Murray JW (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet Sci Lett 306:1–10

    Google Scholar 

  • Ransom B, Spivack AJ, Kastner M (1995) Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine. Geology 23:715–718

    Google Scholar 

  • Redling K, Elliott E, Bain D, Sherwell J (2013) Highway contributions to reactive nitrogen deposition: tracingthe fate of vehicular NOx using stable isotopes and plant biomonitors. Biogeochemistry 116:261–274

    Google Scholar 

  • Rees CE (1978) Sulphur isotope measurements using SO2 and SF6. Geochim Cosmochim Acta 42:383–389

    Google Scholar 

  • Rehkämper M, Frank M, Hein JR, Halliday A (2004) Cenozoic marine geochemistry of thallium deduced from isotopic studies of feromanganese crusts and pelagic sediments. Earth Planet Sci Lett 219:77–91

    Google Scholar 

  • Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday A, Ingri J, Libetrau V (2002) Thallium isotope variations in seawater and hydrogenetic, diagenetic and hydrothermal ferromanganese deposits. Earth Planet Sci Lett 197:65–81

    Google Scholar 

  • Rehkämper M, Wombacher F, Horner TJ, Xue Z (2011) Natural and anthropogenic Cd isotope variations. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, New York, pp 125–154

    Google Scholar 

  • Revesz K, Böhlke JK, Yoshinari T (1997) Determination of 18O and 15N in nitrate. Anal Chem 69:4375–4380

    Google Scholar 

  • Reynard LM, Henderson GM, Hedges RE (2010) Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta 74:3735–3750

    Google Scholar 

  • Reynolds BC, Frank M, Halliday AN (2006) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Letters 244:431–443

    Google Scholar 

  • Richet P, Bottinga Y, Javoy M (1977) A review of H, C, N, O, S, and Cl stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Google Scholar 

  • Richter FM, Davis AM, DePaolo D, Watson BE (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Google Scholar 

  • Rippberger S, Rehkämper VM, Porcelli D, Halliday AN (2007) Cadmium isotope fractionation in seawater – a signature of biological activity. Earth Planet Sci Lett 261:670–684

    Google Scholar 

  • Robert F, Chaussidon M (2006) A paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    Google Scholar 

  • Rolison JM, Landing WM, Luke W, Cohen M, Salters VJ (2013) Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem Geol 336:37–49

    Google Scholar 

  • Rollion-Bard C, Blamart D, Trebosc J, Tricot G, Mussi A, Cuif JP (2011) Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochim Cosmochim Acta 75:1003–1012

    Google Scholar 

  • Rollion-Bard C, Erez J (2010) Intra-shell boron isotope ratios in the symbiont-bearing benthic foraminifera Amphistegina lobifera: implications for d11B vital effects and paleo-pH reconstructions. Geochim Cosmochim Acta 74:1530–1536

    Google Scholar 

  • Rollion-Bard C, Vigier N, Spezzaferri S (2007) In-situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chem Geol 244:679–690

    Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotope fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Google Scholar 

  • Romaniello SJ, Herrmann AD, Anbar AD (2013) Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy. Chem Geol 362:305–316

    Google Scholar 

  • Rose EF, Chaussidon M, France-Lanord C (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim Cosmochim Acta 64:397–408

    Google Scholar 

  • Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150

    Google Scholar 

  • Rosman JR, Taylor PD (1998) Isotopic compositions of the elements (technical report): commission on atomic weights and isotopic abundances. Pure Appl Chem 70:217–235

    Google Scholar 

  • Rouxel O, Bekker A, Edwards KJ (2005) Iron isotope constraints on the Archean and Proterozoic ocean redox state. Science 307:1088–1091

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004a) Copper isotope systematics of the Lucky Strike, Rainbow and Logatschev seafloor hydrothermal fields on the Mi-Atlantic Ridge. Econ Geol 99:585–600

    Google Scholar 

  • Rouxel O, Fouquet Y, Ludden JN (2004b) Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium and iron isotopes. Geochim Cosmochim Acta 68:2295–2311

    Google Scholar 

  • Rouxel O, Galy A, Elderfield H (2006) Germanium isotope variations in igneous rocks and marine sediments. Geochim Cosmochim Acta 70:3387–3400

    Google Scholar 

  • Rouxel O, Ludden J, Carignan J, Marin L, Fouquet Y (2002) Natural variations in Se isotopic composition detemined by hydride generation multiple collector inductively coupled plasma mass spectrometry. Geochim Cosmochim Acta 66:3191–3199

    Google Scholar 

  • Rouxel O, Ludden J, Fouquet Y (2003) Antimony isotope variations in natural sytems and implications for their use as geochemical tracers. Chem Geol 200:25–40

    Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Climate change in continental isotopic records. Geophys Monograph 78:1–36

    Google Scholar 

  • Rubinson M, Clayton RN (1969) Carbon-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta 33:997–1002

    Google Scholar 

  • Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid-rock interaction. Earth Planet Sci Lett 256:278–293

    Google Scholar 

  • Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57

    Google Scholar 

  • Rudnicki MD, Elderfield H, Spiro B (2001) Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim Cosmochim Acta 65:777–789

    Google Scholar 

  • Ruiz J, Mathur R, Young S, Brantley S (2002) Controls of copper isotope fractionation. Geochim Cosmochim Acta Spec Suppl 66:A654

    Google Scholar 

  • Rumble D, Miller MF, Franchi IA, Greenwood RC (2007) Oxygen three-isotope fractionation lines in terrestrial silicate minerals: an inter-laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim Cosmochim Acta 71:3592–3600

    Google Scholar 

  • Russell WA, Papanastassiou DA, Tombrello TA (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090

    Google Scholar 

  • Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg 2+(aq) , Ca 2+(aq) and Fe 2+(aq) with carbonate minerals. Geochim Cosmochim Acta 74:6301–6323

    Google Scholar 

  • Rustad JR, Dixon DA (2009) Prediction of iron-isotope fractionation between nematite (α-Fe2O3) and ferric and ferrous iron in aqueous solution from density functional theory. J Phys Chem 113:12249–12255

    Google Scholar 

  • Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanism. New Phytol 199:367–378

    Google Scholar 

  • Rye RO (1974) A comparison of sphalerite-galena sulfur isotope temperatures with filling-temperatures of fluid inclusions. Econ Geol 69:26–32

    Google Scholar 

  • Ryu JS, Jacobson AD, Holmden C, Lundstrom C, Zhang Z (2011) The major ion, δ44/40Ca, δ44/42Ca and δ26/24Mg geochemistry of granite weathering at pH = 1 and T = 25 °C: power-law processes and the relative reactivity of minerals. Geochim Cosmochim Acta 75:6004–6026

    Google Scholar 

  • Rüggeburg A, Fietzke J, Liebetrau V, Eisenhauer A, Dullo WC, Freiwald A (2008) Stable strontium isotopes (d88/86Sr) in cold-water corals—a new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:570–575

    Google Scholar 

  • Saccocia PJ, Seewald JS, Shanks WC (2009) Oxygen and hydrogen isotope fractionation in serpentine-water and talc-water systems from 250 to 450 °C, 50 MPa. Geochim Cosmochim Acta 73:6789–6804

    Google Scholar 

  • Sachse D, Billault I et al (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Ann Rev Earth Planet Sci 40:221–249

    Google Scholar 

  • Sadofsky SJ, Bebout GE (2000) Ammonium partitioning and nitrogen isotope fractionation among coexisting micas during high-temperature fluid-rock interaction. Examples from the New England Appalachians. Geochim Cosmochim Acta 64:2835–2849

    Google Scholar 

  • Saenger C, Wang Z (2014) Magnesium isotope fractionation in biogenic and abiogenic carbonates: implications for paleoenvironmental proxies. Quarter Sci Rev 90:1–21

    Google Scholar 

  • Sakai H (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem J 2:29–49

    Google Scholar 

  • Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555

    Google Scholar 

  • Sauer PE, Eglinton TI, Hayes JM, Schimmelmann A, Sessions AL (2001) Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochim Cosmochim Acta 65:213–222

    Google Scholar 

  • Saunier G, Pokrovski GS, Poitrasson F (2011) First experimental determination of iron isotope fractionation between hematite and aqueous solution at hydrothermal conditions. Geochim Cosmochim Acta 75:6629–6654

    Google Scholar 

  • Savage PS, Armytage R, Georg RB, Halliday AN (2014) High temperature silicon isotope geochemistry. Lithos 190–191:500–519

    Google Scholar 

  • Savage PS, Georg RB, Williams HM, Burton KW, Halliday AN (2011) Silicon isotope fractionation during magmatic differentiation. Geochim Cosmochim Acta 75:6124–6139

    Google Scholar 

  • Savin SM, Lee M (1988) Isotopic studies of phyllosilicates. Rev Mineral 19:189–223

    Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium and other very heavy elements. Geochim Cosmochim Acta 71:2170–2189

    Google Scholar 

  • Schauble EA (2011) First principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2 +) crystals. Geochim Cosmochim Acta 75:844–869

    Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65:2487–2498

    Google Scholar 

  • Schauble ES, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67:3267–3281

    Google Scholar 

  • Schauble EA, Rossman GR, Taylor HP (2004) Theoretical estimates of equilibrium chromium isotope fractionations. Chem Geol 205:99–114

    Google Scholar 

  • Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2. Contr Mineral Petrol 112:35–45

    Google Scholar 

  • Schilling K, Johnson TM, Wilcke W (2011) isotope fractionation of selenium during fungal biomethylation by Alternaria alternata. Environ Sci Technol 45:2670–2676

    Google Scholar 

  • Schimmelmann A, Sessions AL, Mastalerz M (2006) Hydrogen isotopic (D/H) composition of organic matter during diagenesis and thermal maturation. Ann Rev Earth Planet Sci 34:501–533

    Google Scholar 

  • Schmidt M, Maseyk K, Lett C, Biron P, Richard P, Bariac T, Seibt U (2010) Concentration effects on laser based δ18O and δ2H measurements and implications for the calibration of vapour measurements with liquid standards. Rapid Comm Mass Spectrom 24:3553–3561

    Google Scholar 

  • Schmitt AD, Galer SJ, Abouchami W (2009) Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment. Earth Planet Sci Lett 277:262–272

    Google Scholar 

  • Schmitt AD, Cobert F, Bourgeade P et al (2013) Calcium isotope fractionation during plant growth under a limited nutrient supply. Geochim Cosmochim Acta

    Google Scholar 

  • Schoenberg R, von Blanckenburg F (2005) An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS. Int J Mass Spectr 242:257–272

    Google Scholar 

  • Schoenberg R, Zink S, Staubwasser M, von Blanckenburg F (2008) The stable Cr isotope inventory of solid Earth reservoirs determined by double-spike MC-ICP-MS. Chem Geol 249:294–306

    Google Scholar 

  • Schoenheimer R, Rittenberg D (1939) Studies in protein metabolism: I. General considerations in the application of isotopes to the study of protein metabolism. The normal abundance of nitrogen isotopes in amino acids. J Biol Chem 127:285–290

    Google Scholar 

  • Schüßler JA, Schoenberg R, Behrens H, von Blanckenburg F (2007) The experimental calibration of iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. Geochim Cosmochim Acta 71:417–433

    Google Scholar 

  • Scott C, Lyons TW (2012) Contrasting molybdenum cycling and isotopic properties in euxinix versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem Geol

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677

    Google Scholar 

  • Seal RR, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. Rev Mineral 40:541–602

    Google Scholar 

  • Sedaghatpour F, Teng FZ, Liu Y, Sears DW, Taylor LA (2013) Magnesium isotope composition of the Moon. Geochim Cosmochim Acta 120:1–16

    Google Scholar 

  • Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotope signatures of peridotite xenoliths and isotope fractionation at high temperature between olivine and pyroxene. Chem Geol 212:163–177

    Google Scholar 

  • Seitz HM, Brey GP, Zipfel J, Ott U, Weyer S, Durali S, Weinbruch S (2007) Lithium isotope composition of ordinary and carbonaceous chondrites and differentiated planetary bodies: bulk solar system and solar reservoirs. Earth Planet Sci Lett 260:582–596

    Google Scholar 

  • Sessions AL, Burgoyne TW, Schimmelmann A, Hayes JM (1999) Fractionation of hydrogen isotopes in lipid biosynthesis. Org Geochem 30:1193–1200

    Google Scholar 

  • Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope composition of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70:2006–2022

    Google Scholar 

  • Severmann S, Lyons TW, Anbar A, McManus J, Gordon G (2008) Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36:487–490

    Google Scholar 

  • Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic flux and its isotope composition. Geochim Cosmochim Acta 74:3984–4004

    Google Scholar 

  • Shahar A, Young ED, Manning CE (2008) Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet Sci Lett 268:330–338

    Google Scholar 

  • Shahar A, Ziegler K, Young ED, Ricollaeu A, Schauble E, Fei Y (2009) Experimentally determined Si isotope fractionation between silcate and Fe metal and implications for the Earth’s core formation. Earth Planet Sci Lett 288:228–234

    Google Scholar 

  • Sharma T, Clayton RN (1965) Measurement of 18O/16O ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29:1347–1353

    Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Google Scholar 

  • Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178:197–210

    Google Scholar 

  • Sharp ZD, Barnes JD, Brearley AJ, Chaussidon M, Fischer TP, Kamenetsky VS (2007) Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446:1062–1065

    Google Scholar 

  • Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YD (2010) The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 239:1050–1053

    Google Scholar 

  • Shen B, Jacobson B, Lee CT, Yin QZ, Mourton DM (2009) The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. PNAS 106:20652–20657

    Google Scholar 

  • Sheppard SMF, Nielsen RL, Taylor HP (1971) Hydrogen and oxygen isotope ratios in minerals from Porphyry Copper Deposits. Econ Geol 66:515–542

    Google Scholar 

  • Sherman LS, Blum JD, Johnson KP, Keeler GJ, Barres JA, Douglas TA (2010) Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight. Nat Geosci 3:173–177

    Google Scholar 

  • Sherman LS, Blum JD, Nordstrom DK, McCleskey RB, Barkay T, Vetriani C (2009) Mercury isotope composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift. Earth Planet. Sci Lett 279:86–96

    Google Scholar 

  • Shiel AE, Weis D, Orians KJ (2010) Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Tot Environ 408:2357–2368

    Google Scholar 

  • Shields WR, Goldich SS, Garner EI, Murphy TJ (1965) Natural variations in the abundance ratio and the atomic weight of copper. J Geophys Res 70:479–491

    Google Scholar 

  • Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotope signatures including chlorine and bromine isotopes of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22:589–605

    Google Scholar 

  • Shouakar-Stash O, Drimmie RJ, Frape SK (2005) Determination of inorganic chlorine stable isotopes by continuous flow isotope mass spectrometry. Rapid Commun Mass Spectr 19:121–127

    Google Scholar 

  • Siebert C, Kramers JD, Meisel T, Morel P, Nägler TF (2005) PGE, Re-Os and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth. Geochim Cosmochim Acta 69:1787–1801

    Google Scholar 

  • Siebert C, McManus J, Bice A, Poulson R, Berelson WM (2006b) Molybdenum isotope signatures in continental margin sediments. Earth Planet Sci Lett 241:723–733

    Google Scholar 

  • Siebert C, Nägler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as potential proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Google Scholar 

  • Siebert C, Ross A, McManus J (2006a) Germanium isotope measurements of high-temperature geothermal fluids using double-spike hydride generation MC-ICP-MS. Geochim Cosmochim Acta 70:3986–3995

    Google Scholar 

  • Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Böhlke JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153

    Google Scholar 

  • Sikora ER, Johnson TM, Bullen TD (2008) Microbial mass-dependent fractionation of chromium isotopes. Geochim Cosmochim Acta 72:3631–3641

    Google Scholar 

  • Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionnation. Science 333:74–77

    Google Scholar 

  • Sime NG, De la Rocha C, Galy A (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera. Earth Planet Sci Lett 232:51–66

    Google Scholar 

  • Simon JI, dePaolo DJ (2010) Stable calcium isotopic composition of meteorites and rocky planets. Earth Planet Sci Lett 289:457–466

    Google Scholar 

  • Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66:2505–2510

    Google Scholar 

  • Skulan JL, DePaolo DJ, Owens TL (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim Cosmochim Acta 61:2505–2510

    Google Scholar 

  • SkulanJL DePaolo DJ (1999) Calcium isotope fractionation between soft and mineralised tissues as a monitor of calcium use in vertebrates. PNAS 96:13709–13713

    Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541

    Google Scholar 

  • Smith CN, Kesler SE, Blum JD, Rytuba JR (2008) Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA. Earth Planet Sci Lett 269:398–406

    Google Scholar 

  • Smith MP, Yardley BWD (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: an ion microprobe study. Geochim Cosmochim Acta 60:1415–1427

    Google Scholar 

  • Smithers RM, Krouse HR (1968) Tellurium isotope fractionation study. Can J Chem 46:583–591

    Google Scholar 

  • Sonke JE (2011) A global model of mass independent mercury stable isotope fractionation. Geochim Cosmochim Acta 75:4577–4590

    Google Scholar 

  • Sonke JE, Blum JD (2013) Advances in mercury stable isotope geochemistry. Chem Geol 366:1–4

    Google Scholar 

  • Sonke JE, Schäfer J et al (2010) Sedimentary mercury stable isotope records of atmospheric and riverine pollution from two major European heavy metal refineries. Chem Geol 279:90–100

    Google Scholar 

  • Sonke JE, Sivry Y et al (2008) Historical variations in the isotopic composition of atmospheric zinc deposition from a zinc smelter. Chem Geol 252:145–157

    Google Scholar 

  • Spivack AJ, Edmond JM (1986) Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Anal Chem 58:31–35

    Google Scholar 

  • Spivack AJ, Kastner M, Ransom B (2002) Elemental and isotopic chloride geochemistry in the Nankai trough. Geophysical Res Lett 29:1661. doi:10.1029/2001GL014122

    Google Scholar 

  • Stetson SJ, Gray JE, Wanty RB, MacLady DL (2009) Isotope variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury. Environ Sci Technol 43:7331–7336

    Google Scholar 

  • Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521

    Google Scholar 

  • Stevenson EI, Hermoso M, Rickaby RE, Tyler JJ, Minoletti F, Parkinson IJ, Mokadem F, Burton KW (2014) Controls on stable strontium isotope fractionation in coccolithophores with implications for the marine Sr cycle. Geochim Cosmochim Acta 128:225–235

    Google Scholar 

  • Stirling CH, Andersen MB, Potter EK, Halliday AN (2007) Low-temperature isotopic fractionation of uranium. Earth Planet Sci Lett 264:208–225

    Google Scholar 

  • Stotler RL, Frape SK, Shouakar-Stash O (2010) An isotopic survey of d81Br and d37Cl of dissolved halides in the Canadian and Fennoscandian shields. Chem Geol 274:38–55

    Google Scholar 

  • Sturchio NC, Hatzinger PB, Atkins MD, Suh C, Heraty LJ (2003) Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol 37:3859–3863

    Google Scholar 

  • Sutton JN, Varela DE, Brzezinski MA, Beucher CP (2013) Species-dependent silicon isotope fractionationby marine diatoms. Geochim Cosmochim Acta 104:300–309

    Google Scholar 

  • Suzuoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Google Scholar 

  • Swart PK, Burns SJ, Leder JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem Geol 86:89–96

    Google Scholar 

  • Swihart GH, Moore PB (1989) A reconnaissance of the boron isotopic composition of tourmaline. Geochim Cosmochim Acta 53:911–916

    Google Scholar 

  • Tanimizu M, Araki Y, Asaoka S, Takahashi Y (2011) Determination of natural isotopic variation in antimony using inductively coupled plasma mass spectrometry for an uncertainty estimation of the standard atomic weight of antimony. Geochem J 45:27–32

    Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta 33:987–996

    Google Scholar 

  • Taube H (1954) Use of oxygen isotope effects in the study of hydration ions. J Phys Chem 58:523

    Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contr Mineral Petrol 19:1–71

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Google Scholar 

  • Taylor HP, Epstein S (1962) Relation between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. I Principles and experimental results. Geol Soc Am Bull 73:461–480

    Google Scholar 

  • Taylor TI, Urey HC (1938) Fractionation of the lithium and potassium isotopes by chemical exchange with zeolites. J Chem Phys 6:429–438

    Google Scholar 

  • Telus M, Dauphas N, Moynier F, Tissot F, Teng FZ, Nabelek PI, Craddock PR, Groat LA (2012) Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: the tale from migmatites, granitoids and pegmatites. Geochim Cosmochim Acta 97:247–265

    Google Scholar 

  • Teng FZ et al (2004) Lithium isotope composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Google Scholar 

  • Teng FZ, Dauphas N, Helz R (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science 320:1620–1622

    Google Scholar 

  • Teng FZ, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308:317–324

    Google Scholar 

  • Teng FZ, Dauphas N, Huang S, Marty B (2013) Iron isotope systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26

    Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Wing BA (2007a) Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: a case study from the Onawa contact aureole, Maine. Chem Geol 239:1–12

    Google Scholar 

  • Teng FZ, Rudnick RL, McDonough WF, Wu FY (2009) Lithium isotope systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:415–424

    Google Scholar 

  • Teng FZ, Wadhwa M, Helz RT (2007b) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrrestrial mantle. Earth Planet Sci Lett 261:84–92

    Google Scholar 

  • Teng FZ, Yang W (2013) Comparison of factors affecting the accuracy of high-precision magnesium isotope analysis by multi-collector inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 28:19–24

    Google Scholar 

  • Teng FZ et al. (2014) Magnesium isotopic compositions of international geological refrence materials. Geostand Geoanal Res (in press)

    Google Scholar 

  • Tesdal JE, Galbraith ED, Kienast M (2013) Nitrogen isotopes in bulk marine sediments: linking seafloor observations with subseafloor records. Biogeosciences 10:101–118

    Google Scholar 

  • Teutsch N, Schmid M, Muller B, Halliday AN, Burgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic-anoxic boundary in lake Nyos. Earth Planet Sci Lett 285:52–60

    Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    Google Scholar 

  • Thode HG, Macnamara J, Collins CB (1949) Natural variations in the isotopic content of sulphur and their significance. Can J Res 27B:361

    Google Scholar 

  • Tipper ET, Galy A, Bickle MJ (2006a) Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth Planet Sci Lett 247:267–279

    Google Scholar 

  • Tipper ET, Galy A, Bickle MJ (2008) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan–Plateau region: lithological or fractionation control? Geochim Cosmochim Acta 72:1057–1075

    Google Scholar 

  • Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA (2006b) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet Sci Lett 250:241–253

    Google Scholar 

  • Tipper ET, Gaillardet J, Galy A, Louvat P, Bickle MJ, Capmas F (2010) Calcium isotope ratios in the world´s largest rivers: a constraint on the maximum imbalance of oceanic calcium fluxes. Global Biogeochemical Cyles 24:10.1029/2009GB003574

  • Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology 28:507–510

    Google Scholar 

  • Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910

    Google Scholar 

  • Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238

    Google Scholar 

  • Tomaszak PB (2004) Lithium isotopes in earth and planetary sciences. Rev Mineral Geochem

    Google Scholar 

  • Tonarini S, Leeman WP, Leat PT (2011) Subduction erosion of forearc mantle wedge implicated in the genesis of the South Sandwich Island (SSI) arc: evidence from boron isotope systematics. Earth Planet Sci Lett 301:275–284

    Google Scholar 

  • Toutain JP, Sonke J et al (2008) Evidence for Zn isotopic fractionation at Merapi volcano. Chem Geol 253:74–82

    Google Scholar 

  • Trofimov A (1949) Isotopic constitution of sulfur in meteorites and in terrestrial objects. Dokl Akad Nauk SSSR 66:181 (in Russian)

    Google Scholar 

  • Trudinger PA, Chambers LA, Smith JW (1985) Low temperature sulphate reduction: biological versus abiological. Can J Earth Sci 22:1910–1918

    Google Scholar 

  • Truesdell AH (1974) Oxygen isotope activities and concentrations in aqueous salt solution at elevated temperatures: Consequences for isotope geochemistry. Earth Planet Sci Lett 23:387–396

    Google Scholar 

  • Turner JV (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1192

    Google Scholar 

  • Urey HC, Brickwedde FG, Murphy GM (1932) A hydrogen isotope of mass 2 and its concentration. Phys Rev 40:1

    Google Scholar 

  • Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water: a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57:3815–3818

    Google Scholar 

  • Usdowski E, Michaelis J, Böttcher MB, Hoefs J (1991) Factors for the oxygen isotope equilibrium fractionation between aqueous CO2, carbonic acid, bicarbonate, carbonate, and water. Z Phys Chem 170:237–249

    Google Scholar 

  • Uvarova YA, Kyser TK, Geagea ML, Chipley D (2015) Variations in the uranium isotopic composition of uranium ores from different types of uranium deposits. Geochim Cosmochim Acta (in press)

    Google Scholar 

  • Valdes MC, Moreira M, Foriel J, Moynier F (2014) The nature of Earth’s building blocks as revealed by calcium isotopes. Earth Planet Sci Lett 394:135–145

    Google Scholar 

  • Valley JW, O’Neil JR (1981) 13C/12C exchange between calcite and graphite: a possible thermometer in Greville marbles. Geochim Cosmochim Acta 45:411–419

    Google Scholar 

  • Van Acker M, Shahar A, Young ED, Cöleman ML (2006) GC/Multiple Collector-ICPMS method for chlorine stable isotope analysis of chlorinated aliphatic hydrocarbons. Anal Chem 78:4663–4667

    Google Scholar 

  • Van den Boorn SH, van Bergen MJ, Vroon PZ, de Vries ST, Nijman W (2010) Silicon isotope and trace element constraints on the origin of ≈ 3.5 Ga cherts: implications for Early Archaean marine environments. Geochim Cosmochim Acta 74:1077–1103

    Google Scholar 

  • Van Warmerdam EM, Frape SK, Aravena R, Drimmie RJ, Flatt H, Cherry JA (1995) Stable chlorine and carbon isotope measurements of selected chlorinated organic solvents. Appl Geochem 10:547–552

    Google Scholar 

  • Vance D, Archer C, Bermin J, Perkins J, Statham PC, Lohan MC, Ellwood MJ, Mills RA (2008) The copper isotope geochemistry of rivers and oceans. Earth Planet Sci Lett 274:204–213

    Google Scholar 

  • Varela DE, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in southern ocean surface waters. Glob Biogeochem Cycles 18. doi:10/1029/2003GB002140

    Google Scholar 

  • Velinsky DJ, Pennock JR, Sharp JH, Cifuentes LA, Fogel ML (1989) Determination of the isotopic composition of ammonium-nitrogen at the natural abundance level from estuarine waters. Mar Chem 26:351–361

    Google Scholar 

  • Vengosh A, Chivas AR, McCulloch M, Starinsly A, Kolodny Y (1991a) Boron isotope geochemistry of Australian salt lakes. Geochim Cosmochim Acta 55:2591–2606

    Google Scholar 

  • Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Tech 28:1968–1974

    Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991b) Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta 55:1689–1695

    Google Scholar 

  • Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336

    Google Scholar 

  • Vennemann T, O’Neil JR (1996) Hydrogen isotope exchange reactions between hydrous minerals and hydrogen: I. A new approach for the determination of hydrogen isotope fractionation at moderate temperatures. Geochim Cosmochim Acta 60:2437–2451

    Google Scholar 

  • Viers J et al (2007) Evidence of Zn isotope fractionation in a soil-plant system of a pristine tropical watershed (Nsimi, Cameroon). Chem Geol 239:124–137

    Google Scholar 

  • Voegelin AR, Nägler TF, Beukes NJ, Lacassie JP (2010) Molybdenum isotopes in late Archean carbonate rocks: implications for early Earth oxygenation. Precambr Res 182:70–82

    Google Scholar 

  • Voegelin AR, Nägler TF, Samankassou E, Villa IM (2009) Molybdenum isotopic composition of modern and Carboniferous carbonates. Chem Geol 265:488–498

    Google Scholar 

  • Vogel JC, Grootes PM, Mook WG (1970) Isotopic fractionation between gaseous and dissolved carbon dioxide. Z Physik 230:225–238

    Google Scholar 

  • Vollstädt H, Eisenhauer A et al. (2014) The Phanerozoic δ88/86Sr record of seawater: new constraints on past changes in oceanic carbonate fluxes. Geochim Cosmochim Acta 128:249–265

    Google Scholar 

  • Von Allmen K, Böttcher ME, Samankassou E, Nägler TF (2010) Barium isotope fractionation in the global barium cycle: first evidence from barium minerals and precipitation experiments. Chem Geol 277:70–77

    Google Scholar 

  • Wachter EA, Hayes JM (1985) Exchange of oxygen isotopes in carbon dioxide-phosphoric acid systems. Chem Geol 52:365–374

    Google Scholar 

  • Wang Z, Hu P, Gaetani G, Liu C, Saenger C, Cohen A, Hart S (2013b) Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochim Cosmochim Acta 102:113–123

    Google Scholar 

  • Wang Y, Sessions AL, Nielsen JR, Goddard WA (2009a) Equilibrium 2H/1H fractionations in organic molecules. I. Calibration of ab initio calculations. Geochim Cosmochim Acta 73:7060–7075

    Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA (2009b) Equilibrium 2H/1H fractionations in organic molecules. II: Linear alkanes, alkenes, ketones, carboxylic acids, esters, alcohols and ethers. Geochim Cosmochim Acta 73:7076–7086

    Google Scholar 

  • Wang Y, Sessions AL, Nielsen RJ, Goddard WA (2013a) Equilibrium 2H/1H fractionation in organic molecules. III Cyclic ketones and hydrocarbons. Geochim Cosmochim Acta 107:82–95

    Google Scholar 

  • Wanner C, Sonnenthal EL, Liu XM (2014) Seawater δ7Li: a direct proxy for global CO2 consumption by continental silicate weathering? Chem Geol 381:154–167

    Google Scholar 

  • Wasylenki LE, Swihart JW, Romaniello SJ (2014) Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength. Geochim Cosmochim Acta 140:212–226

    Google Scholar 

  • Wei G, Ma J, Liu Y, Xie L, Lu W, Deng W, Ren Z, Zeng T, Yang Y (2013) Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River: implications for chemical weathering. Chem Geol 343:67–75

    Google Scholar 

  • Weinstein C, Moynier F, Wang K, Paniello R, Foriel J, Catalano J, Pichat S (2011) Isotopic fractionation of Cu in plants. Chem Geol 286:266–271

    Google Scholar 

  • Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) Isotopic discriminationof zinc in higher plants. New Phytol 165:703–710

    Google Scholar 

  • Weiss DJ, Rausch N, Mason TFD, Coles BJ, Wilkinson JJ, Ukonmaanaho L, Arnold T, Nieminen TM (2007) Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Geochim Cosmochim Acta 71:3498–3517

    Google Scholar 

  • Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250

    Google Scholar 

  • Wen H, Carignan J (2011) Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China. Geochim Cosmochim Acta 75:1411–1427

    Google Scholar 

  • Wenzel B, Lecuyer C, Joachimski MM (2000) Comparing oxygen isotope records of Silurian calcite and phosphate—δ18O composition of brachiopods and conodonts. Geochim Cosmochim Acta 69:1859–1872

    Google Scholar 

  • Weyer S, Anbar AD, Brey GP, Münker C, Mezger K (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264

    Google Scholar 

  • Weyer S, Anbar AD, Gerdes A, Gordon GW, Algeo TJ, Boyle EA (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–3359

    Google Scholar 

  • Weyer S, Ionov D (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133

    Google Scholar 

  • Weyer S, Schwieters JB (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Inter J Mass Spectr 226:355–368

    Google Scholar 

  • Wiechert U, Fiebig J, Przybilla R, Xiao Y, Hoefs J (2002) Excimer laser isotope-ratio-monitoring mass spectrometry for in situ oxygen isotope analysis. Chem Geol 182:179–194

    Google Scholar 

  • Wiechert U, Halliday AN (2007) Non-chondritic magnesium and the origin of the inner terrestrial planets. Earth Planet Sci Lett 256:360–371

    Google Scholar 

  • Wiechert U, Hoefs J (1995) An excimer laser-based microanalytical preparation technique for in-situ oxygen isotope analysis of silicate and oxide minerals. Geochim Cosmochim Acta 59:4093–4101

    Google Scholar 

  • Wiederhold JG, Kraemer SM, Teutsch N, Borer PM, Halliday AN, Kretzschmar R (2006) Iron isotope fractionation during proton-promoted, ligand-controlled and reductive dissolution of goethite. Environ Sci Tech 40:3787–3793

    Google Scholar 

  • Wiegand BA, Chadwick OA, Vitousek PM, Wooden JH (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:L11404

    Google Scholar 

  • Wilkinson JJ, Weiss DJ, Mason TF, Coles BJ (2005) Zinc isotope variation in hydrothermal systems: preliminary evidence from the Irish Midlands ore field. Econ Geol 100:583–590

    Google Scholar 

  • Wille M, Kramers JD, Nägler TF, Beukes NJ, Schroder S, Meiser T, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta 71:2417–2435

    Google Scholar 

  • Wille M, Sutton J, Ellwood MJ, Sambridge M, Maher W, Eggins S, Kelly M (2010) Silicon isotopic fractionation in marine sponges: a new model for understanding silicon isotope variations in sponges. Earth Planet Sci Lett 292:281–289

    Google Scholar 

  • Williams LB, Ferrell RE, Hutcheon I, Bakel AJ, Walsh MM, Krouse HR (1995) Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration. Geochim Cosmochim Acta 59:765–779

    Google Scholar 

  • Williams LB, Hervig RL (2004) Boron isotopic composition of coals: a potential tracer of organic contaminated fluids. Appl Geochem 19:1625–1636

    Google Scholar 

  • Williams LB, Hervig RL, Holloway JR, Hutcheon I (2001) Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionationduring illitization of smectite. Geochim Cosmochim Acta 65:1769–1782

    Google Scholar 

  • Williams HM, Markowski A, Quitte G, Halliday AN, Teutsch N, Levasseur S (2006) Fe isotope fractionations in iron meteorites: new insight into metal-sulphide segregation and planetary accretion. Earth Planet Sci Lett 250:486–500

    Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452

    Google Scholar 

  • Wimpenny J, Gislason SR, James RH, Gannoun A, Pogge von Strandmann P, Burton KW (2010) The behavior of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279

    Google Scholar 

  • Wombacher F, Rehkämper M, Mezger K (2004) Dependence of the mass-dependence in cadmium isotope fractionation during evaporation. Geochim Cosmochim Acta 68:2349–2357

    Google Scholar 

  • Wombacher F, Rehkämper M, Mezger K (2008) Cadmium stable isotope cosmochemistry. Geochim Cosmochim Acta 72:646–667

    Google Scholar 

  • Wombacher F, Rehkämper M, Mezger K, Münker C (2003) Stable isotope compositions in geological materials and meteorites determined by multiple-collector ICPMS. Geochim Cosmochim Acta 67:4639–4654

    Google Scholar 

  • Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Google Scholar 

  • Wu L, Beard BL, Roden EE, Johnson CM (2011) Stable iron isotope fractionation between aqueous Fe (II) and hydrous ferric oxide. Environ Sci Technol 45:1845–1852

    Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290

    Google Scholar 

  • Wunder B, Meixner A, Romer R, Heinrich W (2006) Tempearature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contr Mineral Petrol 151:112–120

    Google Scholar 

  • Wunder B, Meixner A, Romer R, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216

    Google Scholar 

  • Xiao YK, Liu WG, Qi HP, Zhang CG (1993) A new method for the high-precision isotopic measurement of bromine by thermal ionization mass spectrometry. Int J Mass Spectrom Ion Proc 123:117–123

    Google Scholar 

  • Xiao Y, Teng FZ, Zhang HF, Yang W (2013) Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: product of melt-rock interaction. Geochim Cosmochim Acta 115:241–261

    Google Scholar 

  • Xue Z, Rehkämper M, Horner TJ, Abouchami W, Middag R, van de Flierd T, de Baar HJ (2013) Cadmium isotope variations in the Southern Ocean. Earth Planet Sci Lett 382:161–172

    Google Scholar 

  • Yamaguchi KE, Johnson CM, Beard BL, Ohmoto H (2005) Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kapvaal and Pilbara cratons. Chem Geol 218:135–169

    Google Scholar 

  • Yamazaki E, Nakai S, Yokoyama T, Ishihara S, Tang HF (2013) Tin isotopic analysis of cassiterites from southeastern and eastern Asia. Geochem J 47:21–35

    Google Scholar 

  • Yang S-C, Lee D-C, Ho L-Y (2012b) The isotopic composition of cadmium in the water column of the South China Sea. Geochim Cosmochim Acta 98:66–77

    Google Scholar 

  • Yang W, Teng FZ, Zhang HF (2009) Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China craton. Earth Planet Sci Lett 288:475–482

    Google Scholar 

  • Yang W, Teng FZ, Zhang HF, Li SG (2012a) Magnesium isotopic systematics of continental basalts from the North China craton: implications for tracing subducted carbonate in the mantle. Chem Geol 328:185–194

    Google Scholar 

  • Yesavage T, Fantle MS, Vervoort J, Mathur R, Jin L, Liermann LJ, Brantley SL (2012) Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: an analysis of biogeochemical weathering and Fe isotope fractionation. Geochim Cosmochim Acta 99:18–38

    Google Scholar 

  • Yin R, Feng X, Shi W (2010) Application of the stable isotope system to the study of sources and fate of Hg in the environment: a review. Appl Geochem 25:1467–1477

    Google Scholar 

  • Yin R, Feng X, Wang J, Li P, Liu J, Zhang Y, Chen J, Zheng L, Hu T (2013) Mercury speciation and mercury isotope fractionation during ore roasting process and their implication to source identification of downstream sediment in the Wanshan mercury mining area, SW China. Chem Geol 366:39–46

    Google Scholar 

  • Yokochi R, Marty B, Chazot G, Burnard P (2009) Nitrogen in perigotite xenoliths: lithophile behaviour and magmatic isotope fractionation. Geochim Cosmochim Acta 73:4843–4861

    Google Scholar 

  • Young ED, Galy A (2004) The isotope geochemistry and cosmochemistry of magnesium. Rev Mineral Geochem 55:197–230

    Google Scholar 

  • Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66:1095–1104

    Google Scholar 

  • Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional isotopes: experiments, theory and applications. Chem Geol 395:176–195

    Google Scholar 

  • Young MB, McLaughlin K, Kendall C, Stringfellow W, Rollow M, Elsbury K, Donald E, Payton A (2009) Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems. Environ Sci Techn 43:5190–5196

    Google Scholar 

  • Zambardi T, Poitrasson F, Corgne A, Meheut M, Quitte Anand M (2013) Silicon isotope variations in the inner solar system: implications for planetary formation, differentiation and composition. Geochim Cosmochim Acta 121:67–83

    Google Scholar 

  • Zambardi T, Sonke JE, Toutain JP, Sortino F, Shinohara H (2009) Mercury emissions and stable isotope compositions at Vulcano Island (Italy). Earth Planet Sci let 277:236–243

    Google Scholar 

  • Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH) -4 . Geochim Cosmochim Acta 69:2753–2766

    Google Scholar 

  • Zeebe RE (2007) An expression for the overall oxygen isotope fractionation between the sum of dissolved inorganic carbon and water. Geochem Geophys Geosys 8: 10.1029/2007GC001663

  • Zerkle AL, Schneiderich K, Maresca JA, Liermann LJ, Brantley SL (2011) Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2 fixation. Geobiology 9:94–106

    Google Scholar 

  • Zhang L, Chan LH, Gieskes JM (1998) Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochim Cosmochim Acta 62:2437–2450

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissoltion of CO2. Geochim Cosmochim Acta 59:107–114

    Google Scholar 

  • Zheng W, Hintelmann H (2010) Nuclear field shift effects in isotope fractionation of mercury during abiotic reduction in the absence of light. J Phys Chem A 114:4238–4245

    Google Scholar 

  • Zhou JX, Huang ZL, Zhou MF, Zhu XK, Muchez P (2014) Zinc, sulphur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, southwest China. Ore Geol Rev 58:41–54

    Google Scholar 

  • Zhu XK et al (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62

    Google Scholar 

  • Zhu JM, Johnson TM, Clark SK, Zhu XK, Wang XL (2014) Selenium redox cycling during weathering of Se-rich shales: a selenium isotope study. Geochim Cosmochim Acta 126:228–249

    Google Scholar 

  • Zhu P, MacDougall JD (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62:1691–1698

    Google Scholar 

  • Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005a) Natural variations of δ30Si ratios during progressive basalt weathering. Geochim Cosmochim Acta 69:4597–4610

    Google Scholar 

  • Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005b) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33:817–820

    Google Scholar 

  • Ziegler K, Young ED, Schauble E, Wasson JT (2010) Metal-silicate silicon isotope fractionationin enstatite meteorites and constraints on Earth’s core formation. Earth Planet Sci Lett 295:487–496

    Google Scholar 

  • Zink S, Schoenberg R, Staubwasser M (2010) Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim Cosmochim Acta 74:5729–5745

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Hoefs .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoefs, J. (2015). Isotope Fractionation Processes of Selected Elements. In: Stable Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19716-6_2

Download citation

Publish with us

Policies and ethics