Skip to main content

Elemental Trace Analysis in Studies of Food Products

  • Chapter
Handbook of Trace Analysis

Abstract

Mineral elements play a key role in the human body and especially in the regulation of cell metabolism. They are either incorporated into the tissues or else are present in body liquids in ionic form. They also participate in metabolic processes such as electrolyte and hormone economy, haematopoiesis, and development of the nervous and skeletal systems [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nabrzyski, M.: Functional role of some minerals in foods. In: Szefer, P., Nriagu, J.O. (eds.) Mineral Components in Foods, pp. 363–388. CRC Press/Taylor Francis Group, London/New York (2007)

    Google Scholar 

  2. Ziemlański, Ś.: Normy Żywienia Człowieka. Fizjologiczne Podstawy, pp. 1–532. Wydawnictwo Lekarskie PZWL, Warszawa (2001)

    Google Scholar 

  3. Baer-Dubkowska, W.: Chemoprewencyjne i kancerogenne składniki żywności. Nowiny Lekarskie 74, 505–509 (2005)

    Google Scholar 

  4. Nasreddine, L., Parent-Massin, D.: Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol. Lett. 127, 29–41 (2002)

    CAS  Google Scholar 

  5. Matusiewicz, H.: Wet digestion methods. In: Namieśnik, J., Chrzanowski, W., Żmijewska, P. (eds.) New Horizons and Challenges in Environmental Analysis and Monitoring, pp. 224–259. CEEAM, Gdańsk (2003)

    Google Scholar 

  6. Kocjan, R.: Chemia analityczna T.2. Analiza instrumentalna. Wydawnictwo Lekarskie PZWL, Warszawa (2000)

    Google Scholar 

  7. Lichon, M.J.: Sample preparation. In: Nollet, L.M. (ed.) Residues and Other Food Component Analysis. Handbook of Food Analysis, vol. 2, 2nd edn, pp. 1485–1512. CRC Press, London (2004)

    Google Scholar 

  8. Capar, S.G., Szefer, P.: Determination and speciation of trace elements in foods. In: Otles, S. (ed.) Methods of Analysis of Food Components and Additives, pp. 111–158. CRC Press, Boca Raton, FL (2005)

    Google Scholar 

  9. Hoenig, M.: Preparation steps in environmental trace element analysis—facts and traps. Talanta 54, 1021–1038 (2001)

    CAS  Google Scholar 

  10. Gouveia, S.T., Lopes, G.S., Fatibello-Filho, O., Nogueira, A.R.A., Nóbrega, J.A.: Homogenization of breakfast cereals using cryogenic grinding. J. Food Eng. 51(1), 59–63 (2002)

    Google Scholar 

  11. Cubadda, F., Baldini, M., Carcea, M., Pasqui, L.A., Raggi, A., Stacchini, P.: Influence of laboratory homogenization procedures on trace element content of food samples: an ICP-MS study on soft and durum wheat. Food Addit. Contam. 18, 778–787 (2001)

    CAS  Google Scholar 

  12. Demirel, S., Tuzen, M., Saracoglu, S., Soylak, M.: Evaluation of various digestion procedures for trace element contents of some food materials. J. Hazard. Mater. 152, 1020–1026 (2008)

    CAS  Google Scholar 

  13. Grembecka, M., Malinowska, E., Szefer, P.: Differentiation of market coffee and its infusions in view of their mineral composition. Sci. Total Environ. 383, 59–69 (2007)

    CAS  Google Scholar 

  14. Mansour, S.A., Belal, M.H., Abou-Arab, A.A.K., Gad, M.F.: Monitoring of pesticides and heavy metals in cucumber fruits produced from different farming systems. Chemosphere 75, 601–609 (2009)

    CAS  Google Scholar 

  15. Seenivasan, S., Manikandan, N., Muraleedharan, N.N., Selvasundaram, R.: Heavy metal content of black teas from south India. Food Control 19, 746–749 (2008)

    CAS  Google Scholar 

  16. Vélez, D., Devesa, V., Súñer, M.A., Montoro, R.: Metal contamination in food. In: Nollet, L.M. (ed.) Residues and Other Food Component Analysis. Handbook of Food Analysis, vol. 2, 2nd edn, pp. 1485–1512. CRC Press, London (2004)

    Google Scholar 

  17. Mader, P., Száková, J., Curdová, E.: Combination of classical dry ashing with stripping voltammetry in trace element analysis of biological materials: review of literature published after 1978. Talanta 43, 521–534 (1996)

    CAS  Google Scholar 

  18. Vassileva, E., Dočekalová, H., Baeten, H., Vanhentenrijk, S., Hoenig, M.: Revisitation of mineralization modes for arsenic and selenium determinations in environmental samples. Talanta 54, 187–196 (2001)

    CAS  Google Scholar 

  19. Fecher, P., Ruhnke, G.: Cross contamination of lead and cadmium during dry ashing of food samples. Anal. Bioanal. Chem. 373, 787–791 (2002)

    CAS  Google Scholar 

  20. Baklanov, A.N., Bokhan Yu, V., Chmilenko, F.A.: Analysis of food products using carbonization and ultrasonic techniques. J. Anal. Chem. 58, 489–493 (2003)

    CAS  Google Scholar 

  21. Grembecka, M., Szefer, P.: Quality of confectionery products in view of their mineral composition. Food Anal. Methods (2011). doi: 10.1007/s12161-011-9234-0

    Google Scholar 

  22. Gonzálvez, A., Armenta, S., Cervera, M.L., de la Guardia, M.: Elemental composition of seasoning products. Talanta 74, 1085–1095 (2008)

    Google Scholar 

  23. Afonso, C., Lourenço, H.M., Dias, A., Nunes, M.L., Castro, M.: Contaminant metals in black scabbard fish (Aphanopus carbo) caught off Madeira and the Azores. Food Chem. 101, 120–125 (2007)

    CAS  Google Scholar 

  24. González, S., Flick, G.J., O’Keefe, S.F., Duncan, S.E., McLean, E., Craig, S.R.: Composition of farmed and wild yellow perch (Perca flavescens). J. Food Compos. Anal. 19(6–7), 720–726 (2006)

    Google Scholar 

  25. Kwoczek, M., Szefer, P., Hać, E., Grembecka, M.: Essential and toxic elements in seafood available in Poland from different geographical regions. J. Agric. Food Chem. 54, 3015–3024 (2006)

    CAS  Google Scholar 

  26. Malinowska, E., Szefer, P., Falandysz, J.: Metals bioaccumulation by bay bolete, Xerocomus badius, from selected sites in Poland. Food Chem. 84, 405–416 (2004)

    CAS  Google Scholar 

  27. Dugo, G., La Pera, L., Turco, V., Lo, P., Rosina, M., Saitta, M.: Effect of boiling and peeling on manganese content of some vegetables determined by derivative anodic stripping chronopotentiometry (dASCP). Food Chem. 93, 703–711 (2005)

    CAS  Google Scholar 

  28. Nardi, E.P., Evangelista, F.S., Tormen, L., Saint’Pierre, T.D., Curtius, A.J., Souza, S.S., de Barbosa, F.: The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 112, 727–732 (2009)

    CAS  Google Scholar 

  29. Lodenius, M., Tulisalo, E.: Open digestion of some plant and fungus materials for mercury analysis using different temperatures and sample sizes. Sci. Total Environ. 176, 81–84 (1995)

    CAS  Google Scholar 

  30. Gasparics, T., Martínez, R.M.G., Caroli, S., Záray, G.: Determination of trace elements in Antarctic krill samples by inductively coupled atomic emission and graphite furnace atomic absorption spectrometry. Microchem. J. 67, 279–284 (2000)

    CAS  Google Scholar 

  31. Achterberg, E.P., Braungardt, C.B., Sandford, R.C., Worsfold, P.J.: UV digestion of seawater samples prior to the determination of copper using flow injection with chemiluminescence detection. Anal. Chim. Acta 440, 27–36 (2001)

    CAS  Google Scholar 

  32. Lambert, D.F., Turoczy, N.J.: Comparison of digestion methods for the determination of selenium in fish tissue by cathodic stripping voltammetry. Anal. Chim. Acta 408, 97–102 (2000)

    CAS  Google Scholar 

  33. Recknagel, S., Brätter, P., Tomiak, A., Rösick, U.: Determination of selenium in blood serum by ICP-OES including an on-line wet digestion and Se-hydride formation procedure. Fresenius J. Anal. Chem. 346, 833–836 (1993)

    CAS  Google Scholar 

  34. Simon, S., Barats, A., Pannier, F., Potin-Gautier, M.: Development of an on-line UV decomposition system for direct coupling of liquid chromatography to atomic-fluorescence spectrometry for selenium speciation analysis. Anal. Bioanal. Chem. 383, 562–569 (2005)

    CAS  Google Scholar 

  35. Burguera, J.L., Burguera, M.: Molybdenum in human whole blood of adult residents of the Merida State (Venezuela). J. Trace Elem. Med. Biol. 21, 178–183 (2007)

    CAS  Google Scholar 

  36. Amarasiriwardena, D., Krushevska, A., Argentine, M., Barnes, R.M.: Vapour-phase acid digestion of micro samples of biological material in a high-temperature, high-pressure asher for inductively coupled plasma atomic emission spectrometry. Analyst 119, 1017–1021 (1994)

    CAS  Google Scholar 

  37. Tinggi, U., Reilly, C., Patterson, C.: Determination of manganese and chromium in foods by atomic absorption spectrometry after wet digestion. Food Chem. 60, 123–128 (1997)

    CAS  Google Scholar 

  38. Muñoz, O., Bastias, J.M., Araya, M., Morales, A., Orellana, C., Rebolledo, R., Velez, D.: Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem. Toxicol. 43, 1647–1655 (2005)

    Google Scholar 

  39. Biziuk, M., Kuczyńska, J.: Mineral components in food – analytical implications. In: Szefer, P., Nriagu, J.O. (eds.) Mineral Components in Foods, pp. 1–32. CRC Press/Taylor Francis Group, London/New York (2007)

    Google Scholar 

  40. Lamble, K.L., Hill, S.J.: Microwave digestion procedures for environmental matrices. Analyst 123, 103R–133R (1998)

    CAS  Google Scholar 

  41. Sun, D.-S., Waters, J.K., Mawhinney, T.P.: Determination of thirteen common elements in food samples by inductively coupled plasma atomic emission spectrometry: comparison of five digestion methods. J. AOAC Int. 83, 1218–1224 (2000)

    CAS  Google Scholar 

  42. Gawalko, E.J., Nowicki, T.W., Babb, J., Tkachuk, R., Wu, S.: Comparison of closed-vessel and focused open-vessel microwave dissolution for determination of cadmium, copper, lead, and selenium in wheat, wheat products, corn bran, and rice flour by transverse-heated graphite furnace atomic absorption spectrometry. J. AOAC Int. 80, 379–387 (1997)

    CAS  Google Scholar 

  43. Dolan, S.P., Capar, S.G.: Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry. J. Food Compos. Anal. 15, 593–615 (2002)

    CAS  Google Scholar 

  44. Krzysik, M., Grajeta, H., Prescha, A.: Chromium content in selected convenience and fast foods in Poland. Food Chem. 107, 208–212 (2008)

    CAS  Google Scholar 

  45. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 973.34. Cadmium in Food – Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  46. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 972.25. Lead in Food – Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  47. Official Methods of Analysis of AOAC International 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 999.10. Lead, Cadmium, Zinc, Copper, and Iron in Foods – Atomic Absorption Spectrophotometry after Microwave Digestion (2002)

    Google Scholar 

  48. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 999.11. Determination of Lead, Cadmium, Copper, Iron, and Zinc in Foods – Atomic Absorption Spectrophotometry after Dry Ashing – NMLK–AOAC Method (2002)

    Google Scholar 

  49. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 985.16. Tin in Canned Foods – Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  50. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 969.32. Zinc in Food – Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  51. International Organization for Standardization ISO 6636-2, Fruits, Vegetables and Derived Products – Determination of Zinc Content – Part 2: Atomic Absorption Spectrometric Method (1981)

    Google Scholar 

  52. International Organization for Standardization ISO 7952, Fruits, Vegetables and Derived Products – Determination of Copper Content – Method Using Flame Atomic Absorption Spectrometry (1994)

    Google Scholar 

  53. International Organization for Standardization ISO 9526, Fruits, Vegetables and Derived Products – Determination of Iron Content by Flame Atomic Absorption Spectrometry (1990)

    Google Scholar 

  54. International Organization for Standardization ISO 11813, Milk and Milk Products – Determination of Zinc Content – Flame Atomic Absorption Spectrometric Method (1998)

    Google Scholar 

  55. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 991.25. Calcium, Magnesium, and Phosphorus in Cheese – Atomic Absorption Spectrophotometric and Colorimetric Method (2002)

    Google Scholar 

  56. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 985.35. Minerals in Infant Formula, Enteral Products, and Pet Foods – Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  57. Da-Col, J.A., Domene, S.M.A., Pereira-Filho, E.R.: Fast determination of Cd, Fe, Pb and Zn in food Rusing AAS. Food Anal. Methods 2, 110–115 (2009)

    Google Scholar 

  58. Lombardi-Boccia, G., Aguzzi, A., Cappelloni, M., Di Lullo, G.: Content of some trace elements and minerals in the Italian total-diet. J. Food Compos. Anal. 13, 525–527 (2000)

    CAS  Google Scholar 

  59. Yebra, M.C., Cancela, S., Cespón, R.M.: Automatic determination of nickel in foods by flame atomic absorption spectrometry. Food Chem. 108, 774–778 (2008)

    CAS  Google Scholar 

  60. Kawashima, L.M., Valente Soares, L.M.: Mineral profile of raw and cooked leafy vegetables consumed in Southern Brazil. J. Food Compos. Anal. 16, 605–611 (2003)

    CAS  Google Scholar 

  61. Pandey, J., Pandey, U.: Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ. Monit. Assess. 149, 61–74 (2009)

    Google Scholar 

  62. Tuzen, M., Soylak, M.: Evaluation of trace element contents in canned foods marketed from Turkey. Food Chem. 102, 1089–1095 (2007)

    CAS  Google Scholar 

  63. Saracoglu, S., Saygi, K.O., Uluozlu, O.D., Tuzen, M., Soylak, M.: Determination of trace element contents of baby foods from Turkey. Food Chem. 105, 280–285 (2007)

    CAS  Google Scholar 

  64. Santelli, R.E., Bezerra de Almeida, M., de SantAna, O.D., Cassella, R.J., Ferreira, S.L.C.: Multivariate technique for optimization of digestion procedure by focused microwave system for determination of Mn, Zn and Fe in food samples using FAAS. Talanta 68, 1083–1088 (2006)

    CAS  Google Scholar 

  65. Howe, A., Fung, L.H., Lalor, G., Rattray, R., Vutchkov, M.: Elemental composition of Jamaican foods 1: a survey of five food crop categories. Environ. Geochem. Health 27, 19–30 (2005)

    CAS  Google Scholar 

  66. Bellido-Milla, D., Moreno-Perez, J.M., Hernandez-Artiga, M.P.: Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves. Spectrochim. Acta B 55, 855–864 (2000)

    Google Scholar 

  67. Abebe, Y., Bogale, A., Hambidge, K.M., Stoecker, B.J., Bailey, K., Gibson, R.S.: Phytate, zinc, iron and calcium content of selected raw and prepared foods consumed in rural Sidama, Southern Ethiopia, and implications for bioavailability. J. Food Comp. Anal. 20, 161–168 (2007)

    CAS  Google Scholar 

  68. Milacic, R., Kralj, B.: Determination of Zn, Cu, Cd, Pb, Ni and Cr in some Slovenian foodstuffs. Eur. Food Res. Technol. 217, 211–214 (2003)

    CAS  Google Scholar 

  69. Khajeh, M.: Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box-Behnken design. J. Food Compos. Anal. 22, 343–346 (2009)

    CAS  Google Scholar 

  70. Miller-Ihli, N.J.: Atomic absorption and atomic emission spectrometry for the determination of the trace element content of selected fruits consumed in the United States. J. Food Compos. Anal. 9, 301–311 (1996)

    CAS  Google Scholar 

  71. dos Santos, J.S., dos Santos, M.L.P., Conti, M.M., dos Santos, S.N., de Oliveira, E.: Evaluation of some metals in Brazilian coffees cultivated during the process of conversion from conventional to organic agriculture. Food Chem. 115, 1405–1410 (2009)

    Google Scholar 

  72. Butcher, D.J., Sneddon, J.: A Practical Guide to Graphite Furnace Atomic Absorption Spectrometry. Wiley-Interscience, New York (1998)

    Google Scholar 

  73. International Organization for Standardization ISO 6561, Fruits, Vegetables and Derived Products – Determination of Cadmium Content – Flameless Atomic Absorption Spectrometric Method (1983).

    Google Scholar 

  74. International Organization for Standardization ISO 6633, Fruits, Vegetables and Derived Products – Determination of Lead Content – Flameless Atomic Absorption Spectrometric Method (1984).

    Google Scholar 

  75. International Organization for Standardization ISO 14377, Canned Evaporated Milk – Determination of Tin Content – Method Using Graphite Furnace Atomic Absorption Spectrometry (2002).

    Google Scholar 

  76. International Organization for Standardization ISO 15774, Animal and Vegetable Fats and Oils – Determination of Cadmium Content by Direct Graphite Furnace Atomic Absorption Spectrometry (2000).

    Google Scholar 

  77. International Organization for Standardization ISO 12193, Animal and Vegetable Fats and Oils – Determination of Lead Content – Graphite Furnace Atomic Absorption Method (1994)

    Google Scholar 

  78. International Organization for Standardization ISO 10540-2, Animal and Vegetable Fats and Oils – Determination of Phosphorus Content – Part 2: Method Using Graphite Furnace Atomic Absorption Spectrometry (2003)

    Google Scholar 

  79. International Organization for Standardization ISO 8294, Animal and Vegetable Fats and Oils – Determination of Copper, Iron and Nickel Contents – Graphite Furnace Atomic Absorption Method (1994)

    Google Scholar 

  80. International Organization for Standardization ISO 11212-4, Starch and Derived Products – Heavy Metals Content – Part 4: Determination of Cadmium Content by Atomic Absorption Spectrometry with Electrothermal Atomization (1997)

    Google Scholar 

  81. International Organization for Standardization ISO 11212-3, Starch and Derived Products – Heavy Metals Content – Part 3: Determination of Lead Content by Atomic Absorption Spectrometry with Electrothermal Atomization (1997)

    Google Scholar 

  82. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 997.15. Lead in Sugars and Syrups – Graphite Furnace Atomic Absorption Method (2002)

    Google Scholar 

  83. Capar, G.S., Cunningham, W.C.: Element and radionuclide concentrations in food: FDA total diet study 1991–1996. J. AOAC Int. 83, 157–177 (2000)

    CAS  Google Scholar 

  84. Tripathi, R.M., Mahapatra, S., Raghunath, R., Kumar, A.V., Sadasivan, S.: Daily intake of aluminium by adult population of Mumbai, India. Sci. Total Environ. 299, 73–77 (2002)

    CAS  Google Scholar 

  85. Alberti-Fidanza, A., Burini, G., Perriello, G.: Trace elements in foods and meals consumed by students attending the faculty cafeteria. Sci. Total Environ. 287, 133–140 (2002)

    CAS  Google Scholar 

  86. Malmauret, L., Parent-Massin, D., Hardy, J.-L., Verger, P.: Contaminants in organic and conventional foodstuffs in France. Food Addit. Contam. 19, 524–532 (2002)

    CAS  Google Scholar 

  87. Larsen, E.H., Andersen, N.L., Møller, A., Petersen, A., Mortensen, G.K., Petersen, J.: Monitoring the content and intake of trace elements from food in Denmark. Food Addit. Contam. 19, 33–46 (2002)

    CAS  Google Scholar 

  88. Bratakos, M.S., Lazos, E.S., Bratakos, S.M.: Chromium content of selected Greek foods. Sci. Total Environ. 290, 47–58 (2002)

    CAS  Google Scholar 

  89. López, F.F., Cabrera, C., Lorenzo, M.L., López, M.C.: Aluminum content in foods and beverages consumed in the Spanish diet. J. Food Sci. 65, 206–210 (2000)

    Google Scholar 

  90. López, F.F., Cabrera, C., Lorenzo, M.L., López, M.C.: Aluminium content of drinking waters, fruit juices and soft drinks: contribution to dietary intake. Sci. Total Environ. 292, 205–213 (2002)

    Google Scholar 

  91. Cabrera, C., Lloris, F., Giménez, R., Olalla, M., López, M.C.: Mineral content in legumes and nuts: contribution to the Spanish dietary intake. Sci. Total Environ. 308, 1–14 (2003)

    CAS  Google Scholar 

  92. Cindric, I.J., Zeiner, M., Steffan, I.: Trace elemental characterization of edible oils by ICP–AES and GFAAS. Microchem. J. 85, 136–139 (2007)

    CAS  Google Scholar 

  93. Lendinez, E., Lorenzo, M.L., Cabrera, C., López, M.C.: Chromium in basic foods of the Spanish diet: seafood, cereals, vegetables, olive oils and dairy products. Sci. Total Environ. 278, 183–189 (2001)

    CAS  Google Scholar 

  94. Musaiger, A.O., Al-Jedah, J.H., D’souza, R.: Occurrence of contaminants in foods commonly consumed in Bahrain. Food Control 19, 854–861 (2008)

    CAS  Google Scholar 

  95. Julshamn, K., Thorlacius, A., Lea, P.: Determination of arsenic in seafood by electrothermal atomic absorption spectrometry after microwave digestion: NMKL collaborative study. J. AOAC Int. 83, 1423–1428 (2000)

    CAS  Google Scholar 

  96. Fedorov, P.N., Ryabchuk, G.N., Zverev, A.V.: Comparison of hydride generation and graphite furnace atomic absorption spectrometry for the determination of arsenic in food. Spectrochim. Acta B 52, 1517–1523 (1997)

    Google Scholar 

  97. Veillon, C., Patterson, K.Y.: Analytical issues in nutritional chromium research. J. Trace Elem. Exp. Med. 12, 99–109 (1999)

    CAS  Google Scholar 

  98. Dedina, J., Tsalev, D.L.: Hydride Generation Atomic Absorption Spectrometry. Wiley, Chichester (1995)

    Google Scholar 

  99. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 986.15. Arsenic, Cadmium, Lead, Selenium, and Zinc in Human and Pet Foods – Multielement Method (2002)

    Google Scholar 

  100. Tsalev, D.L.: Vapor generation or electrothermal atomic absorption spectrometry? – both! Spectrochim. Acta B 55, 915–931 (2000)

    Google Scholar 

  101. Yan, X.-P., Ni, Z.-M.: Vapor generation atomic absorption spectrometry. Anal. Chim. Acta 291, 89–105 (1994)

    CAS  Google Scholar 

  102. Kabengera, C., Bodart, P., Hubert, P., Thunus, L., Noirfalise, A.: Optimization and validation of arsenic determination in foods by hydride generation flame atomic absorption spectrometry. J. AOAC Int. 85, 122–127 (2002)

    CAS  Google Scholar 

  103. Tinggi, U.: Determination of selenium in meat products by hydride generation atomic absorption spectrophotometry. J. AOAC Int. 82, 364–367 (1999)

    CAS  Google Scholar 

  104. Hussein, L., Bruggeman, J.: Selenium analysis of selected Egyptian foods and estimated daily intakes among a population group. Food Chem. 65, 527–532 (1999)

    CAS  Google Scholar 

  105. Scanlon, K.A., MacIntosh, D.L., Hammerstrom, K.A., Ryan, P.B.: A longitudinal investigation of solid-food based dietary exposure to selected elements. J. Expo. Anal. Environ. Epidemiol. 9, 485–493 (1999)

    CAS  Google Scholar 

  106. Tsuda, T., Inoue, T., Kojima, M., Aoki, S.: Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults. J. AOAC Int. 78, 1363–1368 (1995)

    CAS  Google Scholar 

  107. Díaz-Alarcón, J.P., Navarro-Alarcón, M., López-García de la Serrana, H., López-Martínez, M.C.: Determination of selenium in meat products by hydride generation atomic absorption spectrometry–selenium levels in meat, organ meats, and sausages in Spain. J. Agric. Food Chem. 44, 1494–1497 (1996)

    Google Scholar 

  108. Sawaya, W.N., Al-Awadhi, F., Aziz, A., Al-Rashdan, A., Mahjoub, B.T., Al-Amiri, H.: Nutritional profile of Kuwaiti composite dishes: minerals and vitamins. J. Food Compos. Anal. 11, 70–88 (1998)

    CAS  Google Scholar 

  109. Plessi, M., Bertelli, D., Monzani, A.: Mercury and selenium content in selected seafood. J. Food Compos. Anal. 14, 461–467 (2001)

    CAS  Google Scholar 

  110. Foster, L.H., Sumar, S.: Selenium concentrations in soya based milks and infant formulae available in the United Kingdom. Food Chem. 56, 93–98 (1996)

    CAS  Google Scholar 

  111. Yadav, S.K., Singh, I., Sharma, A., Singh, D.: Selenium status in food grains of northern districts of India. J. Environ. Manage. 88, 770–774 (2008)

    CAS  Google Scholar 

  112. Moretto, L., Cadore, A.S.: Determination of arsenic in food samples by hydride generation – atomic absorption spectrometry. Microchim. Acta 146, 239–244 (2004)

    CAS  Google Scholar 

  113. International Organization for Standardization ISO 6637, Fruits, Vegetables and Derived Products – Determination of Mercury Content – Flameless Atomic Absorption Method (1984)

    Google Scholar 

  114. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 977.15. Mercury in Fish – Alternative Flameless Atomic Absorption Spectrophotometric Method (2002)

    Google Scholar 

  115. Storelli, M.M., Marcotrigiano, G.O.: Total mercury levels in muscle tissue of swordfish (Xiphias gladius) and bluefin tuna (Thunnus thynnus) from the Mediterranean Sea (Italy). J. Food Prot. 64, 1058–1061 (2001)

    CAS  Google Scholar 

  116. Falandysz, J., Jedrusiak, A., Lipka, K., Kannan, K., Kawano, M., Gucia, M., Brzostowski, A., Dadej, M.: Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland. Chemosphere 54, 461–466 (2004)

    CAS  Google Scholar 

  117. Love, J.L., Rush, G.M., McGrath, H.: Total mercury and methylmercury levels in some New Zealand commercial marine fish species. Food Addit. Contam. 20, 37–43 (2003)

    CAS  Google Scholar 

  118. Storelli, M.M., Stuffler, R.G., Marcotrigiano, G.O.: Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Addit. Contam. 19, 715–720 (2002)

    CAS  Google Scholar 

  119. Tahán, J.E., Sanchez, J.M., Granadillo, V.A., Cubillan, H.S., Romero, R.A.: Concentration of total Al, Cr, Cu, Fe, Hg, Na, Pb, and Zn in commercial canned seafood determined by atomic spectrometric means after mineralization by microwave heating. J. Agric. Food Chem. 43, 910–915 (1995)

    Google Scholar 

  120. Vereda Alonso, E., Siles Cordero, M.T., García de Torres, A., Cañada Rudner, P., Cano Pavón, J.M.: Mercury speciation in sea food by flow injection cold vapor atomic absorption spectrometry using selective solid phase extraction. Talanta 77, 53–59 (2008)

    CAS  Google Scholar 

  121. Voegborlo, R.B., El-Methnani, A.M., Abedin, M.Z.: Mercury, cadmium and lead content of canned tuna fish. Food Chem. 67, 341–345 (1999)

    CAS  Google Scholar 

  122. Dabeka, R.W., Bradley, P., McKenzie, A.D.: Routine, high-sensitivity, cold vapor atomic absorption spectrometric determination of total mercury in foods after low-temperature digestion. J. AOAC Int. 85, 1136–1143 (2002)

    CAS  Google Scholar 

  123. Zenebon, O., Sakuma, A.M., Dovidauskas, S., Okada, I.A., de MaioFranca, D., Lichtig, J.: Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry. J. AOAC Int. 85, 149–152 (2002)

    CAS  Google Scholar 

  124. Thomas, R.: Practical Guide to ICP-MS, pp. 1–316. CRC Press, Gaithersburg, MD (2008)

    Google Scholar 

  125. Heitkamper, D.T., Caruso, J.A.: Chromatographic sample introduction for plasma mass spectrometry. In: Krull, I.S. (ed.) Trace Metal Analysis and Speciation, pp. 49–70. Elsevier, Amsterdam (1991)

    Google Scholar 

  126. Zbinden, P., Andrey, D.: Determination of trace element contaminants in food matrixes using a robust, routine analytical method for ICP-MS. At. Spectrosc. 19, 214–219 (1998)

    CAS  Google Scholar 

  127. Bhandari, S.A., Amarasiriwardena, D.: Closed-vessel microwave acid digestion of commercial maple syrup for the determination of lead and seven other trace elements by inductively coupled plasma-mass spectrometry. Microchem. J. 64, 73–84 (2000)

    CAS  Google Scholar 

  128. Rädlinger, G., Heumann, K.G.: Iodine determination in food samples using inductively coupled plasma isotope dilution mass spectrometry. Anal. Chem. 70, 2221–2224 (1998)

    Google Scholar 

  129. Fecher, P.A., Goldmann, I., Nagengast, A.: Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J. Anal. At. Spectrom. 13, 977–982 (1998)

    CAS  Google Scholar 

  130. Choi, Y.C., Kim, J., Lee, H.-S., Kim, C., Hwang, I.K., Park, H.K., Oh, C.-H.: Selenium content in representative Korean foods. J. Food Compos. Anal. 22, 117–122 (2009)

    CAS  Google Scholar 

  131. Whyte, A.L.H., Raumati, H.G., Greening, G.E., Gibbs-Smith, E., Gardner, J.P.A.: Human dietary exposure to heavy metals via the consumption of greenshell mussels (Perna canaliculus Gmelin 1791) from the Bay of Islands, northern New Zealand. Sci. Total Environ. 407, 4348–4355 (2009)

    CAS  Google Scholar 

  132. Bagga, D.K., Jarrett, K.A.: Risk assessment of growing vegetables in lead contaminated soil: a greenhouse study ICFAI. J. Life Sci. 3, 7–13 (2009)

    Google Scholar 

  133. Chung, S.W.C., Kwong, K.P., Yau, J.C.W., Wong, W.W.K.: Dietary exposure to antimony, lead and mercury of secondary school students in Hong Kong. Food Addit. Contam. 25, 831–840 (2008)

    CAS  Google Scholar 

  134. Jorhem, L., Åstrand, C., Sundström, B., Baxter, M., Stokes, P., Lewis, J., Petersson, G.K.: Elements in rice from the Swedish market: 1. Cadmium, lead and arsenic (total and inorganic). Food Addit. Contam. 25, 284–292 (2008)

    CAS  Google Scholar 

  135. Leblond, C., Mephara, J., Sauvé, S.: Trace Metals (Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn) in food supplements of marine origin. Hum. Ecol. Risk Assess. 14, 408–420 (2008)

    CAS  Google Scholar 

  136. Taylor, V., Jackson, B., Chen, C.: Mercury speciation and total trace element determination of low-biomass biological samples. Anal. Bioanal. Chem. 392, 1283–1290 (2008)

    CAS  Google Scholar 

  137. Llobet, J.M., Falco, G., Casas, C., Teixido, A., Domingo, J.L.: Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J. Agric. Food Chem. 51, 838–842 (2003)

    CAS  Google Scholar 

  138. Rose, M.: Bromine and iodine in 1997 UK total diet study samples. J. Environ. Monit. 3, 361–365 (2001)

    CAS  Google Scholar 

  139. Noël, L., Leblanc, J.-C., Guérin, T.: Determination of several elements in duplicate meals from catering establishments using closed vessel microwave digestion with inductively coupled plasma mass spectrometry detection: estimation of daily dietary intake. Food Addit. Contam. 20, 44–56 (2003)

    Google Scholar 

  140. Gundersen, V., Bechmann, I.E., Behrens, A., Stürup, S.: Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium cepa Hysam) and Peas (Pisum sativum Ping Pong). J. Agric. Food Chem. 48, 6094–6102 (2000)

    CAS  Google Scholar 

  141. Simpkins, W.A., Louie, H., Wu, M., Harrison, M., Goldberg, D.: Trace elements in Australian orange juice and other products. Food Chem. 71, 423–433 (2000)

    CAS  Google Scholar 

  142. Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., Yamasaki, S.-I.: ICP/MS and ICP/AES elemental analysis (38 elements) of edible mushrooms growing in Poland. Food Addit. Contam. 18, 503–513 (2001)

    CAS  Google Scholar 

  143. Kelly, S., Baxter, M., Chapman, S., Rhodes, C., Dennis, J., Brereton, P.: The application of isotopic and elemental analysis to determine the geographical origin of premium long grain rice. Eur. Food Res. Technol. 214, 72–78 (2002)

    CAS  Google Scholar 

  144. Sahan, Y., Basoglu, F., Gücer, S.: ICP-MS analysis of a series of metals (Namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chem. 105, 395–399 (2007)

    CAS  Google Scholar 

  145. Toniolo, R., Pizzzariello, A., Tubaro, F., Susmel, S., Dossi, N., Bontempelli, G.: A voltammetric approach to an estimated of metal release from tinplate promoted by ligands present in canned vegetables. J. Appl. Electrochem. 39, 979–988 (2009)

    CAS  Google Scholar 

  146. Catarino, S., Curvelo-Garcia, A.S., de Sousa, R.B.: Measurements of contaminant elements of wines by inductively coupled plasma-mass spectrometry: a comparison of two calibration approaches. Talanta 70, 1073–1080 (2006)

    CAS  Google Scholar 

  147. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 984.27. Calcium, Copper, Iron, Magnesium, Manganese, Phosphorus, Potassium, Sodium, and Zinc in Infant Formula – Inductively Coupled Plasma Emission Spectroscopic Method (2002)

    Google Scholar 

  148. Official Methods of Analysis of AOAC International, 17th edn. Rev 1, AOAC International, Gaithersburg, MD, USA, Official Method 985.01. Metals and Other Elements in Plants and Pet Foods – Inductively Coupled Plasma Emission Spectroscopic Method (2002)

    Google Scholar 

  149. International Organization for Standardization ISO 10540-3, Animal and Vegetable Fats and Oils – Determination of Phosphorus Content – Part 3: Method Using Inductively Coupled Plasma (ICP) Optical Emission Spectroscopy (2002)

    Google Scholar 

  150. Miller-Ihli, N.J.: Trace element determinations in foods and biological samples using inductively coupled plasma atomic emission spectrometry and flame atomic absorption spectrometry. J. Agric. Food Chem. 44, 2675–2679 (1996)

    CAS  Google Scholar 

  151. Lomer, M.C.E., Thompson, R.P.H., Commisso, J., Keen, C.L., Powell, J.J.: Determination of titanium dioxide in foods using inductively coupled plasma optical emission spectrometry. Analyst 125, 2339–2343 (2000)

    CAS  Google Scholar 

  152. Rao, P.V., Subba, M., Vaibhav, A., Ganesan, K.: Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 102, 215–218 (2007)

    CAS  Google Scholar 

  153. D’Ilio, S., Alessandrelli, M., Cresti, R., Forte, G., Caroli, S.: Arsenic content of various types of rice as determined by plasma-based techniques. Microchem. J. 73, 195–202 (2002)

    Google Scholar 

  154. Bode, P.: Jądrowe techniki analityczne w badaniach środowiskowych [w] Namieśnik, J., Chrzanowski, W., Szpinek, P. (red.): Nowe horyzonty i wyzwania w analityce i monitoringu środowiskowym, pp. 277–293. CEEAM, Gdańsk (2003).

    Google Scholar 

  155. Fernández, P.L., Pablos, F., Martín, M.J., González, A.G.: Multi-element analysis of tea beverages by inductively coupled plasma atomic emission spectrometry. Food Chem. 76, 483–489 (2002)

    Google Scholar 

  156. dos Santos, E.J., de Oliveira, E.: Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. J. Food Compos. Anal. 14, 523–531 (2001)

    CAS  Google Scholar 

  157. Özcan, M.: Mineral contents of some plants used as condiments in Turkey. Food Chem. 84, 437–440 (2004)

    Google Scholar 

  158. Krejcová, A., Cernohorský, T., Meixner, D.: Elemental analysis of instant soups and seasoning mixtures by ICP–OES. Food Chem. 105, 242–247 (2007)

    Google Scholar 

  159. Jurado, J.M., Alcázar, A., Pablos, F., Martín, M.J., González, A.G.: Classification of aniseed drinks by means of cluster, linear discriminant analysis and soft independent modelling of class analogy based on their Zn, B, Fe, Mg, Ca, Na and Si content. Talanta 66, 1350–1354 (2005)

    CAS  Google Scholar 

  160. Ioannidou, M.D., Zachariadis, G.A., Anthemidis, A.N., Stratis, J.A.: Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 65, 92–97 (2005)

    CAS  Google Scholar 

  161. Kucera, J., Randa, Z., Soukal, L.: A comparison of three activation analysis methods for iodine determination in foodstuffs. J. Radioanal. Nucl. Chem. 249, 61–65 (2001)

    CAS  Google Scholar 

  162. Ventura, M.G., do Carmo Freitas, M., Pacheco, A., van Meerten, T., Wolterbeek, H.: Selenium content in selected Portuguese foodstuffs. Eur. Food Res. Technol. 224, 395–401 (2007)

    CAS  Google Scholar 

  163. Soupioni, M.J., Symeopoulos, B.D., Papaefthymiou, H.V.: Determination of trace elements in bottled water in Greece by instrumental and radiochemical neutron activation analyses. J Radioanal. Nucl. Chem. 268, 441–444 (2006)

    CAS  Google Scholar 

  164. Islam, M.T., Islam, S.A., Latif, S.A.: Detection of arsenic in water, herbal and soil samples by neutron activation analysis technique. Bull. Environ. Contam. Toxicol. 79, 327–330 (2007)

    CAS  Google Scholar 

  165. Dang, H.S., Jaiswal, D.D., Nair, S.: Daily dietary intake of trace elements of radiological and nutritional importance by the adult Indian population. J. Radioanal. Nucl. Chem. 249, 95–101 (2001)

    CAS  Google Scholar 

  166. Lee, J.Y.: Daily dietary intake of elements of nutritional and radiological importance by adult Koreans. J. Radioanal. Nucl. Chem. 249, 39–45 (2001)

    Google Scholar 

  167. Cozzollino, S.M.F.: Determination of mineral constituents in duplicate portion diets of two university student groups by instrumental neutron activation. J. Radioanal. Nucl. Chem. 249, 21–24 (2001)

    Google Scholar 

  168. Waheed, S., Zaidi, J.H., Ahmad, S., Saleem, M.: Instrumental neutron activation analysis of 23 individual food articles from a high altitude region. J. Radioanal. Nucl. Chem. 254, 597–605 (2002)

    CAS  Google Scholar 

  169. Arriola, S.H., Monroy, G.F., Cruz, M.M.: Determination of Fe and Al contamination by NAA at preparation of traditional Mexican food. J. Radioanal. Nucl. Chem. 271, 597–598 (2007)

    Google Scholar 

  170. Alamin, M.B., Bejey, A.M., Kučera, J., Mizera, J.: Determination of mercury and selenium in consumed food items in Libya using instrumental and radiochemical NAA. J. Radioanal. Nucl. Chem. 270, 143–146 (2006)

    CAS  Google Scholar 

  171. Singh, V., Garg, A.N.: Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chem. 94, 81–89 (2006)

    CAS  Google Scholar 

  172. González, E.B., Sanz-Medel, A.: Liquid chromatographic techniques for trace element speciation analysis. In: Caruso, J.A., Sutton, K.L., Ackley, K.L. (eds.) Elemental Speciation New Approaches for Trace Element Analysis, pp. 81–121. Elsevier Science B.V, Amsterdam (2000)

    Google Scholar 

  173. Buldini, P.L., Cavalli, S., Trifirò, A.: State-of-the-art ion chromatographic determination of inorganic ions in food. J. Chromatogr. A 789, 529–548 (1997)

    CAS  Google Scholar 

  174. Ambushe, A.A., McCrindle, R.I., McCrindle, C.M.E.: Speciation of chromium in cow’s milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS). JAAS 24, 502–507 (2009)

    CAS  Google Scholar 

  175. Pedrero, Z., Madrid, Y.: Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal. Chim. Acta 634(2), 135–152 (2009)

    CAS  Google Scholar 

  176. Pedrero, Z., Elvira, D., Cámara, C., Madrid, Y.: Selenium transformation studies during Broccoli (Brassica oleracea) growing process by liquid chromatography-inductively coupled plasma mass spectrometry (LC–ICP-MS). Anal. Chim. Acta 596, 251–256 (2007)

    CAS  Google Scholar 

  177. Sanz, E., Muñoz-Olivas, R., Cámara, C., Sengupta, M., Kumar, A.S.: Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. J. Environ. Sci. Health A 42, 1695–1705 (2007)

    CAS  Google Scholar 

  178. Sun, G.-X., Williams, P.N., Zhu, Y.-G., Deacon, C., Carey, A.-M., Raab, A., Feldmann, J., Meharg, A.A.: Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environ. Int. 35, 473–475 (2009)

    CAS  Google Scholar 

  179. Vieira, M.A., Grinberg, P., Bobeda, C.R.R., Reyes, M.N.M., Campos, R.C.: Non-chromatographic atomic spectrometric methods in speciation analysis: a review. Spectrochim. Acta B 64, 459–476 (2009)

    Google Scholar 

  180. Lobinski, R.: Elemental speciation and coupled techniques. Appl. Spectrosc. 51, 260–278 (1997)

    Google Scholar 

  181. Nemanič, T.M., Leskovsek, H., Horvat, M., Vriser, B., Bolje, A.: Organotin compounds in the marine environment of the Bay of Piran, northern Adriatic Sea. J. Environ. Monit. 4, 426–430 (2002)

    Google Scholar 

  182. Quevauviller, P.: Certified reference materials: a tool for quality control of elemental speciation analysis. In: Caruso, J.A., Sutton, K.L., Ackley, K.L. (eds.) Elemental Speciation New Approaches for Trace Element Analysis, pp. 531–565. Elsevier Science B.V., Amsterdam (2000)

    Google Scholar 

  183. Stewart, I.I.: Electrospray mass spectrometry: a tool for elemental speciation. Spectrochim. Acta B 54, 1649–1695 (1999)

    Google Scholar 

  184. Szpunar, J., Bouyssiere, B., Lobinski, R.: Sample preparation techniques for elemental speciation studies. In: Caruso, J.A., Sutton, K.L., Ackley, K.L. (eds.) Elemental Speciation New Approaches for Trace Element Analysis, pp. 7–40. Elsevier Science B.V, Amsterdam (2000)

    Google Scholar 

  185. Van Dael, P.: Trace element speciation in food: a tool to assure food safety and nutritional quality. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 233–240. RSC, Cambridge (2001)

    Google Scholar 

  186. Adams, F., Ceulemans, M., Slaets, S.: GC hyphenations for speciation analysis of organometal compounds. LC GC Europe 14, 548–563 (2001)

    CAS  Google Scholar 

  187. Barefoot, R.R.: Distribution and speciation of platinum group elements in environmental matrices. Trends Anal. Chem. 18, 702–707 (1999)

    CAS  Google Scholar 

  188. Das, A.K., de la Guardia, M., Cervera, M.L.: Literature survey of on-line elemental speciation in aqueous solutions. Talanta 55, 1–28 (2001)

    CAS  Google Scholar 

  189. Ferrarello, C.N., Fernández de la Campa, M.R., Sanz-Medel, A.: Multielement trace-element speciation in metal-biomolecules by chromatography coupled with ICP-MS. Anal. Bioanal. Chem. 373, 412–421 (2002)

    CAS  Google Scholar 

  190. Kamnev, A.A., Antonyuk, L.P., Smirnova, V.E., Serebrennikova, O.B., Kulikov, L.A., Perfiliev, Y.D.: Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy. Anal. Bioanal. Chem. 372, 431–435 (2002)

    CAS  Google Scholar 

  191. Mestek, O., Komínková, J., Koplík, R., Borková, M., Suchánek, M.: Quantification of copper and zinc species fractions in legume seeds extracts by SEC/ICP-MS: validation and uncertainty estimation. Talanta 57, 1133–1142 (2002)

    CAS  Google Scholar 

  192. Muňoz-Olivas, R., Cámara, C.: Speciation related to human health. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 331–353. RSC, Cambridge (2001)

    Google Scholar 

  193. Albert, J., Rubio, R., Rauret, G.: Arsenic speciation in marine biological materials by LC-UV-HG-ICP/OES. Fresenius J. Anal. Chem. 351, 415–419 (1995)

    Google Scholar 

  194. Albert, J., Rubio, R., Rauret, G.: Extraction method for arsenic speciation in marine organisms. Fresenius J. Anal. Chem. 351, 420–425 (1995)

    Google Scholar 

  195. Chen, Z.L., Lin, J.-M., Naidu, R.: Separation of arsenic species by capillary electrophoresis with sample-stacking techniques. Anal. Bioanal. Chem. 375, 679–684 (2003)

    CAS  Google Scholar 

  196. Gómez-Ariza, J.L., Sánchez-Rodas, D., Inmaculada, G.I., Morales, E.: A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples. Talanta 51, 257–268 (2000)

    Google Scholar 

  197. Gómez-Ariza, J.L., Caro de la Torre, M.A., Giráldez, I., Sánchez-Rodas, D., Velasco, A., Morales, E.: Pretreatment procedure for selenium speciation in shellfish using high-performance liquid chromatography-microwave-assisted digestion-hydride generation-atomic fluorescence spectrometry. Appl. Organomet. Chem. 16, 265–270 (2002)

    Google Scholar 

  198. Larsen, E.H., Berg, T.: Trace element speciation and international food legislation – a Codex Alimentarius position paper on arsenic as a contaminant. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 251–257. RSC, Cambridge (2001)

    Google Scholar 

  199. Larsen, E.H., Quétel, C.R., Munoz, R., Fiala-Medioni, A., Donard, O.F.X.: Arsenic speciation in shrimp and mussel from the mid-Atlantic hydrothermal vents. Mar. Chem. 57, 341–346 (1997)

    CAS  Google Scholar 

  200. Richarz, A.-N., Brätter, P.: Speciation analysis of trace elements in the brain of individuals with Alzheimer’s disease with special emphasis on metallothioneins. Anal. Bioanal. Chem. 372, 412–417 (2002)

    CAS  Google Scholar 

  201. Ringmann, S., Boch, K., Marquardt, W., Schuster, M., Schlemmer, G., Kainrath, P.: Microwave-assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using flow injection hydride generation electrothermal atomic absorption spectrometry. Anal. Chim. Acta 452, 207–215 (2002)

    CAS  Google Scholar 

  202. Vilanó, M., Rubio, R.: Determination of arsenic species in oyster tissue by microwave-assisted extraction and liquid chromatography-atomic fluorescence detection. Appl. Organomet. Chem. 15, 658–666 (2001)

    Google Scholar 

  203. Miekeley, N., Mortari, S.R., Schubach, A.O.: Monitoring of total antimony and its species by ICP-MS and on-line ion chromatography in biological samples from patients treated for leishmaniasis. Anal. Bioanal. Chem. 372, 495–502 (2002)

    CAS  Google Scholar 

  204. Petit de Peña, Y., Vielma, O., Burguera, J.L., Burguera, M., Rondon, C., Carrero, P.: On line determination of antimony (III) and antimony (V) in liver tissue and whole blood by flow injection – hydride generation – atomic absorption spectrometry. Talanta 55, 743–754 (2001)

    Google Scholar 

  205. Smichowski, P., Madrid, Y., Cámara, C.: Analytical methods for antimony speciation in waters at trace and ultratrace levels. A review. Fresenius J. Anal. Chem. 360, 623–629 (1998)

    CAS  Google Scholar 

  206. Chau, Y.K., Yang, F., Brown, M.: Determination of methylcyclopentadienyl-manganese tricarbonyl (MMT) in gasoline and environmental samples by gas chromatography with helium microwave plasma atomic emission detection. Appl. Organomet. Chem. 11, 31–37 (1997)

    CAS  Google Scholar 

  207. Cámara, C., Cornelis, R., Quevauviller, P.: Assessment of methods currently used for the determination of Cr and Se species in solutions. Trends Anal. Chem. 19, 189–194 (2000)

    Google Scholar 

  208. Darrie, G.: The importance of chromium in occupational health. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Heath, pp. 315–330. RSC, Cambridge (2001)

    Google Scholar 

  209. Kotas, J., Stasicka, Z.: Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107, 263–283 (2000)

    CAS  Google Scholar 

  210. Marqués, M.J., Salvador, A., Morales-Rubio, A., de la Guardia, M.: Chromium speciation in liquid matrices: a survey of the literature. Fresenius J. Anal. Chem. 367, 601–613 (2000)

    Google Scholar 

  211. Yao, W., Byrne, R.H.: Determination of trace chromium (VI) and molybdenum (VI) in natural and bottled mineral waters using long pathlength absorbance spectroscopy (LPAS). Talanta 48, 277–282 (1999)

    CAS  Google Scholar 

  212. Chai, Z., Mao, X., Hu, Z., Zhang, Z., Chen, C., Feng, W., Hu, S., Ouyang, H.: Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences. Anal. Bioanal. Chem. 372, 407–411 (2002)

    CAS  Google Scholar 

  213. Olivas, R.M., Donard, O.F.X., Camara, C., Quevauviller, P.: Analytical techniques applied to the speciation of selenium in environmental matrices. Anal. Chim. Acta 286, 357–370 (1994)

    CAS  Google Scholar 

  214. Quevauviller, P., Morabito, R.: Evaluation of extraction recoveries for organometallic determinations in environmental matrices. Trends Anal. Chem. 19, 86–96 (2000)

    CAS  Google Scholar 

  215. Crews, H.M.: Speciation of trace elements in foods, with special reference to cadmium and selenium: is it necessary? Spectrochim. Acta B 53, 213–219 (1998)

    Google Scholar 

  216. Günther, K., Kastenholz, G.J.B.: Characterization of high molecular weight cadmium species in contaminated vegetable food. Fresenius J. Anal. Chem. 368, 281–287 (2000)

    Google Scholar 

  217. Lobinski, R., Edmonds, J.S., Suzuki, K.T., Uden, P.C.: Species-selective determination of selenium compounds in biological materials. Pure Appl. Chem. 72, 447–461 (2000)

    CAS  Google Scholar 

  218. Crnoja, M., Haberhauer-Troyer, C., Rosenberg, E., Grasserbauer, M.: Determination of Sn- and Pb-organic compounds by solid-phase microextraction-gas chromatography-atomic emission detection (SPME-GC-AED) after in situ propylation with sodium tetrapropylborate. J. Anal. At. Spectrom. 16, 1160–1166 (2001)

    CAS  Google Scholar 

  219. Forsyth, D.S., Taylor, J.: Detection of organotin, organomercury, and organolead compounds with a pulsed discharge detector (PDD). Anal. Bioanal. Chem. 374, 344–347 (2002)

    CAS  Google Scholar 

  220. Jackson, B.P.S., Allen, P.L., Hopkins, W.A., Bertsch, P.M.: Trace element speciation in largemouth bass (Micropterus salmoides) from a fly ash settling basin by liquid chromatography-ICP-MS. Anal. Bioanal. Chem. 374, 203–211 (2002)

    CAS  Google Scholar 

  221. Pyrzyńska, K.: Organolead speciation in environmental samples: a review. Microchim. Acta 122, 279–293 (1996)

    Google Scholar 

  222. Pereiro, I.R., Diaz, A.C.: Speciation of mercury, tin, and lead compounds by gas chromatography with microwave-induced plasma and atomic-emission detection (GC-MIP-AED). Anal. Bioanal. Chem. 372, 74–90 (2002)

    CAS  Google Scholar 

  223. Salih, B.: Speciation of inorganic and organolead compounds by gas chromatography-atomic absorption spectrometry and the determination of lead species after pre-concentration onto diphenylthiocarbazone-anchored polymeric microbeads. Spectrochim. Acta B 55, 1117–1127 (2000)

    Google Scholar 

  224. Szpunar-Lobińska, J., Witte, C., Łobinski, R., Adams, F.C.: Separation techniques in speciation analysis for organometallic species. Fresenius J. Anal. Chem. 351, 343–477 (1995)

    Google Scholar 

  225. Wasik, A., Namieśnik, J.: Speciation of organometallic compounds of tin, lead, and mercury. Polish J. Environ. Studies 10, 405–413 (2001)

    CAS  Google Scholar 

  226. Williams, S.P.: Occupational health and speciation using nickel and nickel compounds as an example. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 297–307. RSC, Cambridge (2001)

    Google Scholar 

  227. Schedlbauer, O.F., Heumann, K.G.: Development of an isotope dilution mass spectrometric method for dimethylthallium speciation and first evidence of its existence in the ocean. Anal. Chem. 71, 5459–5464 (1999)

    CAS  Google Scholar 

  228. Elgethun, K., Neumann, C., Blake, P.: Butyltins in shellfish, finfish, water and sediment from the Coos Bay estuary (Oregon, USA). Chemosphere 41, 953–964 (2000)

    CAS  Google Scholar 

  229. White, S., Catterick, T., Fairman, B., Webb, K.: Speciation of organo-tin compounds using liquid chromatography – atmospheric pressure ionisation mass spectrometry and liquid chromatography – inductively coupled plasma mass spectrometry as complementary techniques. J. Chromatogr. A 794, 211–218 (1998)

    CAS  Google Scholar 

  230. Lindemann, T., Range, A., Dannecker, W., Neidhart, B.: Stability studies of arsenic, selenium, antimony and tellurium species in water, urine, fish and soil extracts using HPLC/ICP-MS. Fresenius J. Anal. Chem. 368, 214–220 (2000)

    CAS  Google Scholar 

  231. De Carvalho, L.M., Schwedt, G.: Sulfur speciation by capillary zone electrophoresis: conditions for sulfite stabilization and determination in the presence of sulfate, thiosulfate and peroxodisulfate. Fresenius J. Anal. Chem. 368, 208–213 (2000)

    Google Scholar 

  232. Unger-Heumann, M.: Rapid tests – a convenient tool for sample screening with regard to element speciation. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 211–222. RSC, Cambridge (2001)

    Google Scholar 

  233. Bi, S.-P., Yang, X., Zhang, F., Wang, X., Zou, G.: Analytical methodologies for aluminium speciation in environmental and biological samples – a review. Fresenius J. Anal. Chem. 370, 984–996 (2001)

    CAS  Google Scholar 

  234. Gómez-Ariza, J.L., Morales, E., Giraldez, I., Sanchez-Rodas, D.: Sample treatment and storage in speciation analysis. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 51–80. RSC, Cambridge (2001)

    Google Scholar 

  235. Rosenberg, E., Ariese, F.: Quality control in speciation analysis. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 17–50. RSC, Cambridge (2001)

    Google Scholar 

  236. Huo, D., Kingston, H.M., Larget, B.: Application of isotope dilution in elemental speciation: speciated isotope dilution mass spectrometry (SIDMS). In: Caruso, J.A., Sutton, K.L., Ackley, K.L. (eds.) Elemental Speciation New Approaches for Trace Element Analysis, pp. 277–313. Elsevier Science B.V, Amsterdam (2000)

    Google Scholar 

  237. Encinar, J.R.: Isotope dilution analysis for speciation. Anal. Bioanal. Chem. 375, 41–43 (2003)

    Google Scholar 

  238. Emons, H.: Challenges from speciation analysis for the development of biological reference materials. Fresenius J. Anal. Chem. 370, 115–119 (2001)

    CAS  Google Scholar 

  239. Kabata-Pendias, A., Mukherjee, A.B.: Trace Elements from Soil to Human. Springer, Berlin (2007)

    Google Scholar 

  240. Coelho, N.M.M., Coelho, L.M., de Lima, E.S., Pastor, A., de la Guardia, M.: Determination of arsenic compounds in beverages by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Talanta 66, 818–822 (2005)

    CAS  Google Scholar 

  241. Dietz, C., Sanz, J., Sanz, E., Muñoz-Olivas, R., Cámara, C.: Current perspectives in analyte extraction strategies for tin and arsenic speciation. J. Chromatogr. A 1153, 114–129 (2007)

    CAS  Google Scholar 

  242. Li, X., Jia, J., Wang, Z.: Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry. Anal. Chim. Acta 560, 153–158 (2006)

    CAS  Google Scholar 

  243. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002)

    CAS  Google Scholar 

  244. McLaughlin, M.J., Parker, D.R., Clarke, J.M.: Metals and micronutrients – food safety issues. Field Crops Res. 60, 143–163 (1999)

    Google Scholar 

  245. Reilly, C.: Pollutants in food – metals and metalloids. In: Szefer, P., Nriagu, J.O. (eds.) Mineral Components in Foods, pp. 363–388. CRC Press/Taylor Francis Group, London/New York (2007)

    Google Scholar 

  246. Sharma, V.K., Sohn, M.: Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ. Int. 35, 743–759 (2009)

    CAS  Google Scholar 

  247. Jain, C.K., Ali, I.: Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34, 4304–4312 (2000)

    CAS  Google Scholar 

  248. Wrobel, K., Wrobel, K., Parker, B., Kannamkumarath, S.S., Caruso, J.A.: Determination of As(III), As(V), monomethylarsonic acid, dimethylarsinic acid and arsenobetaine by HPLC-ICP-MS: analysis of reference materials, fish tissues and urine. Talanta 58, 899–907 (2002)

    CAS  Google Scholar 

  249. Pearson, G.F., Greenway, G.M., Brima, E.I., Haris, P.I.: Rapid arsenic speciation using ion pair LC-ICPMS with a monolithic silica column reveals increased urinary DMA excretion after ingestion of rice. JAAS 22(4), 361–369 (2007)

    CAS  Google Scholar 

  250. Chatterjee, A.: Determination of total cationic and total anionic arsenic species in oyster tissue using microwave-assisted extraction followed by HPLC-ICP-MS. Talanta 51, 303–314 (2000)

    CAS  Google Scholar 

  251. McSheehy, S., Pohl, P., Łobinski, R., Szpunar, J.: Investigations of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS). Analyst 126, 1055–1062 (2001)

    CAS  Google Scholar 

  252. McSheehy, S., Pohl, P., Velez, D., Szpunar, J.: Multidimensional liquid chromatography with parallel ICP-MS and electrospray MS-MS detection as a tool for the characterization of arsenic species in algae. Anal. Bioanal. Chem. 372, 457–466 (2002)

    CAS  Google Scholar 

  253. Coelho, N.M.M., Parilla, C., Cervera, M.L., Pastor, A., de la Guardia, M.: High performance liquid chromatography – atomic fluorescence spectrometric determination of arsenic species in beer samples. Anal. Chim. Acta 482, 73–80 (2003)

    Google Scholar 

  254. Pal, A., Chowdhury, U.K., Mondal, D., Das, B., Nayak, B., Ghosh, A., Maity, S., Chakraborti, D.: Arsenic burden from cooked rice in the populations of arsenic affected and nonaffected areas and Kolkata city in West-Bengal, India. Environ. Sci. Technol. 43, 3349–3355 (2009)

    CAS  Google Scholar 

  255. Roychowdhury, T.: Impact of sedimentary arsenic through irrigated groundwater on soil, plant, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food Chem. Toxicol. 46, 2856–2864 (2008)

    CAS  Google Scholar 

  256. Williams, P.N., Islam, M.R., Adomako, E.E., Raab, A., Hossain, S.A., Zhu, Y.G., Feldmann, J., Meharg, A.A.: Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol. 40, 4903–4908 (2006)

    CAS  Google Scholar 

  257. Ackerman, A.H., Creed, P.A., Parks, A.N., Fricke, M.W., Schwegel, C.A., Creed, J.T., Heitkemper, D.T., Vela, N.P.: Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ. Sci. Technol. 39, 5241–5246 (2005)

    CAS  Google Scholar 

  258. Kohlmeyer, U., Jakubik, S., Kuballa, J., Jantzen, E.: Determination of arsenic species in fish oil after acid digestion. Microchim. Acta 151, 249–255 (2005)

    CAS  Google Scholar 

  259. Vela, N.P., Heitkemper, D.T.: Total arsenic determination and speciation in infant food products by ion chromatography-inductively coupled plasma-mass spectrometry. J. AOAC Int. 87, 244–252 (2004)

    CAS  Google Scholar 

  260. Lai, V.W.-M., Cullen, W.R., Ray, S.: Arsenic speciation in scallops. Mar. Chem. 66, 81–89 (1999)

    CAS  Google Scholar 

  261. Brisbin, J.A., B’Hymer, C., Caruso, J.A.: A gradient anion exchange chromatographic method for the speciation of arsenic in lobster tissue extracts. Talanta 58, 133–145 (2002)

    CAS  Google Scholar 

  262. Villa-Lojo, M.C., Alonso-Rodríguez, E., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D.: Coupled high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry for inorganic and organic speciation in fish tissue. Talanta 57, 741–750 (2002)

    CAS  Google Scholar 

  263. Gong, Z., Lu, X., Ma, M., Watt, C., Le, X.C.: Arsenic speciation analysis. Talanta 58, 77–96 (2002)

    CAS  Google Scholar 

  264. Eustace, D.J., Walters, M., Riley, S., Anderson, M.: Practical assessment of mercury exposure, contamination and clean-up. Chem. Health Safety 11, 16–23 (2004)

    CAS  Google Scholar 

  265. Gochfeld, M.: Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol. Environ. Safety 56, 174–179 (2003)

    CAS  Google Scholar 

  266. Ozuah, P.O.: Mercury poisoning. Curr. Probl. Pediatr. 30, 91–99 (2000)

    CAS  Google Scholar 

  267. Zahir, F., Rizwi, S.J., Haq, S.K., Khan, R.H.: Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20, 351–360 (2005)

    CAS  Google Scholar 

  268. Magalhães, M.C., Costa, V., Menezes, G.M., Pinho, M.R., Santos, R., Monteiro, L.R.: Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores. Mar. Pollut. Bull. 54, 1654–1662 (2007)

    Google Scholar 

  269. Carro, A.M., Mejuto, M.C.: Application of chromatographic and electrophoretic methodology to the speciation of organomercury compounds in food analysis. J. Chromatogr. A 882, 283–307 (2000)

    CAS  Google Scholar 

  270. Bouyssiere, B., Szpunar, J., Lobinski, R.: Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis. Spectrochim. Acta B 57, 805–828 (2002)

    Google Scholar 

  271. Mizuishi, K., Takeuchi, M., Hobo, T.: Direct GC determination of methylmercury chloride on HBr-methanol-treated capillary columns. Chromatographia 44, 386–392 (1997)

    CAS  Google Scholar 

  272. Donard, O.F.X., Krupp, E., Pecheyran, C., Amouroux, D., Ritsema, R.: Trends in speciation analysis for routine and new environmental issues. In: Caruso, J.A., Sutton, K.L., Ackley, K.L. (eds.) Elemental Speciation New Approaches for Trace Element Analysis, pp. 451–493. Elsevier Science B.V, Amsterdam (2000)

    Google Scholar 

  273. Baeyens, W., Leermakers, M., Molina, R., Holsbeek, L., Joiris, C.R.: Investigation of headspace and solvent extraction methods for the determination of dimethyl- and monomethylmercury in environmental matrices. Chemosphere 39, 1107–1117 (1999)

    CAS  Google Scholar 

  274. Palmieri, H.E.L., Leonel, L.V.: Determination of methylmercury in fish tissue by gas chromatography with microwave-induced plasma atomic emission spectrometry after derivatization with sodium tetraphenylborate. Fresenius J. Anal. Chem. 363, 466–469 (2000)

    Google Scholar 

  275. Rosenkrantz, B., Bettmer, J.: Rapid separation of elemental species by multicapillary GC. Anal. Bioanal. Chem. 373, 461–465 (2002)

    Google Scholar 

  276. Grinberg, P., Campos, R.C., Mester, Z., Sturgeonet, R.E.: Solid phase microextraction capillary gas chromatography combined with furnace atomization plasma emission spectrometry for speciation of mercury in fish tissue. Spectrochim. Acta A 58, 427–441 (2003)

    Google Scholar 

  277. Vanhaecke, F., Resano, M., Moens, L.: Electrothermal vaporisation ICP-mass spectrometry (ETV-ICP-MS) for the determination and speciation of trace elements in solid samples – a review of real-life applications from the author’s lab. Anal. Bioanal. Chem. 375, 188–195 (2002)

    Google Scholar 

  278. Liang, L.-N., Jiang, G.-B., Liu, J.-F., Hu, J.-T.: Speciation analysis of mercury in seafood by using high-performance liquid chromatography on-line coupled with cold-vapor atomic fluorescence spectrometry via a post column microwave digestion. Anal. Chim. Acta 477, 131–137 (2003)

    CAS  Google Scholar 

  279. Moreno, M.E., Pérez-Conde, C., Cámara, C.: The effect of the presence of volatile organoselenium compounds on the determination of inorganic selenium by hydride generation. Anal. Bioanal. Chem. 375, 666–672 (2003)

    CAS  Google Scholar 

  280. Kannamkumarath, S.S., Wrobel, K., Wrobel, K., Vonderheide, A., Caruso, J.A.: HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut. Anal. Bioanal. Chem. 373, 454–460 (2002)

    CAS  Google Scholar 

  281. Uden, P.C.: Modern trends in the speciation of selenium by hyphenated techniques. Anal. Bioanal. Chem. 373, 422–431 (2002)

    CAS  Google Scholar 

  282. Gallignani, M., Valero, M., Brunetto, M.R., Burguera, J.L., Burguera, M., Petit de Pena, Y.: Sequential determination of Se(IV) and Se(VI) by flow injection-hydride generation-atomic absorption spectrometry with HCl/HBr microwave aided pre-reduction of Se(VI) to Se(IV). Talanta 52, 1015–1024 (2000)

    CAS  Google Scholar 

  283. Dernovics, M., Stefánka, Z., Fodor, P.: Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal. Bioanal. Chem. 372, 473–480 (2002)

    CAS  Google Scholar 

  284. Stefánka, Z., Ipolyi, I., Dernovics, M., Fodor, P.: Comparison of sample preparation methods based on proteolytic enzymatic processes for Se-speciation of edible mushroom (Agaricus bisporus) samples. Talanta 55, 437–447 (2001)

    Google Scholar 

  285. Wrobel, K., Kannamkumarath, S.S., Wrobel, K., Caruso, J.A.: Hydrolysis of protein with methanesulfonic acid for improved HPLC-ICP-MS determination of seleno-methionine in yeast and nuts. Anal. Bioanal. Chem. 375, 133–138 (2003)

    CAS  Google Scholar 

  286. Tuzen, M., Saygi, K.O., Soylak, M.: Separation and speciation of selenium in food and water samples by the combination of magnesium hydroxide coprecipitation-graphite furnace atomic absorption spectrometric determination. Talanta 71, 424–429 (2007)

    CAS  Google Scholar 

  287. Gosetti, F., Frascarolo, P., Polati, S., Medana, C., Gianotti, V., Palma, P., Aigotti, R., Baiocchi, C., Gennaro, M.C.: Speciation of selenium in diet supplements by HPLC–MS/MS methods. Food Chem. 105, 1738–1747 (2007)

    CAS  Google Scholar 

  288. Viñas, P., López-García, I., Merino-Meroño, B., Campillo, N., Hernández-Córdoba, M.: Determination of selenium species in infant formulas and dietetic supplements using liquid chromatography–hydride generation atomic fluorescence spectrometry. Anal. Chim. Acta 535, 49–56 (2005)

    Google Scholar 

  289. Guerin, T., Astruc, A., Astruc, M.: Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors: a review of the main separation techniques. Talanta 50, 1–24 (1999)

    CAS  Google Scholar 

  290. Pyrzyńska, K.: Analysis of selenium species by capillary electrophoresis. Talanta 55, 657–667 (2001)

    Google Scholar 

  291. Infante, H.G., Hearn, R., Catterick, T.: Current mass spectrometry strategies for selenium speciation in dietary sources of high-selenium. Anal. Bioanal. Chem. 382, 957–967 (2005)

    CAS  Google Scholar 

  292. Blunden, S., Wallace, T.: Tin in canned food: a review and understanding of occurrence and effect. Food Chem. Toxicol. 41, 1651–1662 (2003)

    CAS  Google Scholar 

  293. Crews, H.M.: The importance of trace element speciation in food issues. In: Ebdon, L., Pitts, L., Cornelis, R., Crews, H., Donard, O.F.X., Quevauviller, P. (eds.) Trace Element Speciation for Environment, Food and Health, pp. 223–227. RSC, Cambridge (2001)

    Google Scholar 

  294. Perring, L., Basic-Dvorzak, M.: Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy. Anal. Bioanal. Chem. 374, 235–243 (2002)

    CAS  Google Scholar 

  295. Reilly, C.: Metal Contamination of Food: Its Significance for Food Quality and Human Health, pp. 1–266. Blackwell Science, Oxford (2002)

    Google Scholar 

  296. Hoch, M.: Organotin compounds in the environment – an overview. Appl. Geochem. 16, 719–743 (2001)

    CAS  Google Scholar 

  297. Bettmer, J., Buscher, W., Cammann, K.: Speciation of mercury, platinum and tin – focus of research and future developments. Fresenius. J. Anal. Chem. 354, 521–528 (1996)

    CAS  Google Scholar 

  298. Brede, C., Pedersen-Bjergaard, S., Lundanes, E., Greibrokk, T.: Capillary gas chromatography coupled with microplasma mass spectrometry for organotin speciation. J. Chromatogr. A 849, 553–562 (1999)

    CAS  Google Scholar 

  299. Caldorin, R., Menegário, A.A.: Speciation analysis of Sn(II) and Sn(IV) using baker’s yeast and inductively coupled plasma optical emission spectrometry. Microchim. Acta 157, 201–207 (2007)

    CAS  Google Scholar 

  300. Zhu, X., Zhao, L., Wang, B.: Speciation analysis of inorganic tin (Sn(II)/Sn(IV)) by graphite furnace atomic absorption spectrometry following ion-exchange separation. Microchim. Acta 155, 459–463 (2006)

    CAS  Google Scholar 

  301. Belfroid, A.C., Purperhart, M., Ariese, F.: Organotin levels in seafood. Mar. Pollut. Bull. 40, 226–232 (2000)

    CAS  Google Scholar 

  302. Albalat, A., Potrykus, J., Pempkowiak, J., Porte, C.: Assessment of organotin pollution along the Polish coast (Baltic Sea) by using mussels and fish as sentinel organisms. Chemosphere 47, 165–171 (2002)

    CAS  Google Scholar 

  303. Sudaryanto, A., Takahashi, S., Tanabe, S., Muchtar, M., Razak, H.: Occurrence of butyltin compounds in mussels from Indonesian coastal waters and some Asian countries. Water Sci. Technol. 42, 71–78 (2000)

    Google Scholar 

  304. Kannan, K., Falandysz, J.: Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar. Pollut. Bull. 34, 203–207 (1997)

    CAS  Google Scholar 

  305. St-Jean, S.D., Courtenay, S.C., Pelletier, É., St-Louis, R.: Butyltin concentrations in sediments and blue mussels (Mytilus edulis) of the southern Gulf of St. Lawrence, Canada. Environ. Technol. 20, 181–189 (1999)

    CAS  Google Scholar 

  306. Marcic, C., Lespes, G., Potin-Gautier, M.: Pressurised solvent extraction for organotin speciation in vegetable matrices. Anal. Bioanal. Chem. 382, 1574–1583 (2005)

    CAS  Google Scholar 

  307. Dong, N.V., Thuy, T.X.B., Solomon, T.: The transformation of phenyltin species during sample preparation of biological tissues using multi-isotope spike SSID-GC-ICPMS. Anal. Bioanal. Chem. 392, 737–747 (2008)

    Google Scholar 

  308. Üveges, M., Abrankó, L., Fodor, P.: Optimization of GC–ICPMS system parameters for the determination of butyltin compounds in Hungarian freshwater origin sediment and mussel samples. Talanta 73, 490–497 (2007)

    Google Scholar 

  309. Prieto, A., Zuloaga, O., Usobiaga, A., Etxebarria, N., Fernández, L.A., Marcic, C., de Diego, A.: Simultaneous speciation of methylmercury and butyltin species in environmental samples by headspace-stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. J. Chromatogr. A 1185, 130–138 (2008)

    CAS  Google Scholar 

  310. Szefer, P., Grembecka, M.: Mineral components in foods of animal origin and in honey. In: Szefer, P., Nriagu, J.O. (eds.) Mineral Components in Foods, pp. 163–230. CRC Press/Taylor Francis Group, London/New York (2007)

    Google Scholar 

  311. Barałkiewicz, D., Kózka, M., Piechalak, A., Tomaszewska, B., Sobczak, P.: Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC–ICP-MS and HPLC–ESI-MS<sup>n</sup> Talanta 79, 493–498 (2009)

    Google Scholar 

  312. Bermejo, P., Pena, E., Dominguez, R., Bermejo, A., Fraga, J.M., Cocho, J.A.: Speciation of iron in breast milk and infant formulas whey by size exclusion chromatography-high performance liquid chromatography and electrothermal atomic absorption spectrometry. Talanta 50, 1211–1222 (2000)

    CAS  Google Scholar 

  313. Grembecka, M., Szefer, P.: Chemometria w badaniu żywności, [w:] Zuba, D., Parczewski, A. (red): Chemometria w analityce: wybrane zagadnienia, pp. 253–279. Wydawnictwo Instytutu Ekspertyz Sądowych, Kraków (2008).

    Google Scholar 

  314. Luykx, D.M.A.M., van Ruth, S.M.: An overview of analytical methods for determining the geographical origin of food products. Food Chem. 107, 897–911 (2008)

    CAS  Google Scholar 

  315. Szefer, P.: Chemometric techniques in analytical evaluation of food quality. In: Szefer, P., Nriagu, J.O. (eds.) Mineral Components in Foods, pp. 69–122. CRC Press/Taylor Francis Group, London/New York (2007)

    Google Scholar 

  316. Brito, G., Peña-Méndez, E., Novotná, K., Díaz, C., García, F.: Differentiation of heat-treated pork liver pastes according to their metal content using multivariate data analysis. Eur. Food Res. Technol. 218, 584–588 (2004)

    CAS  Google Scholar 

  317. Heaton, K., Kelly, S.D., Hoogewerff, J., Woolfe, M.: Verifying the geographical origin of beef: the application of multi-element isotope and trace element analysis. Food Chem. 107, 506–515 (2008)

    CAS  Google Scholar 

  318. Schmidt, O., Quilter, J.M., Bahar, B., Moloney, A.P., Scrimgeour, C.M., Begley, I.S., Monahan, F.J.: Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem. 91, 545–549 (2005)

    CAS  Google Scholar 

  319. Astorga-Espana, M.S., Pena-Mendez, E.M., Garcia-Montelongo, F.J.: Application of principal component analysis to the study of major cations and trace metals in fish from Tenerife (Canary Islands). Chemom. Intell. Lab. Syst. 49, 173–178 (1999)

    CAS  Google Scholar 

  320. Hellou, J., Zitko, V., Friel, J., Alkanani, T.: Distribution of elements in tissues of yellowtail flounder Pleuronectes ferruginea. Sci. Total Environ. 181, 137–146 (1996)

    CAS  Google Scholar 

  321. Szefer, P., Domagała-Wieloszewska, M., Warzocha, J., Garbacik-Wesołowska, A., Ciesielski, T.: Distribution and relationships of mercury, lead, cadmium, copper and zinc in perch (Perca fluviatilis) from the Pomeranian Bay and Szczecin Lagoon, southern Baltic. Food Chem. 81, 73–83 (2003)

    CAS  Google Scholar 

  322. Bechmann, I.E., Stürup, S., Kristensen, L.V.: High resolution inductively coupled plasma mass spectrometry (HR-ICPMS) determination and multivariate evaluation of 10 trace elements in mussels from 7 sites in Limfjorden, Denmark. Fresenius J. Anal. Chem. 368, 708–714 (2000)

    CAS  Google Scholar 

  323. Bermejo-Barrera, P., Moreda-Piñeiro, A., Bermejo-Barrera, A.: Sample pre-treatment for trace elements determination in seafood products by atomic absorption spectrometry. Talanta 57, 969–984 (2001)

    Google Scholar 

  324. Machado, M.L., Mendez, E.P., Sanchez, M.S., Montelongo, F.G.: Interpretation of heavy metal data from mussel by use of multivariate classification techniques. Chemoshere 38, 1103–1111 (1999)

    Google Scholar 

  325. Szefer, P., Ali, A.A., Ba-Haroon, A.A., Rajeh, A.A., Gełdon, J., Nabrzyski, M.: Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ. Pollut. 106, 299–314 (1999)

    CAS  Google Scholar 

  326. Szefer, P., Frelek, K., Szefer, K., Lee, C.-B., Kim, B.-S., Warzocha, J., Zdrojewska, I., Ciesielski, T.: Distribution and relationships of trace metals in soft tissue, byssus and shells of Mytilus edulis trossulus from the southern Baltic. Environ. Pollut. 120, 423–444 (2002)

    CAS  Google Scholar 

  327. Szefer, P., Kim, B.-S., Kim, C.-K., Kim, E.-H., Lee, C.-B.: Distribution and coassociations of trace elements in soft tissue and byssus of Mytillus edulis galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of Korean Peninsula. Environ. Pollut. 129, 209–228 (2004)

    CAS  Google Scholar 

  328. Szefer, P., Wołowicz, M.: Occurrence of metals in the cockle Cerastoderma glaucum from different geographical regions in view of principal component analysis. SIMO-Mar. Pollut. 64, 253–264 (1993)

    Google Scholar 

  329. Brescia, M.A., Monfreda, M., Buccolieri, A., Carrino, C.: Characterisation of the geographical origin of Buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem. 89, 139–147 (2005)

    CAS  Google Scholar 

  330. Pillonel, L., Badertscher, R., Froidevaux, P., Haberhauer, G., Holzl, S., Horn, P., Jakob, A., Pfammatter, E., Piantini, U., Rossmann, A., Tabacchi, R., Bosset, J.O.: Stable isotope ratios, major, trace and radioactive elements in emmental cheeses of different origins. Lebensm.-Wiss. u-Technol. 36, 615–623 (2003)

    CAS  Google Scholar 

  331. Puerto, P., Fresno Baquero, M., Rodriguez Rodriguez, E.M., Darias, M.J., Diaz Romero, C.: Chemometric studies of fresh and semi-hard goats’ cheeses produced in Tenerife (Canary Islands). Food Chem. 88, 361–366 (2004)

    Google Scholar 

  332. Woodcock, T., Fagan, C.C., O’Donnell, C.P., Downey, G.: Application of near and mid-infrared spectroscopy to determine cheese quality and authenticity. Food Biopocess. Technol. 1, 117–129 (2008)

    Google Scholar 

  333. Devillers, J., Doré, J.C., Marenco, M., Poirier-Duchêne, F., Galand, N., Viel, C.: Chemometrical analysis of 18 metallic and nonmetallic elements found in honeys sold in France. J. Agric. Food Chem. 50, 5998–6007 (2002)

    CAS  Google Scholar 

  334. Hernandez, O.M., Fraga, J.M.G., Jiménez, A.I., Jiménez, F., Arias, J.J.: Characterization of honey from the Canary Islands: determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 93, 449–458 (2005)

    CAS  Google Scholar 

  335. Lachman, J., Kolihová, D., Miholová, D., Kosata, J., Titera, D., Kult, K.: Analysis of minority honey components: possible use for the evaluation of honey quality. Food Chem. 101, 973–979 (2007)

    CAS  Google Scholar 

  336. Latorre, M.J., Peña, R., García, S., Herrero, C.: Authentication of Galician (N.W. Spain) honeys by multivariate techniques based on metal content data. Analyst 125, 307–312 (2000)

    CAS  Google Scholar 

  337. Latorre, M.J., Peña, R., Pita, C., Botana, A., García, S., Herrero, C.: Chemometric classification of honeys according to their type. II. Metal content data. Food Chem. 66, 263–268 (1999)

    CAS  Google Scholar 

  338. Pisani, A., Protano, G., Riccobono, F.: Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem. 107, 1553–1560 (2008)

    CAS  Google Scholar 

  339. Terrab, A., González, A.G., Díez, M.J., Heredia, F.J.: Mineral content and electrical conductivity of the honeys produced in Northwest Morocco and their contribution to the characterization of unifloral honeys. J. Sci. Food Agric. 83, 637–643 (2003)

    CAS  Google Scholar 

  340. Škrbić, B., Onjia, A.: Multivariate analyses of microelement contents in wheat cultivated in Serbia (2002). Food Control. 18, 338–345 (2007)

    Google Scholar 

  341. Anderson, K.A., Magnuson, B.A., Tschirgi, M.L., Smith, B.: Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J. Agric. Food Chem. 47, 1568–1575 (1999)

    CAS  Google Scholar 

  342. Gundersen, V., McCall, D., Bechmann, I.E.: Comparison of major and trace element concentrations in Danish greenhouse tomatoes (Lycopersicon esculentum Cv. Aromata F1) cultivated in different substrates. J. Agric. Food Chem. 49, 3808–3815 (2001)

    CAS  Google Scholar 

  343. Mohamed, A.E., Rashed, M.N., Mofty, A.: Assessment of essential and toxic elements in some kinds of vegetables. Ecotoxicol. Environ. Safety 55, 251–260 (2003)

    CAS  Google Scholar 

  344. Moros, J., Llorca, I., Cervera, M.L., Pastor, A., Garrigues, S., de la Guardia, M.: Chemometric determination of arsenic and lead in untreated powdered red paprika by diffuse reflectance near-infrared spectroscopy. Anal. Chim. Acta 613, 196–206 (2008)

    CAS  Google Scholar 

  345. Padín, P.M., Peña, R.M., García Martín, M.S., Iglesias, R., Barro, S., Herrero, C.: Characterization of Galician (N.W. Spain) quality brand potatoes: a comparison study of several pattern recognition techniques. Analyst 126, 97–103 (2001)

    Google Scholar 

  346. Rivero, R.C., Hernandez, P.S., Rodriguez, E.M.R., Martin, J.D., Romero, C.D.: Mineral concentrations in cultivars of potatoes. Food Chem. 83, 247–253 (2003)

    CAS  Google Scholar 

  347. Plessi, M., Bertelli, D., Albasini, A.: Distribution of metals and phenolic compounds as a criterion to evaluate variety of berries and related jams. Food Chem. 100, 419–427 (2007)

    CAS  Google Scholar 

  348. Herrador, A.M., Gonzalez, A.G.: Pattern recognition procedures for differentiation of Green, Black and Oolong teas according to their metal content from inductively coupled plasma atomic emission spectrometry. Talanta 53, 1249–1257 (2001)

    CAS  Google Scholar 

  349. Marcos, A., Fisher, A., Rea, G., Hill, S.J.: Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom. 13, 521–525 (1998)

    CAS  Google Scholar 

  350. Moreda-Pineiro, A., Fisher, A., Hill, S.J.: The classification of tea according to region of origin using pattern recognition techniques and trace metal data. J. Food Compos. Anal. 16, 195–211 (2003)

    CAS  Google Scholar 

  351. Anderson, K.A., Smith, B.W.: Chemical profiling to differentiate geographic growing origins of coffee. J. Agric. Food Chem. 50, 2068–2075 (2002)

    CAS  Google Scholar 

  352. Martín, M.J., Pablos, F., González, A.G.: Discrimination between arabica and robusta green coffee varieties according to their chemical composition. Talanta 46, 1259–1264 (1998)

    Google Scholar 

  353. Awadallah, R.M., Ismail, S.S., Mohamed, A.E.: Application of multi-element clustering techniques of five Egyptian industrial sugar products. J. Radioanal. Nucl. Chem. 196, 377–385 (1995)

    CAS  Google Scholar 

  354. Peña-Méndez, E.M., Hernández-Suárez, M., Díaz-Romero, C., Rodríguez-Rodríguez, E.: Characterization of various chestnut cultivars by means of chemometrics approach. Food Chem. 107, 537–544 (2008)

    Google Scholar 

  355. Dugo, G., la Pera, L., Pellicanó, T.M., di Bella, G., D'Imperio, M.: Determination of some inorganic anions and heavy metals in D.O.C. Golden and Amber Marsala wines: statistical study of the influence of ageing period, colour and sugar content. Food Chem. 91, 355–363 (2005)

    CAS  Google Scholar 

  356. Frias, S., Conde, J.E., Rodríguez-Bencomo, J.J., García-Montelongo, F., Pérez-Trujillo, J.P.: Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents. Talanta 59, 335–344 (2003)

    CAS  Google Scholar 

  357. Kment, P., Mihaljevič, M., Ettler, V., Šebek, O., Strnad, L., Rohlová, L.: Differentiation of Czech wines using multielement composition – a comparison with vineyard soil. Food Chem. 91, 157–165 (2005)

    CAS  Google Scholar 

  358. Marengo, E., Aceto, M.: Statistical investigation of the differences in the distribution of metals in Nebbiolo-based wines. Food Chem. 81, 621–630 (2003)

    CAS  Google Scholar 

  359. Alcázar, A., Pablos, F., Martín, M.J., González, A.G.: Multivariate characterisation of beers according to their mineral content. Talanta 57, 45–52 (2002)

    Google Scholar 

  360. Adam, T., Duthie, E., Feldmann, J.: Investigations into the use of copper and other metals as indicators for the authenticity of Scotch whiskies. J. Inst. Brew. 108, 459–464 (2002)

    CAS  Google Scholar 

  361. Camean, A.M., Moreno, I., López-Artíguez, M., Repetto, M., González, A.G.: Differentiation of Spanish brandies according to their metal content. Talanta 54, 53–59 (2001)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Szefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grembecka, M., Szefer, P. (2016). Elemental Trace Analysis in Studies of Food Products. In: Baranowska, I. (eds) Handbook of Trace Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-19614-5_9

Download citation

Publish with us

Policies and ethics