Skip to main content

Engineering the Nanoparticle-Protein Interface for Cancer Therapeutics

  • Chapter
  • First Online:
Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 166))

Abstract

Intracellular delivery of functional proteins using nanoparticles can be a game-changing approach for cancer therapy. However, cytosolic release of functional protein is still a major challenge. In addition, formation of protein corona on the surface of the nanoparticles can also alter the behavior of the nanoparticles. Here, we will review recent strategies for protein delivery into the cell. Finally we will discuss the issue of protein corona formation in light of nanoparticle-protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS (2010) Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjug Chem 21(12):2205–2212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Vasconcelos L, Pärn K, Langel Ü (2013) Therapeutic potential of cell-penetrating peptides. Ther Deliv 4(5):573–591

    Article  CAS  PubMed  Google Scholar 

  3. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Controlled Release 161(2):429–445

    Article  CAS  Google Scholar 

  4. Le Roy C, Wrana JL (2005) Clathrin-and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6(2):112–126

    Article  PubMed  CAS  Google Scholar 

  5. Mellert K, Lamla M, Scheffzek K, Wittig R, Kaufmann D (2012) Enhancing endosomal escape of transduced proteins by photochemical internalisation. PLoS ONE 7(12):e52473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yan B, Kim ST, Kim CS, Saha K, Moyano DF, Xing Y, Jiang Y, Roberts AL, Alfonso FS, Rotello VM, Vachet RW (2013) Multiplexed Imaging of Nanoparticles in Tissues Using Laser Desorption/Ionization Mass Spectrometry. J Am Chem Soc 135(34):12564–12567. doi:10.1021/ja406553f

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tang R, Kim CS, Solfiell DJ, Rana S, Mout R, Velázquez-Delgado EM, Chompoosor A, Jeong Y, Yan B, Zhu Z-J, Kim C, Hardy JA, Rotello VM (2013) Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS Nano 7(8):6667–6673. doi:10.1021/nn402753y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UHF, Rotello VM (2009) Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein. Nat Chem 1(6):461–465. doi:10.1038/nchem.334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779. doi:10.1021/cr2001178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang S-T, Liu Y, Wang Y-W, Cao A (2013) Biosafety and bioapplication of nanomaterials by designing protein-nanoparticle interactions. Small 9(9–10):1635–1653. doi:10.1002/smll.201201492

    Article  CAS  PubMed  Google Scholar 

  11. De M, Miranda OR, Rana S, Rotello VM (2009) Size and geometry dependent protein-nanoparticle self-assembly. Chem Commun 16:2157–2159. doi:10.1039/b900552h

    Article  CAS  Google Scholar 

  12. You CC, Agasti SS, De M, Knapp MJ, Rotello VM (2006) Modulation of the catalytic behavior of α-chymotrypsin at monolayer-protected nanoparticle surfaces. J Am Chem Soc 128(45):14612–14618. doi:10.1021/ja064433z

    Article  CAS  PubMed  Google Scholar 

  13. You CC, De M, Rotello VM (2005) Contrasting effects of exterior and interior hydrophobic moieties in the complexation of amino acid functionalized gold clusters with α-chymotrypsin. Org Lett 7(25):5685–5688. doi:10.1021/ol052367k

    Article  CAS  PubMed  Google Scholar 

  14. You CC, De M, Han G, Rotello VM (2005) Tunable inhibition and denaturation of α-chymotrypsin with amino acid-functionalized gold nanoparticles. J Am Chem Soc 127(37):12873–12881. doi:10.1021/ja0512881

    Article  CAS  PubMed  Google Scholar 

  15. De M, Rotello VM (2008) Synthetic “chaperones”: nanoparticle-mediated refolding of thermally denatured proteins. Chem Commun 30:3504–3506. doi:10.1039/b805242e

    Article  CAS  Google Scholar 

  16. Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S (2014) A draft map of the human proteome. Nature 509(7502):575–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  18. Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 0:1–22

    CAS  Google Scholar 

  19. Zhang Y, Meibohm B (2012) Pharmacokinetics and pharmacodynamics of therapeutic peptides and proteins. In: Pharmaceutical biotechnology: drug discovery and clinical applications, 2nd edn. Wiley, Weinheim, pp 337–367

    Google Scholar 

  20. Molema G, de Leij LF, Meijer DK (1997) Tumor vascular endothelium: barrier or target in tumor directed drug delivery and immunotherapy. Pharm Res 14(1):2–10

    Article  CAS  PubMed  Google Scholar 

  21. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60(9):2497–2503

    CAS  PubMed  Google Scholar 

  22. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer-chemotherapy—mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46(12):6387–6392

    CAS  PubMed  Google Scholar 

  23. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH (1978) Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38(10):3174–3181

    CAS  PubMed  Google Scholar 

  24. Cheever MA, Higano CS (2011) Provenge (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526

    Article  PubMed  Google Scholar 

  25. Ghosh P, Yang X, Arvizo R, Zhu Z-J, Agasti SS, Mo Z, Rotello VM (2010) Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J Am Chem Soc 132(8):2642–2645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou ZH, Liu Z (2009) A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol 5(1):48–53

    Article  PubMed  CAS  Google Scholar 

  27. Folkes LK, Wardman P (2001) Oxidative activation of indole-3-acetic acids to cytotoxic species—a potential new role for plant auxins in cancer therapy. Biochem Pharmacol 61(2):129–136

    Article  CAS  PubMed  Google Scholar 

  28. de Melo MP, de Lima TM, Pithon-Curi TC, Curi R (2004) The mechanism of indole acetic acid cytotoxicity. Toxicol Lett 148(1):103–111

    Article  PubMed  CAS  Google Scholar 

  29. Yeh YC, Tang R, Mout R, Jeong Y, Rotello VM (2014) Fabrication of multiresponsive bioactive nanocapsules through orthogonal self-assembly. Angew Chem Int Edit 53(20):5137–5141

    CAS  Google Scholar 

  30. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliver Rev 65 (1):36–48. doi:http://dx.doi.org/10.1016/j.addr.2012.09.037

  31. Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC (1994) Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6. GM-CSF and interferon-γ. Cytokine 6(1):92–101

    CAS  PubMed  Google Scholar 

  32. Meyer J, Whitcomb L, Collins D (1994) Efficient encapsulation of proteins within liposomes for slow release in vivo. Biochem Biophys Res Commun 199(2):433–438

    Article  CAS  PubMed  Google Scholar 

  33. Ye Q, Asherman J, Stevenson M, Brownson E, Katre NV (2000) DepoFoam™ technology: a vehicle for controlled delivery of protein and peptide drugs. J Controlled Release 64(1):155–166

    Article  CAS  Google Scholar 

  34. Liguori L, Marques B, Villegas-Mendez A, Rothe R, Lenormand J-L (2008) Liposomes-mediated delivery of pro-apoptotic therapeutic membrane proteins. J Controlled Release 126(3):217–227

    Article  CAS  Google Scholar 

  35. Gao J, Zhong W, He J, Li H, Zhang H, Zhou G, Li B, Lu Y, Zou H, Kou G (2009) Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes. Int J Pharm 374(1):145–152

    Article  CAS  PubMed  Google Scholar 

  36. Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S (2008) Development of amphiphilic γ-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun 366(2):408–413

    Article  CAS  PubMed  Google Scholar 

  37. Bramwell VW, Eyles JE, Oya Alpar H (2005) Particulate delivery systems for biodefense subunit vaccines. Adv Drug Deliver Rev 57(9):1247–1265

    Article  CAS  Google Scholar 

  38. Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci USA 108(41):16998–17003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221

    Article  CAS  PubMed  Google Scholar 

  40. Torchilin VP, Lukyanov AN (2003) Peptide and protein drug delivery to and into tumors: challenges and solutions. Drug Discov Today 8(6):259–266

    Article  CAS  PubMed  Google Scholar 

  41. Carswell E, Old LJ, Kassel R, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72(9):3666–3670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Lejeune F (1995) High dose recombinant tumour necrosis factor (rTNFα) administered by isolation perfusion for advanced tumours of the limbs: a model for biochemotherapy of cancer. Eur J Cancer 31(6):1009–1016

    Article  Google Scholar 

  43. Liénard D, Lejeune FJ, Ewalenko P (1992) In transit metastases of malignant melanoma treated by high dose rTNFα in combination with interferon-γ and melphalan in isolation perfusion. World J Surg 16(2):234–240

    Article  PubMed  Google Scholar 

  44. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183

    Article  CAS  PubMed  Google Scholar 

  45. Paciotti GF, Kingston DG, Tamarkin L (2006) Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Develop Res 67(1):47–54

    Article  CAS  Google Scholar 

  46. Libutti S, Paciotti G, Myer L, Haynes R, Gannon W, Walker M, Seidel G, Byrnes A, Yuldasheva N, Tamarkin L (2009) Results of a completed phase I clinical trial of CYT-6091: A pegylated colloidal gold-TNF nanomedicine. J Clin Oncol (Meeting Abstracts) 15S:3586

    Google Scholar 

  47. Brinãs RP, Sundgren A, Sahoo P, Morey S, Rittenhouse-Olson K, Wilding GE, Deng W, Barchi Jr JJ (2012) Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjug Chem 23(8):1513–1523

    Google Scholar 

  48. Mandal M, Lee K-D (2002) Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T lymphocyte frequency, activity, and tumor protection. BBA-Biomembr 1563(1):7–17

    Article  CAS  Google Scholar 

  49. Provoda CJ, Stier EM, Lee K-D (2003) Tumor cell killing enabled by listeriolysin O-liposome-mediated delivery of the protein toxin gelonin. J Biol Chem 278(37):35102–35108

    Article  CAS  PubMed  Google Scholar 

  50. Gaspar M, Perez-Soler R, Cruz M (1996) Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother Pharmacol 38(4):373–377

    Article  CAS  PubMed  Google Scholar 

  51. Jorge JC, Perez-Soler R, Morais JG, Cruz MEM (1994) Liposomal palmitoyl-L-asparaginase: characterization and biological activity. Cancer Chemoth Pharm 34(3):230–234

    Article  CAS  Google Scholar 

  52. Kanaoka E, Takahashi K, Yoshikawa T, Jizomoto H, Nishihara Y, Uchida N, Maekawa R, Hirano K (2002) A significant enhancement of therapeutic effect against hepatic metastases of M5076 in mice by a liposomal interleukin-2 (mixture). J Controlled Release 82(2):183–187

    Article  CAS  Google Scholar 

  53. Wakita D, Chamoto K, Zhang Y, Narita Y, Noguchi D, Ohnishi H, Iguchi T, Sakai T, Ikeda H, Nishimura T (2006) An indispensable role of type-1 IFNs for inducing CTL-mediated complete eradication of established tumor tissue by CpG-liposome co-encapsulated with model tumor antigen. Int Immunol 18(3):425–434

    Article  CAS  PubMed  Google Scholar 

  54. Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, Kast WM (2006) Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine 24(24):5235–5244

    Article  CAS  PubMed  Google Scholar 

  55. Kwak LW, Pennington R, Boni L, Ochoa AC, Robb RJ, Popescu MC (1998) Cutting edge: liposomal formulation of a self lymphoma antigen induces potent protective antitumor immunity. J Immunol 160(8):3637–3641

    CAS  PubMed  Google Scholar 

  56. Neelapu SS, Baskar S, Gause BL, Kobrin CB, Watson TM, Frye AR, Pennington R, Harvey L, Jaffe ES, Robb RJ (2004) Human autologous tumor-specific T-cell responses induced by liposomal delivery of a lymphoma antigen. Clin Cancer Res 10(24):8309–8317

    Article  CAS  PubMed  Google Scholar 

  57. Kim J-H, Kim Y-S, Park K, Kang E, Lee S, Nam HY, Kim K, Park JH, Chi DY, Park R-W (2008) Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials 29(12):1920–1930

    Article  CAS  PubMed  Google Scholar 

  58. Lim SM, Kim TH, Jiang HH, Park CW, Lee S, Chen X, Lee KC (2011) Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 32(13):3538–3546

    Article  CAS  PubMed  Google Scholar 

  59. Gao J, Kou G, Chen H, Wang H, Li B, Lu Y, Zhang D, Wang S, Hou S, Qian W (2008) Treatment of hepatocellular carcinoma in mice with PE38KDEL type I mutant-loaded poly (lactic-co-glycolic acid) nanoparticles conjugated with humanized SM5-1 F (ab′) fragments. Mol Cancer Ther 7(10):3399–3407

    Article  CAS  PubMed  Google Scholar 

  60. Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, Zhou JJ, Gao XJ, Zhu JH (2001) Stealth polycyanoacrylate nanoparticles as tumor necrosis factor-ALPHA. Carriers: pharmacokinetics and anti-tumor effects. Biol Pharm Bull 24(6):662–665

    Article  CAS  PubMed  Google Scholar 

  61. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781

    Article  CAS  PubMed  Google Scholar 

  62. Gagner JE, Lopez MD, Dordick JS, Siegel RW (2011) Effect of gold nanoparticle morphology on adsorbed protein structure and function. Biomaterials 32(29):7241–7252

    Article  CAS  PubMed  Google Scholar 

  63. Mahmoudi M, Shokrgozar MA, Behzadi S (2013) Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles. Nanoscale 5(8):3240–3244

    Article  CAS  PubMed  Google Scholar 

  64. Mahmoudi M, Serpooshan V (2011) Large protein absorptions from small changes on the surface of nanoparticles. J Phys Chem C 115(37):18275–18283

    Article  CAS  Google Scholar 

  65. Cedervall T, Lynch I, Foy M, Berggård T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46(30):5754–5756

    Article  CAS  Google Scholar 

  66. Yeh Y-C, Rana S, Mout R, Yan B, Alfonso FS, Rotello VM (2014) Supramolecular tailoring of protein–nanoparticle interactions using cucurbituril mediators. Chem Commun 50(42):5565–5568

    Article  CAS  Google Scholar 

  67. Zhu ZJ, Posati T, Moyano DF, Tang R, Yan B, Vachet RW, Rotello VM (2012) The interplay of monolayer structure and serum protein interactions on the cellular uptake of gold nanoparticles. Small 8(17):2659–2663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Mahmoudi M, Abdelmonem AM, Behzadi S, Clement JH, Dutz S, Ejtehadi MR, Hartmann R, Kantner K, Linne U, Maffre P (2013) Temperature: the “ignored” factor at the nanobio interface. ACS Nano 7(8):6555–6562

    Article  CAS  PubMed  Google Scholar 

  69. Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein—nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491

    Article  CAS  PubMed  Google Scholar 

  70. Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M (2013) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interface Sci 392:431–445

    Article  CAS  PubMed  Google Scholar 

  71. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4(7):3623–3632

    Article  CAS  PubMed  Google Scholar 

  72. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical—chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  CAS  PubMed  Google Scholar 

  73. Caracciolo G, Pozzi D, Capriotti AL, Cavaliere C, Foglia P, Amenitsch H, Laganà A (2011) Evolution of the protein corona of lipid gene vectors as a function of plasma concentration. Langmuir 27(24):15048–15053

    Article  CAS  PubMed  Google Scholar 

  74. Ghavami M, Saffar S, Emamy BA, Peirovi A, Shokrgozar MA, Serpooshan V, Mahmoudi M (2013) Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 3(4):1119–1126

    Article  CAS  Google Scholar 

  75. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91(3):233–244

    Article  CAS  PubMed  Google Scholar 

  76. Gessner A, Lieske A, Paulke BR, Müller RH (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res, Part A 65(3):319–326

    Article  CAS  Google Scholar 

  77. Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 110(19):7625–7630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111(9):5610–5637

    Article  CAS  PubMed  Google Scholar 

  79. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Vroman L (1962) Effect of Adsorbed Proteins on the Wettability of Hydrophilic and Hydrophobic Solids. Nature 196(4853):476–477

    Article  CAS  PubMed  Google Scholar 

  81. Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M (2014) Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2(9):1210–1221. doi:10.1039/c4bm00131a

    Article  CAS  Google Scholar 

  82. Nagayama S, K-i Ogawara, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1):215–221

    Article  CAS  PubMed  Google Scholar 

  83. Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5(3):1657–1669

    Article  CAS  PubMed  Google Scholar 

  84. Kobzik L (1995) Lung macrophage uptake of unopsonized environmental particulates role of scavenger-type receptors. J Immunol 155(1):367–376

    CAS  PubMed  Google Scholar 

  85. Hamilton RF, Thakur SA, Mayfair JK, Holian A (2006) MARCO mediates silica uptake and toxicity in alveolar macrophages from C57BL/6 mice. J Biol Chem 281(45):34218–34226

    Article  CAS  PubMed  Google Scholar 

  86. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147

    Article  CAS  PubMed  Google Scholar 

  87. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  PubMed  Google Scholar 

  88. Decuzzi P, Godin B, Tanaka T, Lee S-Y, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Controlled Release 141(3):320–327

    Article  CAS  Google Scholar 

  89. Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM (2010) Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere – serum interface: implications for stealth nanoparticle engineering. ACS Nano 4(11):6629–6638

    Article  CAS  PubMed  Google Scholar 

  90. Rubel C, Fernández GC, Dran G, Bompadre MB, Isturiz MA, Palermo MS (2001) Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol 166(3):2002–2010

    Article  CAS  PubMed  Google Scholar 

  91. Sitrin RG, Pan PM, Srikanth S, Todd RF (1998) Fibrinogen activates NF-κB transcription factors in mononuclear phagocytes. J Immunol 161(3):1462–1470

    CAS  PubMed  Google Scholar 

  92. McNally A, Anderson J (1994) Complement C3 participation in monocyte adhesion to different surfaces. Proc Natl Acad Sci USA 91(21):10119–10123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Tandia B-M, Vandenbranden M, Wattiez R, Lakhdar Z, Ruysschaert J-M, Elouahabi A (2003) Identification of human plasma proteins that bind to cationic lipid/DNA complex and analysis of their effects on transfection efficiency: implications for intravenous gene transfer. Mol Ther 8(2):264–273

    Article  CAS  PubMed  Google Scholar 

  94. Paula AJ, Araujo Júnior RT, Martinez DST, Paredes-Gamero EJ, Nader HB, Durán N, Justo GZ, Alves OL (2013) Influence of protein corona on the transport of molecules into cells by mesoporous silica nanoparticles. ACS Appl Mater Inter 5(17):8387–8393

    Google Scholar 

  95. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857

    Article  CAS  PubMed  Google Scholar 

  96. Jiang X, Weise S, Hafner M, Röcker C, Zhang F, Parak WJ, Nienhaus GU (2009) Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J R Soc Interface. doi:10.1098/rsif.2009.0272.focus

    Google Scholar 

  97. Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q (2009) Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 47(5):1351–1358

    Article  CAS  Google Scholar 

  98. JosepháJerry D (2009) Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J Mater Chem 19(35):6328–6331

    Article  CAS  Google Scholar 

  99. Guarnieri D, Guaccio A, Fusco S, Netti PA (2011) Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. J Nanopart Res 13(9):4295–4309

    Article  CAS  Google Scholar 

  100. Ruge CA, Kirch J, Cañadas O, Schneider M, Perez-Gil J, Schaefer UF, Casals C, Lehr C-M (2011) Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomed-Nanotechnol 7(6):690–693

    Article  CAS  Google Scholar 

  101. Wang Z, Tiruppathi C, Minshall RD, Malik AB (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3(12):4110–4116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Caracciolo G, Callipo L, De Sanctis SC, Cavaliere C, Pozzi D, Laganà A (2010) Surface adsorption of protein corona controls the cell internalization mechanism of DC-Chol–DOPE/DNA lipoplexes in serum. BBA-Biomembr 1798(3):536–543

    Article  CAS  Google Scholar 

  103. Pitek AS, O’Connell D, Mahon E, Monopoli MP, Bombelli FB, Dawson KA (2012) Transferrin coated nanoparticles: study of the bionano interface in human plasma. PLoS ONE 7(7):e40685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  PubMed  Google Scholar 

  105. Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun 49(25):2557–2559

    Article  CAS  Google Scholar 

  106. Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA (2012) Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Controlled Release 161(2):164–174

    Article  CAS  Google Scholar 

  107. Caracciolo G (2012) The protein corona effect for targeted drug delivery. Bioinspired Biomimetic Nanobiomaterials 2(1):54–57

    Article  CAS  Google Scholar 

  108. Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8(7):6748–6755. doi:10.1021/nn5006478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Kah JCY, Chen J, Zubieta A, Hamad-Schifferli K (2012) Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 6(8):6730–6740

    Article  CAS  PubMed  Google Scholar 

  110. Cifuentes-Rius A, de Puig H, Kah JCY, Borros S, Hamad-Schifferli K (2013) Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 7(11):10066–10074

    Article  CAS  PubMed  Google Scholar 

  111. Högemann-Savellano D, Bos E, Blondet C, Sato F, Abe T, Josephson L, Weissleder R, Gaudet J, Sgroi D, Peters PJ (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia (New York, NY) 5(6):495

    Google Scholar 

  112. Daniels TR, Delgado T, Helguera G, Penichet ML (2006) The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 121(2):159–176

    Article  CAS  PubMed  Google Scholar 

  113. Berggård T, Arrigoni G, Olsson O, Fex M, Linse S, James P (2006) 140 mouse brain proteins identified by Ca2+-calmodulin affinity chromatography and tandem mass spectrometry. J Proteome Res 5(3):669–687

    Article  PubMed  CAS  Google Scholar 

  114. Labarre D, Vauthier C, Chauvierre C, Petri B, Müller R, Chehimi MM (2005) Interactions of blood proteins with poly (isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084

    Article  CAS  PubMed  Google Scholar 

  115. Cushley RJ, Okon M (2002) NMR studies of lipoprotein structure. Annu Rev Biophys Biomol Struct 31(1):177–206

    Article  CAS  PubMed  Google Scholar 

  116. Srivastava RAK (2003) Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol. J Neurol Sci 210(1):11–18

    Article  CAS  PubMed  Google Scholar 

  117. Goti D, Hrzenjak A, Levak-Frank S, Frank S, Van Der Westhuyzen DR, Malle E, Sattler W (2001) Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. J Neurochem 76(2):498–508

    Article  CAS  PubMed  Google Scholar 

  118. Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Sattler W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277(45):42781–42789

    Article  CAS  PubMed  Google Scholar 

  119. Zannis VI, Chroni A, Krieger M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med 84(4):276–294

    Article  CAS  PubMed  Google Scholar 

  120. Hammad SM, Stefansson S, Twal WO, Drake CJ, Fleming P, Remaley A, Brewer HB, Argraves WS (1999) Cubilin, the endocytic receptor for intrinsic factor-vitamin B12 complex, mediates high-density lipoprotein holoparticle endocytosis. Proc Natl Acad Sci USA 96(18):10158–10163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S, Christensen EI, Aminoff M, de la Chapelle A, Krahe R (1999) The intrinsic factor–vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein AI receptor facilitating endocytosis of high-density lipoprotein. Nat Med 5(6):656–661

    Article  CAS  PubMed  Google Scholar 

  122. Sahali D, Mulliez N, Chatelet F, Dupuis R, Ronco P, Verroust P (1988) Characterization of a 280-kD protein restricted to the coated pits of the renal brush border and the epithelial cells of the yolk sac. Teratogenic effect of the specific monoclonal antibodies. J Exp Med 167(1):213–218

    Article  CAS  PubMed  Google Scholar 

  123. Seetharam B, Christensen EI, Moestrup SK, Hammond TG, Verroust PJ (1997) Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J Clin Investig 99(10):2317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Rotello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saie, A.A., Ray, M., Mahmoudi, M., Rotello, V.M. (2015). Engineering the Nanoparticle-Protein Interface for Cancer Therapeutics. In: Mirkin, C., Meade, T., Petrosko, S., Stegh, A. (eds) Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16555-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16555-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16554-7

  • Online ISBN: 978-3-319-16555-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics