Skip to main content

From Paths to Networks: The Evolving Science of Networks

  • Chapter
Structural Equation Models

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 22))

Abstract

Path models were always a kludge; a hodgepodge of available technologies cobbled together, as best as possible, to make sense of naturally occurring networks. Scientists in the past simply did not possess the analytical power to map more than a few links at a time. PLS-PA, LISREL, and systems of regressions were designed for calculation on paper and with adding machines; they were disappointingly inadequate, but the best we had at the time. Statistical power has always lagged the size and complexity of the networks under analysis, and as a result generated unreliable, simplistic, and inapplicable results. This is doubly unfortunate when we consider how important network models have reigned throughout mankind’s history. For example:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barabási, A. L. (2007). Network medicine—From obesity to the “diseasome”. New England Journal of Medicine, 357(4), 404–407.

    Article  Google Scholar 

  • Barabási, A.-L., Dezső, Z., Ravasz, E., Yook, S.-H., & Oltvai, Z. (2003). Scale-free and hierarchical structures in complex networks. Paper presented at the Modeling of Complex Systems, Seventh Granada Lectures.

    Google Scholar 

  • Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.

    Article  Google Scholar 

  • Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5(2), 101–113.

    Article  Google Scholar 

  • Bascompte, J., & Stouffer, D. B. (2009). The assembly and disassembly of ecological networks. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1524), 1781–1787.

    Article  Google Scholar 

  • Basmann, R. L. (1963). The causal interpretation of non-triangular systems of economic relations. Econometrica, 31, 439–448.

    Article  MATH  Google Scholar 

  • Caldarelli, G., Capocci, A., De Los Rios, P., & Muñoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702.

    Article  Google Scholar 

  • Calhoun, C. J. (2007). Classical sociological theory. Malden, MA: Blackwell.

    Google Scholar 

  • Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  MATH  MathSciNet  Google Scholar 

  • De Sola Pool, I., & Kochen, M. (1979). Contacts and influence. Social Networks, 1(1), 5–51.

    Article  MathSciNet  Google Scholar 

  • Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(04), 681–694.

    Article  Google Scholar 

  • Dunbar, R. I. M. (1995). Neocortex size and group size in primates: A test of the hypothesis. Journal of Human Evolution, 28(3), 287–296.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. (1959). {On random graphs, I}. Publicationes Mathematicae, 6, 290–297.

    Google Scholar 

  • Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

    Google Scholar 

  • Erdős, P., & Rényi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Hungarica, 12(1), 261–267.

    Google Scholar 

  • Flynn, F. J., Reagans, R. E., & Guillory, L. (2010). Do you two know each other? Transitivity, homophily, and the need for (network) closure. Journal of Personality and Social Psychology, 99(5), 855.

    Article  Google Scholar 

  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and experience, 21(11), 1129–1164.

    Google Scholar 

  • Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A. L. (2007). The human disease network. Proceedings of the National Academy of Sciences, 104(21), 8685.

    Article  Google Scholar 

  • Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78, 1360–1380.

    Article  Google Scholar 

  • Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological change. Econometrica, 25, 501–522.

    Article  Google Scholar 

  • Gurevich, M. (1961). The social structure of acquaintanceship networks. Cambridge, MA: MIT Press.

    Google Scholar 

  • Haldane, A. G. (2009). Rethinking the financial network. Speech delivered at the Financial Student Association, Amsterdam, April.

    Google Scholar 

  • Haldane, A. G., & May, R. M. (2011). Systemic risk in banking ecosystems. Nature, 469(7330), 351–355.

    Article  Google Scholar 

  • Hernando, A., Villuendas, D., Vesperinas, C., Abad, M., & Plastino, A. (2010). Unravelling the size distribution of social groups with information theory in complex networks. The European Physical Journal B-Condensed Matter and Complex Systems, 76(1), 87–97.

    Article  MATH  Google Scholar 

  • Kadushin, C. (2012). Understanding social networks: Theories, concepts, and findings. New York, NY: Oxford University Press.

    Google Scholar 

  • Kobourov, S. G. (2012). Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:1201.3011.

    Google Scholar 

  • Kochen, M. (1989). The small world. Norwood, NJ: Ablex.

    Google Scholar 

  • May, R. M., & Arinaminpathy, N. (2010). Systemic risk: The dynamics of model banking systems. Journal of the Royal Society Interface, 7(46), 823–838.

    Article  Google Scholar 

  • May, R. M., Levin, S. A., & Sugihara, G. (2008). Complex systems: Ecology for bankers. Nature, 451(7181), 893–895.

    Article  Google Scholar 

  • McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.

    Article  Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67.

    MathSciNet  Google Scholar 

  • Mitchell, W. P. (1973). The hydraulic hypothesis: A reappraisal. Current Anthropology, 14, 532–534.

    Article  Google Scholar 

  • Moreira, A. A., Paula, D. R., Filho, C., Raimundo, N., & Andrade, J. S., Jr. (2006). Competitive cluster growth in complex networks. Physical Review E, 73(6), 065101.

    Article  Google Scholar 

  • Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131.

    Article  Google Scholar 

  • Newman, M., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Newman, M. E. J., Moore, C., & Watts, D. J. (2000). Mean-field solution of the small-world network model. Physical Review Letters, 84(14), 3201.

    Article  Google Scholar 

  • Newman, M. E. J., Watts, D. J., & Strogatz, S. H. (2002). Random graph models of social networks. Proceedings of the National Academy of Sciences, 99(Suppl 1), 2566–2572.

    Article  MATH  Google Scholar 

  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Article  Google Scholar 

  • Podolny, J. M., & Baron, J. N. (1997). Resources and relationships: Social networks and mobility in the workplace. American Sociological Review, 62, 673–693.

    Article  Google Scholar 

  • Pryor, F. L. (1980). The Asian mode of production as an economic system. Journal of Comparative Economics, 4(4), 420–442.

    Article  Google Scholar 

  • Sugihara, G., & Ye, H. (2009). Complex systems: Cooperative network dynamics. Nature, 458(7241), 979–980.

    Article  Google Scholar 

  • Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 32, 425–443.

    Article  Google Scholar 

  • Watts, D. J. (2004). The “new” science of networks. Annual Review of Sociology, 30, 243–270.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • White, D. R., Owen-Smith, J., Moody, J., & Powell, W. W. (2004). Networks, fields and organizations: Micro-dynamics, scale and cohesive embeddings. Computational and Mathematical Organization Theory, 10(1), 95–117.

    Article  MATH  Google Scholar 

  • Wittfogel, K. A. (1957). Oriental despotism. New Haven, 2, 251–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Westland, J.C. (2015). From Paths to Networks: The Evolving Science of Networks. In: Structural Equation Models. Studies in Systems, Decision and Control, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-16507-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16507-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16506-6

  • Online ISBN: 978-3-319-16507-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics