Skip to main content

Effects of In Vitro Laminar Shear Stress as an Exercise Mimetic on Endothelial Cell Health

  • Chapter
  • 1793 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Endothelial dysfunction has been associated with a host of cardiovascular diseases and is thought to be an important contributor to many of them. Exercise training is a potent nonpharmacological modality to improve endothelial dysfunction. It is thought that the elevated intravascular shear stress is what leads to exercise-induced improvements in endothelial function. Microarray studies show that the gene expression profile of endothelial cells is dramatically altered by high physiological levels of laminar shear stress. Overwhelmingly, the genetic program of protein expression in response to in vitro laminar shear stress is vasoprotective and atheroprotective. There are three purposes of this chapter: (1) to review endothelial dysfunction at the cellular level, (2) to describe the different types of shear stress to which endothelial cells are exposed and the methodology used to examine them; and (3) to specifically describe the effects of high physiological levels of laminar shear stress on the expression of genes and proteins directly related to endothelial health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BAEC:

Bovine aortic endothelial cell

BH4 :

Tetrahydrobiopterin

cGMP:

Cyclic guanosine monophosphate

COX:

Cyclooxygenase

CVD:

Cardiovascular disease

EC:

Endothelial cell

ECE:

Endothelin converting enzyme

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

GPX:

Glutathione peroxidase

HAEC:

Human aortic endothelial cell

HCAEC:

Human coronary artery endothelial cell

HMVEC:

Human microvessel endothelial cell

HUAEC:

Human umbilical artery endothelial cell

HUVEC:

Human umbilical vein endothelial cell

ICAM-1:

Intracellular adhesion molecule-1

IL-6:

Interlukin-6

JAK-STAT:

Janus kinase-signal transducer and activator of transcription

KLF2:

Krüppel-like factor 2

LSS:

Laminar shear stress

MCP:

Monocyte chemotactic protein 1

miRNA:

Micro ribonucleic acid

mRNA:

Messenger ribonucleic acid

mtDNA:

Mitochondrial deoxribonucleic acid

NADPH:

Nicotanimide adenine dinucleotide phosphate oxidase

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

NOS:

Nitric oxide synthase

Nox:

Nicotanimide adenine dinucleotide phosphate oxidase

Nrf2:

Nuclear factor erythroid 2-like-2

P13k/Akt:

Phosphoinositide 3-kinase inhibitor/protein kinase B

PG:

Prostaglandin

PGC-1α:

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha

PGHS:

Prostaglandin G/H synthase

PGI2 :

Prostaglandin-2

PKA:

Protein Kinase A

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

Ser:

Serine

SIRT1:

Sirtuin 1

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-alpha

Trx:

Thioredoxin

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  2. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323:22–7.

    Article  CAS  PubMed  Google Scholar 

  3. Yeboah J, Sutton-Tyrrell K, McBurnie MA, Burke GL, Herrington DM, Crouse JR. Association between brachial artery reactivity and cardiovascular disease status in an elderly cohort: the cardiovascular health study. Atherosclerosis. 2008;197:768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith JJ, Kampine JP, editors. Circulatory physiology-the essentials. Baltimore: Lippincott Williams & Wilkins; 1990.

    Google Scholar 

  5. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282:2035–42.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor CA, Hughes TJ, Zarins CK. Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg. 1999;29:1077–89.

    Article  CAS  PubMed  Google Scholar 

  7. Wasserman SM, Topper JN. Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications. Vasc Med. 2004;9:35–45.

    Article  PubMed  Google Scholar 

  8. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S. Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg. 1987;5:413–20.

    Article  CAS  PubMed  Google Scholar 

  10. Barbee KA. Changes in surface topography in endothelial monolayers with time at confluence: influence on subcellular shear stress distribution due to flow. Biochem Cell Biol. 1995;73:501–5.

    Article  CAS  PubMed  Google Scholar 

  11. Reneman RS, Arts T, Hoeks AP. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. Discrepancies with theory. J Vasc Res. 2006;43:251–69.

    Article  PubMed  Google Scholar 

  12. Barakat AI, Lieu DK, Gojova A. Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals? Biomaterials. 2006;27:671–8.

    Article  CAS  PubMed  Google Scholar 

  13. Braddock M, Schwachtgen JL, Houston P, Dickson MC, Lee MJ, Campbell CJ. Fluid shear stress modulation of gene expression in endothelial cells. News Physiol Sci. 1998;13:241–6.

    CAS  PubMed  Google Scholar 

  14. Fledderus JO, van Thienen JV, Boon RA, et al. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood. 2007;109:4249–57.

    Article  CAS  PubMed  Google Scholar 

  15. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey Jr CF, Gimbrone Jr MA. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A. 1993;90:4591–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shyy JY, Li YS, Lin MC, et al. Multiple cis-elements mediate shear stress-induced gene expression. J Biomech. 1995;28:1451–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ohura N, Yamamoto K, Ichioka S, et al. Global analysis of shear stress-responsive genes in vascular endothelial cells. J Atheroscler Thromb. 2003;10:304–13.

    Article  CAS  PubMed  Google Scholar 

  18. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108:1912–6.

    Article  PubMed  Google Scholar 

  19. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation. 2003;108:2034–40.

    Article  PubMed  Google Scholar 

  20. dela Paz NG, D’Amore PA. Arterial versus venous endothelial cells. Cell Tissue Res. 2009;335:5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reinhart-King CA, Fujiwara K, Berk BC. Physiologic stress-mediated signaling in the endothelium. Methods Enzymol. 2008;443:25–44.

    Article  CAS  PubMed  Google Scholar 

  22. Jenny NS, Mann KG. Coagulation cascade: an overview. In: Loscalzo J, Schafer AI, editors. Thrombosis and hemorrhage. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 1–21.

    Google Scholar 

  23. Palmer R, Ferrige AG, Monacada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524.

    Article  CAS  PubMed  Google Scholar 

  24. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grubbs AL, Ergul A. A review of endothelin and hypertension in African-American individuals. Ethn Dis. 2001;11:741–8.

    CAS  PubMed  Google Scholar 

  26. Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev. 2009;89:481–534.

    Article  CAS  PubMed  Google Scholar 

  27. Konishi M, Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension. 1983;5:881–6.

    Article  CAS  PubMed  Google Scholar 

  28. Lockette W, Otsuka Y, Carretero O. The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension. 1986;8:II61–6.

    Article  CAS  PubMed  Google Scholar 

  29. Luscher TF, Raij L, Vanhoutte PM. Endothelium-dependent vascular responses in normotensive and hypertensive Dahl rats. Hypertension. 1987;9:157–63.

    Article  CAS  PubMed  Google Scholar 

  30. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468–74.

    Article  CAS  PubMed  Google Scholar 

  31. Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A. Cyclooxygenase inhibition restores nitric oxide activity in essential hypertension. Hypertension. 1997;29:274–9.

    Article  CAS  PubMed  Google Scholar 

  32. Calver A, Collier J, Moncada S, Vallance P. Effect of local intra-arterial NG-monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator mechanism appears abnormal. J Hypertens. 1992;10:1025–31.

    Article  CAS  PubMed  Google Scholar 

  33. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74:349–53.

    Article  CAS  PubMed  Google Scholar 

  34. Woodman CR, Muller JM, Laughlin MH, Price EM. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol. 1997;273:H2575–9.

    CAS  PubMed  Google Scholar 

  35. Indolfi C, Torella D, Coppola C, et al. Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res. 2002;91:1190–7.

    Article  CAS  PubMed  Google Scholar 

  36. Uematsu M, Ohara Y, Navas JP, et al. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol. 1995;269:C1371–8.

    CAS  PubMed  Google Scholar 

  37. Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992;90:2092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ranjan V, Xiao Z, Diamond SL. Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol. 1995;269:H550–5.

    CAS  PubMed  Google Scholar 

  39. Woodman CR, Muller JM, Rush JW, Laughlin MH, Price EM. Flow regulation of ecNOS and Cu/Zn SOD mRNA expression in porcine coronary arterioles. Am J Physiol. 1999;276:H1058–63.

    CAS  PubMed  Google Scholar 

  40. Woodman CR, Price EM, Laughlin MH. Shear stress induces eNOS mRNA expression and improves endothelium-dependent dilation in senescent soleus muscle feed arteries. J Appl Physiol. 2005;98:940–6.

    Article  CAS  PubMed  Google Scholar 

  41. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem. 2004;279:163–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hay DC, Beers C, Cameron V, Thomson L, Flitney FW, Hay RT. Activation of NF-kappaB nuclear transcription factor by flow in human endothelial cells. Biochim Biophys Acta. 2003;1642:33–44.

    Article  CAS  PubMed  Google Scholar 

  43. Park JY, Farrance IK, Fenty NM, et al. NFKB1 promoter variation implicates shear-induced NOS3 gene expression and endothelial function in prehypertensives and stage I hypertensives. Am J Physiol Heart Circ Physiol. 2007;293:H2320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin Z, Kumar A, SenBanerjee S, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96:e48–57.

    Article  CAS  PubMed  Google Scholar 

  45. SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199:1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boo YC, Hwang J, Sykes M, et al. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am J Physiol Heart Circ Physiol. 2002;283:H1819–28.

    Article  CAS  PubMed  Google Scholar 

  47. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  CAS  PubMed  Google Scholar 

  48. Fleming I, Fisslthaler B, Dixit M, Busse R. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci. 2005;118:4103–11.

    Article  CAS  PubMed  Google Scholar 

  49. Tayeh MA, Marletta MA. Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J Biol Chem. 1989;264:19654–8.

    CAS  PubMed  Google Scholar 

  50. Stuehr DJ, Kwon NS, Nathan CF. FAD and GSH participate in macrophage synthesis of nitric oxide. Biochem Biophys Res Commun. 1990;168:558–65.

    Article  CAS  PubMed  Google Scholar 

  51. Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991;88:7773–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palmer RMJMS. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun. 1989;158:348–52.

    Article  CAS  PubMed  Google Scholar 

  53. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111:1201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103:1282–8.

    Article  CAS  PubMed  Google Scholar 

  55. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM. Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Diabetologia. 2005;48:1933–40.

    Article  CAS  PubMed  Google Scholar 

  56. Widder JD, Chen W, Li L, et al. Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ Res. 2007;101:830–8.

    Article  CAS  PubMed  Google Scholar 

  57. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  58. Cardillo C, Kilcoyne CM, Cannon 3rd RO, Panza JA. Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension. 2000;35:1237–41.

    Article  CAS  PubMed  Google Scholar 

  59. de Nucci G, Thomas R, D’Orleans-Juste P, et al. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988;85:9797–800.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schiffrin EL. Endothelin: potential role in hypertension and vascular hypertrophy. Hypertension. 1995;25:1135–43.

    Article  CAS  PubMed  Google Scholar 

  61. Campia U, Cardillo C, Panza JA. Ethnic differences in the vasoconstrictor activity of endogenous endothelin-1 in hypertensive patients. Circulation. 2004;109:3191–5.

    Article  PubMed  Google Scholar 

  62. Schiffrin EL. Role of endothelin-1 in hypertension and vascular disease. Am J Hypertens. 2001;14:83S–9.

    Article  CAS  PubMed  Google Scholar 

  63. Modesti PA, Cecioni I, Costoli A, Poggesi L, Galanti G, Serneri GG. Renal endothelin in heart failure and its relation to sodium excretion. Am Heart J. 2000;140:617–22.

    Article  CAS  PubMed  Google Scholar 

  64. Krum H, Viskoper RJ, Lacourciere Y, Budde M, Charlon V. The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. Bosentan Hypertension Investigators. N Engl J Med. 1998;338:784–90.

    Article  CAS  PubMed  Google Scholar 

  65. Sharefkin JB, Diamond SL, Eskin SG, McIntire LV, Dieffenbach CW. Fluid flow decreases preproendothelin mRNA levels and suppresses endothelin-1 peptide release in cultured human endothelial cells. J Vasc Surg. 1991;14:1–9.

    Article  CAS  PubMed  Google Scholar 

  66. Masatsugu K, Itoh H, Chun TH, et al. Shear stress attenuates endothelin and endothelin-converting enzyme expression through oxidative stress. Regul Pept. 2003;111:13–9.

    Article  CAS  PubMed  Google Scholar 

  67. Malek AM, Zhang J, Jiang J, Alper SL, Izumo S. Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J Mol Cell Cardiol. 1999;31:387–99.

    Article  CAS  PubMed  Google Scholar 

  68. Morawietz H, Talanow R, Szibor M, et al. Regulation of the endothelin system by shear stress in human endothelial cells. J Physiol. 2000;525(Pt 3):761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hinz B, Brune K. Cyclooxygenase-2–10 years later. J Pharmacol Exp Ther. 2002;300:367–75.

    Article  CAS  PubMed  Google Scholar 

  70. Vane JR, Botting RM. Pharmacodynamic profile of prostacyclin. Am J Cardiol. 1995;75:3A–10.

    Article  CAS  PubMed  Google Scholar 

  71. Herschman HR. Function and regulation of prostaglandin synthase 2. Adv Exp Med Biol. 1999;469:3–8.

    Article  CAS  PubMed  Google Scholar 

  72. Topper JN, Cai J, Falb D, Gimbrone Jr MA. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93:10417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grabowski EF, Jaffe EA, Weksler BB. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J Lab Clin Med. 1985;105:36–43.

    CAS  PubMed  Google Scholar 

  74. McCormick SM, Whitson PA, Wu KK, McIntire LV. Shear stress differentially regulates PGHS-1 and PGHS-2 protein levels in human endothelial cells. Ann Biomed Eng. 2000;28:824–33.

    Article  CAS  PubMed  Google Scholar 

  75. Huie RE, Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18:195–9.

    Article  CAS  PubMed  Google Scholar 

  76. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994;298(Pt 2):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem. 1998;273:15022–9.

    Article  CAS  PubMed  Google Scholar 

  78. Di Castro S, Scarpino S, Marchitti S, et al. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension. 2013;61:534–41.

    Article  PubMed  CAS  Google Scholar 

  79. Glassman SJ. Vitiligo, reactive oxygen species and T-cells. Clin Sci (Lond). 2011;120:99–120.

    Article  CAS  Google Scholar 

  80. Jung O, Schreiber JG, Geiger H, Pedrazzini T, Busse R, Brandes RP. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation. 2004;109:1795–801.

    Article  CAS  PubMed  Google Scholar 

  81. Kagota S, Tada Y, Kubota Y, et al. Peroxynitrite is Involved in the dysfunction of vasorelaxation in SHR/NDmcr-cp rats, spontaneously hypertensive obese rats. J Cardiovasc Pharmacol. 2007;50:677–85.

    Article  CAS  PubMed  Google Scholar 

  82. Zalba G, Beaumont FJ, San Jose G, et al. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension. 2000;35:1055–61.

    Article  CAS  PubMed  Google Scholar 

  83. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20:164–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ago T, Kitazono T, Ooboshi H, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109:227–33.

    Article  CAS  PubMed  Google Scholar 

  86. Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun. 2009;380:355–60.

    Article  CAS  PubMed  Google Scholar 

  87. Babior BM. NADPH oxidase. Curr Opin Immunol. 2004;16:42–7.

    Article  CAS  PubMed  Google Scholar 

  88. Rey FE, Cifuentes ME, Kiarash A, Quinn MT, Pagano PJ. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res. 2001;89:408–14.

    Article  CAS  PubMed  Google Scholar 

  89. Guimaraes DD, Carvalho CC, Braga VA. Scavenging of NADPH oxidase-derived superoxide anions improves depressed baroreflex sensitivity in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2012;39:373–8.

    Article  CAS  PubMed  Google Scholar 

  90. Gavazzi G, Banfi B, Deffert C, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006;580:497–504.

    Article  CAS  PubMed  Google Scholar 

  91. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med. 2008;45:1340–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mohan S, Mohan N, Sprague EA. Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am J Physiol. 1997;273:C572–8.

    CAS  PubMed  Google Scholar 

  93. Mohan S, Mohan N, Valente AJ, Sprague EA. Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am J Physiol. 1999;276:C1100–7.

    CAS  PubMed  Google Scholar 

  94. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A. 2004;101:14871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol. 2006;576:557–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJ, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol. 2011;226:2841–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goettsch C, Goettsch W, Brux M, et al. Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol. 2011;106:551–61.

    Article  CAS  PubMed  Google Scholar 

  98. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res. 1998;82:1094–101.

    Article  PubMed  Google Scholar 

  99. Rueckschloss U, Galle J, Holtz J, Zerkowski HR, Morawietz H. Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation. 2001;104:1767–72.

    Article  CAS  PubMed  Google Scholar 

  100. Rueckschloss U, Duerrschmidt N, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal. 2003;5:171–80.

    Article  CAS  PubMed  Google Scholar 

  101. Feairheller DL, Park JY, Rizzo V, Kim B, Brown MD. Racial differences in the responses to shear stress in human umbilical vein endothelial cells. Vasc Health Risk Manag. 2011;7:425–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Macmillan-Crow LA, Cruthirds DL. Invited review: manganese superoxide dismutase in disease. Free Radic Res. 2001;34:325–36.

    Article  CAS  PubMed  Google Scholar 

  103. Harrison DG, Widder J, Grumbach I, Chen W, Weber M, Searles C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med. 2006;259:351–63.

    Article  CAS  PubMed  Google Scholar 

  104. Kelner MJ, Montoya MA. Structural organization of the human glutathione reductase gene: determination of correct cDNA sequence and identification of a mitochondrial leader sequence. Biochem Biophys Res Commun. 2000;269:366–8.

    Article  CAS  PubMed  Google Scholar 

  105. Lundberg M, Johansson C, Chandra J, et al. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem. 2001;276:26269–75.

    Article  CAS  PubMed  Google Scholar 

  106. Wang J, Pan S, Berk BC. Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductase-dependent manner. Arterioscler Thromb Vasc Biol. 2007;27:1283–8.

    Article  CAS  PubMed  Google Scholar 

  107. Spyrou G, Enmark E, Miranda-Vizuete A, Gustafsson J. Cloning and expression of a novel mammalian thioredoxin. J Biol Chem. 1997;272:2936–41.

    Article  CAS  PubMed  Google Scholar 

  108. Altschmied J, Haendeler J. Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases. Antioxid Redox Signal. 2009;11:1733–40.

    Article  CAS  PubMed  Google Scholar 

  109. Gasdaska PY, Berggren MM, Berry MJ, Powis G. Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett. 1999;442:105–11.

    Article  CAS  PubMed  Google Scholar 

  110. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem. 1999;261:405–12.

    Article  CAS  PubMed  Google Scholar 

  111. Koenig W, Sund M, Frohlich M, et al. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99:237–42.

    Article  CAS  PubMed  Google Scholar 

  112. Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208.

    Article  CAS  PubMed  Google Scholar 

  113. Watabe S, Hiroi T, Yamamoto Y, et al. SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem. 1997;249:52–60.

    Article  CAS  PubMed  Google Scholar 

  114. Knoops B, Clippe A, Bogard C, et al. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem. 1999;274:30451–8.

    Article  CAS  PubMed  Google Scholar 

  115. Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 2005;66:562–73.

    Article  CAS  PubMed  Google Scholar 

  116. Groschner LN, Waldeck-Weiermair M, Malli R, Graier WF. Endothelial mitochondria—less respiration, more integration. Pflugers Arch. 2012;464:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chen Z, Peng IC, Cui X, Li YS, Chien S, Shyy JY. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A. 2010;107:10268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Miller MW, Knaub LA, Olivera-Fragoso LF, et al. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol. 2013;304:H1624–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Knaub LA, McCune S, Chicco AJ, et al. Impaired response to exercise intervention in the vasculature in metabolic syndrome. Diab Vasc Dis Res. 2013;10:222–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Quintero M, Colombo SL, Godfrey A, Moncada S. Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A. 2006;103:5379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;112:1171–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Monsalve M, Borniquel S, Valle I, Lamas S. Mitochondrial dysfunction in human pathologies. Front Biosci. 2007;12:1131–53.

    Article  CAS  PubMed  Google Scholar 

  123. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circ Res. 2003;93:573–80.

    Article  CAS  PubMed  Google Scholar 

  124. Breton-Romero R, Acin-Perez R, Rodriguez-Pascual F, et al. Laminar shear stress regulates mitochondrial dynamics, bioenergetics responses and PRX3 activation in endothelial cells. Biochim Biophys Acta. 2014;1843:2403–13.

    Article  CAS  PubMed  Google Scholar 

  125. Kim B, Lee H, Kawata K, Park JY. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium. PLoS One. 2014;9:e111409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Collins AR, Lyon CJ, Xia X, et al. Age-accelerated atherosclerosis correlates with failure to upregulate antioxidant genes. Circ Res. 2009;104:e42–54.

    Article  CAS  PubMed  Google Scholar 

  127. Ai L, Rouhanizadeh M, Wu JC, et al. Shear stress influences spatial variations in vascular Mn-SOD expression: implication for LDL nitration. Am J Physiol Cell Physiol. 2008;294:C1576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun D, Huang A, Yan EH, et al. Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. Am J Physiol Heart Circ Physiol. 2004;286:H2249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol. 1999;19:656–64.

    Article  CAS  PubMed  Google Scholar 

  130. Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res. 1996;79:32–7.

    Article  CAS  PubMed  Google Scholar 

  131. de Haan JB, Bladier C, Griffiths P, et al. Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem. 1998;273:22528–36.

    Article  PubMed  Google Scholar 

  132. Raes M, Michiels C, Remacle J. Comparative study of the enzymatic defense systems against oxygen-derived free radicals: the key role of glutathione peroxidase. Free Radic Biol Med. 1987;3:3–7.

    Article  CAS  PubMed  Google Scholar 

  133. Chrissobolis S, Didion SP, Kinzenbaw DA, et al. Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction. Hypertension. 2008;51:872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Takeshita S, Inoue N, Ueyama T, Kawashima S, Yokoyama M. Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem Biophys Res Commun. 2000;273:66–71.

    Article  CAS  PubMed  Google Scholar 

  135. Bautista LE. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens. 2003;17:223–30.

    Article  CAS  PubMed  Google Scholar 

  136. Sinisalo J, Paronen J, Mattila KJ, et al. Relation of inflammation to vascular function in patients with coronary heart disease. Atherosclerosis. 2000;149:403–11.

    Article  CAS  PubMed  Google Scholar 

  137. Yoshizumi M, Perrella MA, Burnett Jr JC, Lee ME. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res. 1993;73:205–9.

    Article  CAS  PubMed  Google Scholar 

  138. Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.

    Article  CAS  PubMed  Google Scholar 

  139. Vallance P, Collier J, Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? Lancet. 1997;349:1391–2.

    Article  CAS  PubMed  Google Scholar 

  140. Huo Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand. 2001;173:35–43.

    Article  CAS  PubMed  Google Scholar 

  141. Loetscher H, Pan YC, Lahm HW, et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell. 1990;61:351–9.

    Article  CAS  PubMed  Google Scholar 

  142. Schall TJ, Lewis M, Koller KJ, et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell. 1990;61:361–70.

    Article  CAS  PubMed  Google Scholar 

  143. Smith CA, Davis T, Anderson D, et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science. 1990;248:1019–23.

    Article  CAS  PubMed  Google Scholar 

  144. Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol. 2001;70:317–25.

    Article  CAS  PubMed  Google Scholar 

  145. De Palma C, Meacci E, Perrotta C, Bruni P, Clementi E. Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol. 2006;26:99–105.

    Article  PubMed  CAS  Google Scholar 

  146. Zhang H, Park Y, Wu J, et al. Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond). 2009;116:219–30.

    Article  CAS  Google Scholar 

  147. Partridge J, Carlsen H, Enesa K, et al. Laminar shear stress acts as a switch to regulate divergent functions of NF-kappaB in endothelial cells. FASEB J. 2007;21:3553–61.

    Article  CAS  PubMed  Google Scholar 

  148. Yamawaki H, Lehoux S, Berk BC. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation. 2003;108:1619–25.

    Article  CAS  PubMed  Google Scholar 

  149. Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci U S A. 2001;98:6476–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ni CW, Hsieh HJ, Chao YJ, Wang DL. Interleukin-6-induced JAK2/STAT3 signaling pathway in endothelial cells is suppressed by hemodynamic flow. Am J Physiol Cell Physiol. 2004;287:C771–80.

    Article  CAS  PubMed  Google Scholar 

  151. Zeng Y, Qiao Y, Zhang Y, Liu X, Wang Y, Hu J. Effects of fluid shear stress on apoptosis of cultured human umbilical vein endothelial cells induced by LPS. Cell Biol Int. 2005;29:932–5.

    Article  CAS  PubMed  Google Scholar 

  152. Segal SS, Duling BR. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling? Am J Physiol. 1989;256:H838–45.

    CAS  PubMed  Google Scholar 

  153. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

    Article  PubMed  Google Scholar 

  154. Poliseno L, Tuccoli A, Mariani L, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068–71.

    Article  CAS  PubMed  Google Scholar 

  155. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59–68.

    Article  CAS  PubMed  Google Scholar 

  156. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164–73.

    Article  CAS  PubMed  Google Scholar 

  157. Chan LS, Yue PY, Mak NK, Wong RN. Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci. 2009;38:370–7.

    Article  CAS  PubMed  Google Scholar 

  158. Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108:9232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524–32.

    Article  CAS  PubMed  Google Scholar 

  160. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Holliday-Ankeny CJ, Ankeny RF, Ferdous Z, Nerem RMHJ, Shear- and side-dependent microRNAs and messenger RNAs in aortic valvular endothelium. QScience Proc. 2012;56:60.

    Google Scholar 

  162. Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study. Circulation. 2007;115:2390–7.

    Article  PubMed  Google Scholar 

  163. Chen BP, Li YS, Zhao Y, et al. DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics. 2001;7:55–63.

    Article  CAS  PubMed  Google Scholar 

  164. Wei P, Milbauer LC, Enenstein J, Nguyen J, Pan W, Hebbel RP. Differential endothelial cell gene expression by African Americans versus Caucasian Americans: a possible contribution to health disparity in vascular disease and cancer. BMC Med. 2011;9:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Brown Ph.D., F.A.C.S.M., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, M.D., Park, JY. (2015). Effects of In Vitro Laminar Shear Stress as an Exercise Mimetic on Endothelial Cell Health. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_7

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics