Skip to main content

Organic Thin-Film Transistors

  • Chapter
  • First Online:
Short-Channel Organic Thin-Film Transistors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Organic thin-film transistors (OTFTs) are providing impetus in flexible, low-cost and large-area integrated circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Fermi energy is the energy at which the probability of occupation by an electron is exactly one-half.

References

  1. H. Klauk (ed.), Organic Electronics: Materials, Manufacturing and Applications, 2nd edn. (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  2. F. Ante, Contact effects in organic transistors, Ph.D. dissertation, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland, Dec 2011

    Google Scholar 

  3. H. Klauk, Organic thin-film transistors. Chem. Soc. Rev. 39(7), 2643–2666 (2010)

    Article  CAS  Google Scholar 

  4. Y. Yang, A.J. Heeger, A new architecture for polymer transistors. Nature 372, 344–346 (1994)

    Article  CAS  Google Scholar 

  5. M. Yi, X. Xia, T. Yang, Y. Liu, L. Xie, X. Zhou, W. Huang, Vertical n-type organic transistors with tri(8-hydroxyquinoline) aluminum as collector and fullerene as emitter. Appl. Phys. Lett. 98(7), 073309-1–073309-3 (2011)

    Google Scholar 

  6. R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald, T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes, T. Riedl, H.-H. Johannes, W. Kowalsky, Vertical channel all-organic thin-film transistors. Appl. Phys. Lett. 82(25), 4579–4580 (2003)

    Google Scholar 

  7. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100(2), 024509-1–024509-13 (2006)

    Google Scholar 

  8. C.H. Shim, F. Maruoka, R. Hattori, Structural analysis on organic thin-film transistor with device simulation. IEEE Trans. Electron Devices 57(1), 195–200 (2010)

    Article  CAS  Google Scholar 

  9. F. Ante, D. Kälblein, T. Zaki, U. Zschieschang, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, J.N. Burghartz, K. Kern, H. Klauk, Contact resistance and megahertz operation of aggressively scaled organic transistors. Small 8(1), 73–79 (2012)

    Article  CAS  Google Scholar 

  10. S.H. Jin, K.D. Jung, H. Shin, B.G. Park, J.D. Lee, Grain size effects on contact resistance of top-contact pentacene TFTs. Synth. Met. 156(2–4), 196–201 (2006)

    Article  CAS  Google Scholar 

  11. K. Sidler, N.V. Cvetkovic, V. Savu, D. Tsamados, A.M. Ionescu, J. Brugger, Organic thin film transistors on flexible polyimide substrates fabricated by full wafer stencil lithography. Sens. Actuators A: Phys. 162(2), 155–159 (2010)

    Article  CAS  Google Scholar 

  12. J. Zaumseil, T. Someya, Z. Bao, Y.L. Loo, R. Cirelli, J.A. Rogers, Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82(5), 793–795 (2003)

    Article  CAS  Google Scholar 

  13. J. Zaumseil, K.W. Baldwin, J.A. Rogers, Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J. Appl. Phys. 93(10), 6117–6124 (2003)

    Article  CAS  Google Scholar 

  14. Y.-Y. Noh, N. Zhao, M. Caironi, H. Sirringhaus, Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784–789 (2007)

    Article  CAS  Google Scholar 

  15. M. Caironi, E. Gili, T. Sakanoue, X. Cheng, H. Sirringhaus, High yield, single droplet electrode arrays for nanoscale printed electronics. ACS Nano 4(3), 1451–1456 (2010)

    Article  CAS  Google Scholar 

  16. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc. Nat. Acad. Sci. USA 105(13), 4976–4980 (2008)

    Article  CAS  Google Scholar 

  17. F. Ante, F. Letzkus, J. Butschke, U. Zschieschang, J.N. Burghartz, K. Kern, H. Klauk, Top-contact organic transistors and complementary circuits fabricated using high-resolution silicon stencil masks, in Device Research Conference, pp. 175–176 (2010)

    Google Scholar 

  18. F. Ante, F. Letzkus, J. Butschke, U. Zschieschang, K. Kern, J.N. Burghartz, H. Klauk, Submicron low-voltage organic transistors and circuits enabled by high-resolution silicon stencil masks, in IEEE International Solid-State Circuits Conference Technical Digest, pp. 21.6.1–21.6.4 (2010)

    Google Scholar 

  19. T. Ji, S. Jung, V.K. Varadan, On the correlation of postannealing induced phase transition in pentacene with carrier transport. Org. Electron. 9(5), 895–898 (2008)

    Article  CAS  Google Scholar 

  20. D.J. Gundlach, T.N. Jackson, D.G. Schlom, S.F. Nelson, Solvent-induced phase transition in thermally evaporated pentacene films. Appl. Phys. Lett. 74(22), 3302–3304 (1999)

    Article  CAS  Google Scholar 

  21. A.A. Virkar, S. Mannsfeld, Z. Bao, N. Stingelin, Organic semiconductor growth and morphology considerations for organic thin-film transistors. Adv. Mater. 22(34), 3857–3875 (2010)

    Article  CAS  Google Scholar 

  22. H.C. Shah, R.W. Davis Jr, The effect of the roughness of the glass substrate on the roughness of the barrier layer used during fabrication of poly-Si TFTs. Soc. Inf. Disp. Symp. Tech. Dig. 34(1), 1516–1519 (2003)

    Article  Google Scholar 

  23. T. Zaki, S. Scheinert, I. Hörselmann, R. Rödel, F. Letzkus, H. Richter, U. Zschieschang, H. Klauk, J.N. Burghartz, Accurate capacitance modeling and characterization of organic thin-film transistors. IEEE Trans. Electron Devices 61(1), 98–104 (2014)

    Article  CAS  Google Scholar 

  24. H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    Article  CAS  Google Scholar 

  25. U. Zschieschang, F. Ante, D. Kälblein, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, J. Blochwitz-Nimoth, H. Klauk, Dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT) thin-film transistors with improved performance and stability. Org. Electron. 12(8), 1370–1375 (2011)

    Article  CAS  Google Scholar 

  26. U. Kraft, U. Zschieschang, M.J. Kang, K. Takimiya, T. Zaki, F. Letzkus, J.N. Burghartz, E. Weber, H. Klauk, Evolution of the field-effect mobility and the contact resistance of low-voltage organic thin-film transistors based on air-stable, high-mobility thioacenes, in Materials Research Society Spring Meeting and Exhibit (2013) (poster)

    Google Scholar 

  27. R. Rödel, F. Letzkus, T. Zaki, J.N. Burghartz, U. Kraft, U. Zschieschang, K. Kern, H. Klauk, Contact properties of high-mobility, air-stable, low-voltage organic n-channel thin-film transistors based on a naphthalene tetracarboxylic diimide. Appl. Phys. Lett. 102(233303), 233303-1–233303-5 (2013)

    Google Scholar 

  28. T. Yamamoto, K. Takimiya, Facile synthesis of highly \(\pi \)-extended heteroarenes, dinaphtho[2,3-b:2’,3’-f]chalcogenopheno[3,2-b]chalcogenophenes, and their applications to field-effect transistors. J. Am. Chem. Soc. 129(8), 2224–2225 (2007)

    Article  CAS  Google Scholar 

  29. S.M. Sze, Semiconductor Devices Physics and Technology, 2nd edn. (Wiley, Hoboken, NJ, USA, 2002)

    Google Scholar 

  30. A. Moliton, R.C. Hiorns, The origin and development of (plastic) organic electronics. Polym. Int. 61(3), 337–341 (2012)

    Article  CAS  Google Scholar 

  31. H. Borkan, P.K. Weimer, An analysis of the characteristics of insulated-gate thin-film transistors. RCA Rev. 24, 153–165 (1963)

    Google Scholar 

  32. D. Natali, M. Caironi, Charge injection in solution-processed organic field-effect transistors: physics, models and characterization methods. Adv. Mater. 24(11), 1357–1387 (2012)

    Article  CAS  Google Scholar 

  33. M. Kitamura, Y. Arakawa, High current-gain cutoff frequencies above 10 MHz in n-channel C\(_{60}\) and p-channel pentacene thin-film transistors. Japan. J. Appl. Phys. 50, 01BC01-1-01BC01-4 (2011)

    Google Scholar 

  34. M. Kitamura, Y. Arakawa, Current-gain cutoff frequencies above 10 MHz for organic thin-film transistors with high mobility and low parasitic capacitance. Appl. Phys. Lett. 95(2), 023503-1–023503-3 (2009)

    Google Scholar 

  35. V. Wagner, P. Wöbkenberg, A. Hoppe, J. Seekamp, Megahertz operation of organic field-effect transistors based on poly (3-hexylthiophene). Appl. Phys. Lett. 89(24), 243515-1–243515-3 (2006)

    Google Scholar 

  36. M. Caironi, Y.-Y. Noh, H. Sirringhaus, Frequency operation of low-voltage, solution-processed organic field-effect transistors. Semicond. Sci. Technol. 26(3), 034006-1–034006-8 (2011)

    Google Scholar 

  37. M. Jaiswal, R. Menon, Equivalent circuit for an organic field-effect transistor from impedance measurements under dc bias. Appl. Phys. Lett. 88(12), 123504-1–123504-3 (2006)

    Google Scholar 

  38. T. Zaki, R. Rödel, F. Letzkus, H. Richter, U. Zschieschang, H. Klauk, J.N.Burghartz, S-parameter characterization of submicrometer low-voltage organic thin-film transistors. IEEE Electron Device Lett. 34(4), 520–522 (2013)

    Google Scholar 

  39. T. Yamamoto, K. Takimiya, FET characteristics of dinaphthothienothiophene (DNTT) on Si/SiO\(_2\) substrates with various surface-modifications. J. Photopolym. Sci. Technol. 20(1), 57–59 (2007)

    Article  CAS  Google Scholar 

  40. S. Haas, Y. Takahashi, K. Takimiya, T. Hasegawa, High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl. Phys. Lett. 95(2), 022111-1–022111-3 (2009)

    Google Scholar 

  41. H. Tuinhout, N. Wils, P. Andricciola, Parametric mismatch characterization for mixed-signal technologies. IEEE J. Solid State Circ. 45(9), 1687–1696 (2010)

    Article  Google Scholar 

  42. T. Zaki, F. Ante, U. Zschieschang, J. Butschke, F. Letzkus, H. Richter, H. Klauk, J.N. Burghartz, A 3.3 V 6-Bit 100 kS/s current-steering digital-to-analog converter using organic p-type thin-film transistors on glass. IEEE J. Solid State Circ. 47(1), 292–300 (2012)

    Article  Google Scholar 

  43. H. Klauk, U. Zschieschang, M. Halik, Low-voltage organic thin-film transistors with large transconductance. J. Appl. Phys. 102(7), 074514-1–074514-7 (2007)

    Google Scholar 

  44. M. Kutamura, Y. Arakawa, High-performance pentacene thin-film transistors with high dielectric constant gate insulators. Appl. Phys. Lett. 89(22), 223525-1–223525-3 (2006)

    Google Scholar 

  45. C.Y. Han, W.M. Tang, C.H. Leung, C.M. Che, P.T. Lai, High-performance pentacene thin-film transistors with high-\(\kappa \) HfLaON as gate dielectric. IEEE Electron Device Lett. 34(11), 1397–1399 (2013)

    Article  CAS  Google Scholar 

  46. M.W. Alam, Z. Wang, S. Naka, H. Okada, Mobility enhancement of top contact pentacene based organic thin film transistors with bi-layer GeO/Au electrodes. Appl. Phys. Lett. 102(6), 061105-1–061105-3 (2013)

    Google Scholar 

  47. F. De Angelis, M. Gaspari, A. Procopio, G. Cuda, E. Di Fabrizio, Direct mass spectrometry investigation on pentacene thin film oxidation upon exposure to air. Chem. Phys. Lett. 468(4–6), 193–196 (2009)

    Article  Google Scholar 

  48. H.E. Katz, Recent advances in semiconductor performance and printing processes for organic transistor-based electronics. Chem. Mater. 16(23), 4748–4756 (2004)

    Article  CAS  Google Scholar 

  49. D. Bode, K. Myny, B. Verreet, B. van der Putten, P. Bakalov, S. Steudel, S. Smout, P. Vicca, J. Genoe, P. Heremans, Organic complementary oscillators with stage-delays below 1 \(\upmu \)s. Appl. Phys. Lett. 96(13), 133307-1–133307-3 (2010)

    Google Scholar 

  50. M. Schwoerer, H.C. Wolf, Organic Molecular Solids (Wiley, Weinheim, 2007)

    Google Scholar 

  51. D. Li, E.-J. Borkent, R. Nortrup, H. Moon, H. Katz, Z. Bao, Humidity effect on electrical performance of organic thin-film transistors. Appl. Phys. Lett. 86(4), 042105-1–042105-3 (2005)

    Google Scholar 

  52. R.T. Weitz, K. Amsharov, U. Zschieschang, M. Burghard, M. Jansen, M. Kelsch, B. Rhamati, P.A. van Aken, K. Kern, H. Klauk, The importance of grain boundaries for the time-dependent mobility degradation in organic thin-film transistors. Chem. Mater. 21(20), 4949–4954 (2009)

    Article  CAS  Google Scholar 

  53. M.K. Mandal, B.C. Sarkar, Ring oscillators: characteristics and applications. Indian J. Pure Appl. Phys. 48, 136–145 (2010)

    CAS  Google Scholar 

  54. S.-M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3rd edn. (McGraw-Hill, New York, 2003)

    Google Scholar 

  55. M. Ha, Y. Xia, A.A. Green, W. Zhang, M.J. Renn, C.H. Kim, M.C. Hersam, C.D. Frisbie, Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4(8), 4388–4395 (2010)

    Article  CAS  Google Scholar 

  56. S. Geib, U. Zschieschang, M. Gsänger, M. Stolte, F. Würthner, H. Wadepohl, H. Klauk, L.H. Gade, Core-brominated tetraazaperopyrenes as n-channel semiconductors for organic complementary circuits on flexible substrates. Adv. Funct. Mater. 23(31), 3866–3874 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Zaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaki, T. (2015). Organic Thin-Film Transistors. In: Short-Channel Organic Thin-Film Transistors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18896-6_3

Download citation

Publish with us

Policies and ethics