Skip to main content

The Potential Use of PGC-1α and PGC-1β to Protect the Retina by Stimulating Mitochondrial Repair

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Damage to mitochondria is a common mechanism of cell death in inherited neurodegenerative disorders. Therefore, mitochondrial protection and mitochondrial repair are promising strategies to induce retinal neuroprotection. Peroxisome proliferator-activated receptor γ coactivator-α (PGC-1α) and β (PGC-1β) are transcriptional coactivators that are the main regulators of mitochondrial biogenesis. We propose that PGC-1α and PGC-1β could play a role in regulating retina cell survival, and may be important therapeutic targets to prevent retinal degeneration.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI10.1007/978-3-319-17121-0_107

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-17121-0_107

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PGC-1α:

Peroxisome proliferator-activated receptor γ coactivator-α

PGC-1β:

Peroxisome proliferator-activated receptor γ coactivator-β

ROS:

Reactive oxygen species

mtDNA:

Mitochondrial DNA

NRF-1 and NRF-2:

Nuclear respiratory factors -1 and 2

PPAR:

Peroxisome proliferator-activated receptor

AMPK:

Adenosine mono-phoshpate-dependent Kinase

UCP:

Uncoupling protein

References

  • Barnstable CJ, Tombran-Tink J (2006) Molecular mechanisms of neuroprotection in the eye. Adv Exp Med Biol 572:291–295

    Article  PubMed  Google Scholar 

  • Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  CAS  PubMed  Google Scholar 

  • Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123:951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, Ziltener JL, Luthi F, Dériaz O, Zorzano A, Gobelet C, Kralli A, Russell AP et al (2005) Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise.J Physiol.15;567(Pt 1):349-58.Accessed 16 June 2005. PMID: 15961417

    Google Scholar 

  • Chen JQ, Cammarata PR, Baines CP, Yager JD (2009) Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta 1793:1540–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon LM, Williams SL, Hida A, Peacock JD, Prolla TA, Lincoln J et al (2012) Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse. Hum Mol Genet 21:2288–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger A, Samardzija M, Sothilingam V, Tanimoto N, Lange C, Salatino S, Fang L, Garcia-Garrido M, Beck S, Okoniewski MJ, Neutzner A, Seeliger MW, Grimm C, Handschin C et al (2012) PGC-1α determines light damage susceptibility of the murine retina. PLoS One.7(2):e31272. doi: 10.1371/journal.pone.0031272. PMID: 22348062

    Google Scholar 

  • Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–890S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowald A, Kirkwood TB (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc Natl Acad Sci U S A 108:10237–10242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Tarr PT, Yang R, Rhee J, Puigserver P, Newgard CB et al (2003) PGC-1 beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem 278:30843–30848

    Article  CAS  PubMed  Google Scholar 

  • Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–1115

    Article  CAS  PubMed  Google Scholar 

  • Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP et al (2014) A role for peroxisome proliferator-activated receptor gamma coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth. Circ Res 114:626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S et al (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  • Rigoulet M, Yoboue ED, Devin A (2011) Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal 14:459–468

    Article  CAS  PubMed  Google Scholar 

  • Saint-Geniez M, Jiang A, Abend S, Liu L, Sweigard H, Connor KM et al (2013) PGC-1alpha regulates normal and pathological angiogenesis in the retina. Am J Pathol 182:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88:611–638

    Article  CAS  PubMed  Google Scholar 

  • Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123(Pt 15):2533–2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Diaz F, Iommarini L, Aure K, Lombes A, Moraes CT (2009) PGC-1alpha/beta induced expression partially compensates for respiratory chain defects in cells from patients with mitochondrial disorders. Hum Mol Genet 18:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart JA, Maddalena LA, Merilovich M, Robb EL (2014) A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Liu Z, Feng Z, Hao J, Shen W, Li X et al (2010) Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J Nutr Biochem 21:1089–1098

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Ash PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abrahan, C., Ash, J. (2016). The Potential Use of PGC-1α and PGC-1β to Protect the Retina by Stimulating Mitochondrial Repair. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_53

Download citation

Publish with us

Policies and ethics