Skip to main content

Understanding on Neuroimmunology in Autism Spectrum Disorder

  • Chapter
  • First Online:

Abstract

Autism spectrum disorders (ASD) are a group of severe pervasive neurodevelopmental disorders (PDD) affecting between 1 and 3 % of pediatric populations. It is characterized by a highly variable impairment in social interaction and verbal and nonverbal communication, as well as by a stereotyped repetitive behavior, learning problems, and aloofness. ASD behavioral symptoms are frequently accompanied by immunological derangements, including cellular immune dysregulation, chronic inflammatory states, and neuroimmune alterations. Currently, the involvement of the immune pathology in autism remains unclear, and we consider that a better understanding would be useful for earlier clinical and therapeutic interventions. The main aim of this chapter is to review the most current aspects regarding the etiology of autism, with particular reference to the contribution of inflammatory events occurring in the periphery and into the brain, and how they can influence the abnormal development of the offspring and modulate the typical behaviors frequently observed in autism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdallah MW, Larsen N, Grove J, Norgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM (2012) Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun 26(1):170–176. doi:S0889-1591(11)00521-6 [pii] 10.1016/j.bbi.2011.09.003

    CAS  PubMed  Google Scholar 

  • Abrahams VM, Schaefer TM, Fahey JV, Visintin I, Wright JA, Aldo PB, Romero R, Wira CR, Mor G (2006) Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, Poly(I: C). Hum Reprod 21(9):2432–2439. doi:10.1093/humrep/del178

    CAS  PubMed  Google Scholar 

  • Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22. doi:10.1186/1471-230X-11-22

    PubMed Central  PubMed  Google Scholar 

  • Afzal N, Murch S, Thirrupathy K, Berger L, Fagbemi A, Heuschkel R (2003) Constipation with acquired megarectum in children with autism. Pediatrics 112(4):939–942

    PubMed  Google Scholar 

  • Ahern PP, Izcue A, Maloy KJ, Powrie F (2008) The interleukin-23 axis in intestinal inflammation. Immunol Rev 226:147–159. doi:IMR705 [pii] 10.1111/j.1600-065X.2008.00705.x

    PubMed  Google Scholar 

  • Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG (1987) Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28(6):885–900

    CAS  PubMed  Google Scholar 

  • Arnold LE, Farmer C, Kraemer HC, Davies M, Witwer A, Chuang S, DiSilvestro R, McDougle CJ, McCracken J, Vitiello B, Aman MG, Scahill L, Posey DJ, Swiezy NB (2010) Moderators, mediators, and other predictors of risperidone response in children with autistic disorder and irritability. J Child Adolesc Psychopharmacol 20(2):83–93. doi:10.1089/cap.2009.0022

    PubMed Central  PubMed  Google Scholar 

  • Ashwood P, Wakefield AJ (2006) Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 173(1–2):126–134. doi:S0165-5728(05)00539-4 [pii] 10.1016/j.jneuroim.2005.12.007

    CAS  PubMed  Google Scholar 

  • Ashwood P, Anthony A, Pellicer AA, Torrente F, Walker-Smith JA, Wakefield AJ (2003) Intestinal lymphocyte populations in children with regressive autism: evidence for extensive mucosal immunopathology. J Clin Immunol 23(6):504–517. doi:474304 [pii]

    PubMed  Google Scholar 

  • Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80(1):1–15. doi:jlb.1205707 [pii] 10.1189/jlb.1205707

    CAS  PubMed  Google Scholar 

  • Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA, Ozonoff S, Pessah IN, Van de Water J (2008a) Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204(1–2):149–153. doi:S0165-5728(08)00293-2 [pii] 10.1016/j.jneuroim.2008.07.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashwood P, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen RL, Croen LA, Ozonoff S, Pessah IN, Van de Water J (2008b) Decreased transforming growth factor beta1 in autism: a potential link between immune dysregulation and impairment in clinical behavioral outcomes. J Neuroimmunol 204(1–2):149–153. doi:S0165-5728(08)00293-2 [pii] 10.1016/j.jneuroim.2008.07.006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011a) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25(1):40–45. doi:S0889-1591(10)00428-9 [pii] 10.1016/j.bbi.2010.08.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J (2011b) Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun 25(1):40–45. doi:S0889-1591(10)00428-9 [pii] 10.1016/j.bbi.2010.08.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atladottir HO, Thorsen P, Ostergaard L, Schendel DE, Lemcke S, Abdallah M, Parner ET (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J Autism Dev Disord 40(12):1423–1430. doi:10.1007/s10803-010-1006-y

    PubMed  Google Scholar 

  • Ayyoub M, Raffin C, Valmori D (2012) Generation of Th17 from human naive CD4+ T cells preferentially occurs from FOXP3+ Tregs upon costimulation via CD28 or CD5. Blood 119(20):4810–4812; author reply 4812-4813. doi:119/20/4810 [pii] 10.1182/blood-2012-02-409722

    Google Scholar 

  • Banks WA (2012) Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 153(9):4111–4119. doi:en.2012-1435 [pii] 10.1210/en.2012-1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barak Y, Kimhi R, Stein D, Gutman J, Weizman A (1999) Autistic subjects with comorbid epilepsy: a possible association with viral infections. Child Psychiatry Hum Dev 29(3):245–251

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3(9):728–739

    CAS  PubMed  Google Scholar 

  • Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF (2004) Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 104(1):100–106. doi:10.1182/blood-2004-01-0107 2004-01-0107 [pii]

    CAS  PubMed  Google Scholar 

  • Bettelli E, Korn T, Kuchroo VK (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19(6):652–657. doi:S0952-7915(07)00133-1 [pii] 10.1016/j.coi.2007.07.020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci 3:14. doi:10.3389/neuro.08.014.2009

    PubMed Central  PubMed  Google Scholar 

  • Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31(6):537–543

    CAS  PubMed  Google Scholar 

  • Bradstreet JJ, Smith S, Granpeesheh D, El-Dahr JM, Rossignol D (2007) Spironolactone might be a desirable immunologic and hormonal intervention in autism spectrum disorders. Med Hypotheses 68(5):979–987. doi:S0306-9877(06)00753-5 [pii] 10.1016/j.mehy.2006.10.015

    CAS  PubMed  Google Scholar 

  • Buie T, Campbell DB, Fuchs GJ 3rd, Furuta GT, Levy J, Vandewater J, Whitaker AH, Atkins D, Bauman ML, Beaudet AL, Carr EG, Gershon MD, Hyman SL, Jirapinyo P, Jyonouchi H, Kooros K, Kushak R, Levitt P, Levy SE, Lewis JD, Murray KF, Natowicz MR, Sabra A, Wershil BK, Weston SC, Zeltzer L, Winter H (2010) Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics 125(Suppl 1):S1–18. doi:10.1542/peds.2009-1878C

    PubMed  Google Scholar 

  • Buitelaar JK, van Engeland H, van Ree JM, de Wied D (1990) Behavioral effects of Org 2766, a synthetic analog of the adrenocorticotrophic hormone (4–9), in 14 outpatient autistic children. J Autism Dev Disord 20(4):467–478

    CAS  PubMed  Google Scholar 

  • Burgess NK, Sweeten TL, McMahon WM, Fujinami RS (2006) Hyperserotoninemia and altered immunity in autism. J Autism Dev Disord 36(5):697–704. doi:10.1007/s10803-006-0100-7

    PubMed  Google Scholar 

  • Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, Wang CH, Stratton R, Pilarski R, Eng C (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42(4):318–321. doi:10.1136/jmg.2004.024646

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannell JJ (2008) Autism and vitamin D. Med Hypotheses 70(4):750–759. doi:S0306-9877(07)00537-3 [pii] 10.1016/j.mehy.2007.08.016

    CAS  PubMed  Google Scholar 

  • Cappiello A, Malison RT, McDougle CJ, Vegso SJ, Charney DS, Heninger GR, Price LH (1996) Seasonal variation in neuroendocrine and mood responses to i.v. L-tryptophan in depressed patients and healthy subjects. Neuropsychopharmacology 15(5):475–483. doi:S0893-133X(96)00057-7 [pii] 10.1016/S0893-133X(96)00057-7

    CAS  PubMed  Google Scholar 

  • Chakrabarti S, Fombonne E (2005) Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatry 162(6):1133–1141. doi:162/6/1133 [pii] 10.1176/appi.ajp.162.6.1133

    PubMed  Google Scholar 

  • Chess S (1971) Autism in children with congenital rubella. J Autism Child Schizophr 1(1):33–47

    CAS  PubMed  Google Scholar 

  • Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36(6):361–365. doi:S0887-8994(07)00062-8 [pii] 10.1016/j.pediatrneurol.2007.01.012

    PubMed  Google Scholar 

  • Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45(3):287–295

    CAS  PubMed  Google Scholar 

  • Ciaranello AL, Ciaranello RD (1995) The neurobiology of infantile autism. Annu Rev Neurosci 18:101–128. doi:10.1146/annurev.ne.18.030195.000533

    CAS  PubMed  Google Scholar 

  • Coe CL, Lubach GR (2005) Prenatal origins of individual variation in behavior and immunity. Neurosci Biobehav Rev 29(1):39–49. doi:S0149-7634(04)00149-6 [pii] 10.1016/j.neubiorev.2004.11.003

    PubMed  Google Scholar 

  • Cohly HH, Panja A (2005) Immunological findings in autism. Int Rev Neurobiol 71:317–341

    CAS  PubMed  Google Scholar 

  • Comi AM, Zimmerman AW, Frye VH, Law PA, Peeden JN (1999) Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 14(6):388–394

    CAS  PubMed  Google Scholar 

  • Correll PH, Morrison AC, Lutz MA (2004) Receptor tyrosine kinases and the regulation of macrophage activation. J Leukoc Biol 75(5):731–737. doi:10.1189/jlb.0703347jlb.0703347 [pii]

    CAS  PubMed  Google Scholar 

  • Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NE (2012) Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130(Suppl 2):S160–168. doi:10.1542/peds.2012-0900N

    PubMed  Google Scholar 

  • Coutinho AM, Sousa I, Martins M, Correia C, Morgadinho T, Bento C, Marques C, Ataide A, Miguel TS, Moore JH, Oliveira G, Vicente AM (2007) Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet 121(2):243–256. doi:10.1007/s00439-006-0301-3

    CAS  PubMed  Google Scholar 

  • D’Amelio M, Ricci I, Sacco R, Liu X, D’Agruma L, Muscarella LA, Guarnieri V, Militerni R, Bravaccio C, Elia M, Schneider C, Melmed R, Trillo S, Pascucci T, Puglisi-Allegra S, Reichelt KL, Macciardi F, Holden JJ, Persico AM (2005) Paraoxonase gene variants are associated with autism in North America, but not in Italy: possible regional specificity in gene-environment interactions. Mol Psychiatry 10(11):1006–1016. doi:10.1038/sj.mp.4001714

    PubMed  Google Scholar 

  • D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O (1996) Abnormal intestinal permeability in children with autism. Acta Paediatr 85(9):1076–1079

    PubMed  Google Scholar 

  • Dalakas MC (1997) Intravenous immune globulin therapy for neurologic diseases. Ann Intern Med 126(9):721–730

    CAS  PubMed  Google Scholar 

  • Daniels WW, Warren RP, Odell JD, Maciulis A, Burger RA, Warren WL, Torres AR (1995) Increased frequency of the extended or ancestral haplotype B44-SC30-DR4 in autism. Neuropsychobiology 32(3):120–123

    CAS  PubMed  Google Scholar 

  • de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, De Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51(4):418–424. doi:10.1097/MPG.0b013e3181dcc4a5

    PubMed  Google Scholar 

  • de Theije CG, Wu J, da Silva SL, Kamphuis PJ, Garssen J, Korte SM, Kraneveld AD (2011) Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 668(Suppl 1):S70–80. doi:10.1016/j.ejphar.2011.07.013

    PubMed  Google Scholar 

  • DeLong GR, Bean SC, Brown FR 3rd (1981) Acquired reversible autistic syndrome in acute encephalopathic illness in children. Arch Neurol 38(3):191–194

    CAS  PubMed  Google Scholar 

  • Depino AM (2006) Maternal infection and the offspring brain. J Neurosci 26(30):7777–7778

    CAS  PubMed  Google Scholar 

  • Depino AM (2013) Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci 53:69–76. doi:S1044-7431(12)00185-6 [pii] 10.1016/j.mcn.2012.10.003

    CAS  PubMed  Google Scholar 

  • Depino AM, Alonso M, Ferrari C, del Rey A, Anthony D, Besedovsky H, Medina JH, Pitossi F (2004) Learning modulation by endogenous hippocampal IL-1: blockade of endogenous IL-1 facilitates memory formation. Hippocampus 14(4):526–535

    CAS  PubMed  Google Scholar 

  • Depino AM, Lucchina L, Pitossi F (2011) Early and adult hippocampal TGF-beta1 overexpression have opposite effects on behavior. Brain Behav Immun 25(8):1582–1591. doi:S0889-1591(11)00180-2 [pii] 10.1016/j.bbi.2011.05.007

    CAS  PubMed  Google Scholar 

  • Deverman BE, Patterson PH (2009) Cytokines and CNS development. Neuron 64(1):61–78. doi:S0896-6273(09)00680-1 [pii] 10.1016/j.neuron.2009.09.002

    CAS  PubMed  Google Scholar 

  • Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5):337–348. doi:nri2295 [pii] 10.1038/nri2295

    CAS  PubMed  Google Scholar 

  • Emanuele E, Orsi P, Boso M, Broglia D, Brondino N, Barale F, di Nemi SU, Politi P (2010) Low-grade endotoxemia in patients with severe autism. Neurosci Lett 471(3):162–165. doi:S0304-3940(10)00061-3 [pii] 10.1016/j.neulet.2010.01.033

    CAS  PubMed  Google Scholar 

  • Engstrom H, Ohlson S, Stubbs EG, Maciulis A, Caldwell V, Odell JD, Torres A (2003) Decreased expression of CD95 (FAS/APO-1) on CD4+ T-lymphocytes from participants with autism. J Develop Phys Disabil 15(2):155–163. doi:10.1023/A:1022827417414

    Google Scholar 

  • Enstrom AM, Onore CE, de Water JAV, Ashwood P (2010a) Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav Immun 24(1):64–71. doi:10.1016/j.bbi.2009.08.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enstrom AM, Onore CE, Van de Water JA, Ashwood P (2010b) Differential monocyte responses to TLR ligands in children with autism spectrum disorders. Brain Behav Immun 24(1):64–71. doi:S0889-1591(09)00388-2 [pii] 10.1016/j.bbi.2009.08.001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erickson MA, Dohi K, Banks WA (2012) Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 19(2):121–130. doi:000330247 [pii] 10.1159/000330247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatemi SH, Stary JM, Halt AR, Realmuto GR (2001) Dysregulation of Reelin and Bcl-2 proteins in autistic cerebellum. J Autism Dev Disord 31(6):529–535

    CAS  PubMed  Google Scholar 

  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52(8):805–810

    CAS  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD (2009a) Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 8(1):64–69. doi:10.1007/s12311-008-0075-3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009b) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39(2):223–230. doi:10.1007/s10803-008-0646-7

    PubMed Central  PubMed  Google Scholar 

  • Finegold SM (2011) State of the art; microbiology in health and disease. Intestinal bacterial flora in autism. Anaerobe 17(6):367–368. doi:10.1016/j.anaerobe.2011.03.007

    PubMed  Google Scholar 

  • Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35(Suppl 1):S6–S16. doi:10.1086/341914

    PubMed  Google Scholar 

  • Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA 3rd (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453. doi:10.1016/j.anaerobe.2010.06.008

    CAS  PubMed  Google Scholar 

  • Finegold SM, Downes J, Summanen PH (2012) Microbiology of regressive autism. Anaerobe 18(2):260–262. doi:10.1016/j.anaerobe.2011.12.018

    CAS  PubMed  Google Scholar 

  • Fombonne E (2005) Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 66(Suppl 10):3–8

    PubMed  Google Scholar 

  • Furlano RI, Anthony A, Day R, Brown A, McGarvey L, Thomson MA, Davies SE, Berelowitz M, Forbes A, Wakefield AJ, Walker-Smith JA, Murch SH (2001) Colonic CD8 and gamma delta T-cell infiltration with epithelial damage in children with autism. J Pediatr 138(3):366–372. doi:S0022-3476(01)92227-9 [pii] 10.1067/mpd.2001.111323

    CAS  PubMed  Google Scholar 

  • Garay PA, Hsiao EY, Patterson PH, McAllister AK (2012) Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav Immun. doi:S0889-1591(12)00191-2 [pii] 10.1016/j.bbi.2012.07.008

    Google Scholar 

  • Garbett K, Ebert PJ, Mitchell A, Lintas C, Manzi B, Mirnics K, Persico AM (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol Dis 30(3):303–311. doi:S0969-9961(08)00024-7 [pii] 10.1016/j.nbd.2008.01.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geier MR, Geier DA (2005) The potential importance of steroids in the treatment of autistic spectrum disorders and other disorders involving mercury toxicity. Med Hypotheses 64(5):946–954. doi:S0306-9877(04)00615-2 [pii] 10.1016/j.mehy.2004.11.018

    CAS  PubMed  Google Scholar 

  • Ghaziuddin M, Tsai LY, Eilers L, Ghaziuddin N (1992) Brief report: autism and herpes simplex encephalitis. J Autism Dev Disord 22(1):107–113

    CAS  PubMed  Google Scholar 

  • Gillberg C (1986) Onset at age 14 of a typical autistic syndrome. A case report of a girl with herpes simplex encephalitis. J Autism Dev Disord 16(3):369–375

    CAS  PubMed  Google Scholar 

  • Golnik AE, Ireland M (2009) Complementary alternative medicine for children with autism: a physician survey. J Autism Dev Disord 39(7):996–1005. doi:10.1007/s10803-009-0714-7

    PubMed  Google Scholar 

  • Greer MK, Lyons-Crews M, Mauldin LB, Brown FR 3rd (1989) A case study of the cognitive and behavioral deficits of temporal lobe damage in herpes simplex encephalitis. J Autism Dev Disord 19(2):317–326

    CAS  PubMed  Google Scholar 

  • Gregg JP, Lit L, Baron CA, Hertz-Picciotto I, Walker W, Davis RA, Croen LA, Ozonoff S, Hansen R, Pessah IN, Sharp FR (2008) Gene expression changes in children with autism. Genomics 91(1):22–29. doi:S0888-7543(07)00232-7 [pii] 10.1016/j.ygeno.2007.09.003

    CAS  PubMed  Google Scholar 

  • Grigorenko EL, Han SS, Yrigollen CM, Leng L, Mizue Y, Anderson GM, Mulder EJ, de Bildt A, Minderaa RB, Volkmar FR, Chang JT, Bucala R (2008) Macrophage migration inhibitory factor and autism spectrum disorders. Pediatrics 122(2):e438–445. doi:122/2/e438 [pii] 10.1542/peds.2007-3604

    PubMed  Google Scholar 

  • Gupta S (1999) Treatment of children with autism with intravenous immunoglobulin. J Child Neurol 14(3):203–205

    CAS  PubMed  Google Scholar 

  • Gupta S, Aggarwal S, Rashanravan B, Lee T (1998) Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol 85(1):106–109. doi:S0165-5728(98)00021-6 [pii]

    CAS  PubMed  Google Scholar 

  • Hanley HG, Stahl SM, Freedman DX (1977) Hyperserotonemia and amine metabolites in autistic and retarded children. Arch Gen Psychiatry 34(5):521–531

    CAS  PubMed  Google Scholar 

  • Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18(3):349–356. doi:S0952-7915(06)00065-3 [pii] 10.1016/j.coi.2006.03.017

    CAS  PubMed  Google Scholar 

  • Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A (2007) Increasing knowledge of PTEN germline mutations: two additional patients with autism and macrocephaly. Am J Med Genet A 143(6):589–593. doi:10.1002/ajmg.a.31619

    Google Scholar 

  • Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, van de Water J, Pessah IN (2006) The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environ Health Perspect 114(7):1119–1125

    PubMed Central  PubMed  Google Scholar 

  • Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. doi:10.1016/j.tins.2009.11.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoekstra RA, Wheelwright S (2009) Autistic traits in simplex and multiplex autism families: focus on unaffected relatives. Am J Med Genet B Neuropsychiatr Genet. doi:10.1002/ajmg.b.30947

    Google Scholar 

  • Hoekstra PJ, Troost PW, Lahuis BE, Mulder H, Mulder EJ, Franke B, Buitelaar JK, Anderson GM, Scahill L, Minderaa RB (2010) Risperidone-induced weight gain in referred children with autism spectrum disorders is associated with a common polymorphism in the 5-hydroxytryptamine 2 C receptor gene. J Child Adolesc Psychopharmacol 20(6):473–477. doi:10.1089/cap.2009.0071

    PubMed Central  PubMed  Google Scholar 

  • Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, Sousa I, Mulder EJ, Kantojarvi K, Jarvela I, Klauck SM, Poustka F, Bailey AJ, Monaco AP (2010) Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet 18(9):1013–1019. doi:ejhg201069 [pii] 10.1038/ejhg.2010.69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath K, Perman JA (2002) Autism and gastrointestinal symptoms. Curr Gastroenterol Rep 4(3):251–258

    PubMed  Google Scholar 

  • Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648. doi:10.1016/j.immuni.2012.06.020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivarsson SA, Bjerre I, Vegfors P, Ahlfors K (1990) Autism as one of several disabilities in two children with congenital cytomegalovirus infection. Neuropediatrics 21(2):102–103. doi:10.1055/s-2008-1071471

    CAS  PubMed  Google Scholar 

  • Jyonouchi H, Geng L, Ruby A, Zimmerman-Bier B (2005) Dysregulated innate immune responses in young children with autism spectrum disorders: their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 51(2):77–85. doi:84164 [pii] 10.1159/000084164

    PubMed  Google Scholar 

  • Jyonouchi H, Geng L, Cushing-Ruby A, Quraishi H (2008) Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study. J Neuroinflammation 5:52. doi:1742-2094-5-52 [pii] 10.1186/1742-2094-5-52

    PubMed Central  PubMed  Google Scholar 

  • Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8(7):e68322. doi:10.1371/journal.pone.0068322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kersse K, Vanden Berghe T, Lamkanfi M, Vandenabeele P (2007) A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans 35(Pt 6):1508–1511. doi:BST0351508 [pii] 10.1042/BST0351508

    CAS  PubMed  Google Scholar 

  • Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25(3):154–159. doi:S0166223600020889 [pii]

    CAS  PubMed  Google Scholar 

  • Lam KS, Aman MG, Arnold LE (2006) Neurochemical correlates of autistic disorder: a review of the literature. Res Dev Disabil 27(3):254–289. doi:10.1016/j.ridd.2005.03.003

    PubMed  Google Scholar 

  • Lamkanfi M, Kanneganti TD, Franchi L, Nunez G (2007) Caspase-1 inflammasomes in infection and inflammation. J Leukoc Biol 82(2):220–225. doi:jlb.1206756 [pii] 10.1189/jlb.1206756

    CAS  PubMed  Google Scholar 

  • Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M, Perry E (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125(Pt 7):1483–1495

    CAS  PubMed  Google Scholar 

  • Lee LC, Zachary AA, Leffell MS, Newschaffer CJ, Matteson KJ, Tyler JD, Zimmerman AW (2006) HLA-DR4 in families with autism. Pediatr Neurol 35(5):303–307. doi:S0887-8994(06)00383-3 [pii] 10.1016/j.pediatrneurol.2006.06.006

    PubMed  Google Scholar 

  • Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161. doi:10.1146/annurev.immunol.16.1.137

    CAS  PubMed  Google Scholar 

  • Levy SE, Mandell DS, Merhar S, Ittenbach RF, Pinto-Martin JA (2003) Use of complementary and alternative medicine among children recently diagnosed with autistic spectrum disorder. J Dev Behav Pediatr 24(6):418–423

    PubMed  Google Scholar 

  • Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207(1–2):111–116. doi:S0165-5728(08)00490-6 [pii] 10.1016/j.jneuroim.2008.12.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lintas C, Sacco R, Garbett K, Mirnics K, Militerni R, Bravaccio C, Curatolo P, Manzi B, Schneider C, Melmed R, Elia M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM (2009) Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 14(7):705–718. doi:mp200821 [pii] 10.1038/mp.2008.21

    CAS  PubMed  Google Scholar 

  • Liu G, Yang K, Burns S, Shrestha S, Chi H (2010) The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 11(11):1047–1056. doi:ni.1939 [pii] 10.1038/ni.1939

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lucchina L, Depino AM (2014) Altered peripheral and central inflammatory responses in a mouse model of autism. Autism Res 7(2):273–289. doi:10.1002/aur.1338

    PubMed  Google Scholar 

  • MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54. doi:S0166-4328(10)00677-7 [pii] 10.1016/j.bbr.2010.10.005

    CAS  PubMed  Google Scholar 

  • Madsen-Bouterse SA, Romero R, Tarca AL, Kusanovic JP, Espinoza J, Kim CJ, Kim JS, Edwin SS, Gomez R, Draghici S (2010) The transcriptome of the fetal inflammatory response syndrome. Am J Reprod Immunol 63(1):73–92. doi:AJI791 [pii] 10.1111/j.1600-0897.2009.00791.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malik M, Sheikh AM, Wen G, Spivack W, Brown WT, Li X (2011) Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology 216(1–2):80–85. doi:S0171-2985(10)00024-0 [pii] 10.1016/j.imbio.2010.03.001

    CAS  PubMed  Google Scholar 

  • Maloy KJ (2008) The Interleukin-23/Interleukin-17 axis in intestinal inflammation. J Intern Med 263(6):584–590. doi:10.1111/j.1365-2796.2008.01950.x

    CAS  PubMed  Google Scholar 

  • Markowitz PI (1983) Autism in a child with congenital cytomegalovirus infection. J Autism Dev Disord 13(3):249–253

    CAS  PubMed  Google Scholar 

  • Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EK (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123(1–2):81–90. doi:10.1016/j.molbrainres.2004.01.003S0169328X0400035X [pii]

    CAS  PubMed  Google Scholar 

  • Matarazzo EB (2002) Treatment of late onset autism as a consequence of probable autommune processes related to chronic bacterial infection. World J Biol Psychiatry 3(3):162–166

    PubMed  Google Scholar 

  • McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH (1996) Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53(11):993–1000

    CAS  PubMed  Google Scholar 

  • McLay RN, Kastin AJ, Zadina JE (2000) Passage of interleukin-1-beta across the blood-brain barrier is reduced in aged mice: a possible mechanism for diminished fever in aging. Neuroimmunomodulation 8(3):148–153. doi:54275 [pii] 54275

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343(5):338–344. doi:10.1056/NEJM200008033430506

    CAS  PubMed  Google Scholar 

  • Merali Z, Lacosta S, Anisman H (1997) Effects of interleukin-1beta and mild stress on alterations of norepinephrine, dopamine and serotonin neurotransmission: a regional microdialysis study. Brain Res 761(2):225–235. doi:S0006-8993(97)00312-0 [pii]

    CAS  PubMed  Google Scholar 

  • Merrill JE (1992) Tumor necrosis factor alpha, interleukin 1 and related cytokines in brain development: normal and pathological. Dev Neurosci 14(1):1–10

    CAS  PubMed  Google Scholar 

  • Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I, Yee BK, Feldon J (2006) The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 26(18):4752–4762

    CAS  PubMed  Google Scholar 

  • Meyer U, Yee BK, Feldon J (2007) The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse? Neuroscientist 13(3):241–256. doi:13/3/241 [pii] 10.1177/1073858406296401

    CAS  PubMed  Google Scholar 

  • Meyer U, Feldon J, Yee BK (2009) A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 35(5):959–972. doi:sbn022 [pii] 10.1093/schbul/sbn022

    PubMed Central  PubMed  Google Scholar 

  • Minderaa RB, Anderson GM, Volkmar FR, Akkerhuis GW, Cohen DJ (1987) Urinary 5-hydroxyindoleacetic acid and whole blood serotonin and tryptophan in autistic and normal subjects. Biol Psychiatry 22(8):933–940

    CAS  PubMed  Google Scholar 

  • Mjosberg J, Bernink J, Golebski K, Karrich JJ, Peters CP, Blom B, te Velde AA, Fokkens WJ, van Drunen CM, Spits H (2012) The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37(4):649–659. doi:10.1016/j.immuni.2012.08.015

    PubMed  Google Scholar 

  • Mohankumar PS, Thyagarajan S, Quadri SK (1991) Interleukin-1 stimulates the release of dopamine and dihydroxyphenylacetic acid from the hypothalamus in vivo. Life Sci 48(9):925–930

    CAS  PubMed  Google Scholar 

  • Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172(1–2):198–205. doi:S0165-5728(05)00492-3 [pii] 10.1016/j.jneuroim.2005.11.007

    CAS  PubMed  Google Scholar 

  • Mondino A, Mueller DL (2007) mTOR at the crossroads of T cell proliferation and tolerance. Semin Immunol 19(3):162–172. doi:10.1016/j.smim.2007.02.008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mostafa GA, Al Shehab A, Fouad NR (2010) Frequency of CD4+ CD25high regulatory T cells in the peripheral blood of Egyptian children with autism. J Child Neurol 25(3):328–335. doi:10.1177/0883073809339393

    PubMed  Google Scholar 

  • Niehus R, Lord C (2006) Early medical history of children with autism spectrum disorders. J Dev Behav Pediatr 27(2 Suppl):S120–127

    PubMed  Google Scholar 

  • Nijmeijer JS, Arias-Vasquez A, Rommelse NN, Altink ME, Anney RJ, Asherson P, Banaschewski T, Buschgens CJ, Fliers EA, Gill M, Minderaa RB, Poustka L, Sergeant JA, Buitelaar JK, Franke B, Ebstein RP, Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sonuga-Barke EJ, Steinhausen HC, Faraone SV, Hartman CA, Hoekstra PJ (2010) Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adolesc Psychiatry 49(7):675–685. doi:10.1016/j.jaac.2010.03.015

    PubMed Central  PubMed  Google Scholar 

  • Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Sugiyama T, Kawai M, Minabe Y, Takei N, Mori N (2007) Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 31(1):187–190. doi:S0278-5846(06)00339-3 [pii] 10.1016/j.pnpbp.2006.08.020

    CAS  PubMed  Google Scholar 

  • Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL, Blumberg RS (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336(6080):489–493. doi:10.1126/science.1219328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onore C, Enstrom A, Krakowiak P, Hertz-Picciotto I, Hansen R, Van de Water J, Ashwood P (2009) Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders. J Neuroimmunol 216(1–2):126–129. doi:10.1016/j.jneuroim.2009.09.005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3(9):715–727

    CAS  PubMed  Google Scholar 

  • Pardo CA, Eberhart CG (2007) The neurobiology of autism. Brain Pathol 17(4):434–447

    CAS  PubMed  Google Scholar 

  • Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry (Abingdon, England) 17(6):485–495

    PubMed  Google Scholar 

  • Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(Pt 10):987–991. doi:54/10/987 [pii] 10.1099/jmm.0.46101-0

    PubMed  Google Scholar 

  • Plioplys AV (1998) Intravenous immunoglobulin treatment of children with autism. J Child Neurol 13(2):79–82

    CAS  PubMed  Google Scholar 

  • Pradhan S, Gupta RP, Shashank S, Pandey N (1999) Intravenous immunoglobulin therapy in acute disseminated encephalomyelitis. J Neurol Sci 165(1):56–61. doi:S0022-510X(99)00072-6 [pii]

    CAS  PubMed  Google Scholar 

  • Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood-brain barrier. Glia 36(2):145–155. doi:10.1002/glia.1104 [pii]

    CAS  PubMed  Google Scholar 

  • Ray MA, Graham AJ, Lee M, Perry RH, Court JA, Perry EK (2005) Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus. Neurobiol Dis 19(3):366–377. doi:10.1016/j.nbd.2005.01.017

    CAS  PubMed  Google Scholar 

  • Ring A, Barak Y, Ticher A, Ashkenazi I, Elizur A, Weizman A (1997) Evidence for an infectious etiology in autism. Pathophysiology 4:91–96

    Google Scholar 

  • Rodriguez-Escudero I, Oliver MD, Andres-Pons A, Molina M, Cid VJ, Pulido R (2011) A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet 20(21):4132–4142. doi:10.1093/hmg/ddr337

    CAS  PubMed  Google Scholar 

  • Rolf LH, Haarmann FY, Grotemeyer KH, Kehrer H (1993) Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr Scand 87(5):312–316

    CAS  PubMed  Google Scholar 

  • Romagnani S (2000) T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol 85(1):9–18; quiz 18, 21. doi:S1081-1206(10)62426-X [pii] 10.1016/S1081-1206(10)62426-X

    Google Scholar 

  • Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S (2000) Th1/Th2 cells, their associated molecules and role in pathophysiology. Eur Cytokine Netw 11(3):510–511

    CAS  PubMed  Google Scholar 

  • Romero R, Gotsch F, Pineles B, Kusanovic JP (2007) Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev 65(12 Pt 2):S194–202

    PubMed  Google Scholar 

  • Rosen NJ, Yoshida CK, Croen LA (2007) Infection in the first 2 years of life and autism spectrum disorders. Pediatrics 119(1):e61–69. doi:119/1/e61 [pii] 10.1542/peds.2006-1788

    PubMed  Google Scholar 

  • Round JL, O'Connell RM, Mazmanian SK (2010) Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun 34(3):J220–225. doi:10.1016/j.jaut.2009.11.007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rout UK, Clausen P (2009) Common increase of GATA-3 level in PC-12 cells by three teratogens causing autism spectrum disorders. Neurosci Res 64(2):162–169. doi:S0168-0102(09)00063-7 [pii] 10.1016/j.neures.2009.02.009

    CAS  PubMed  Google Scholar 

  • Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Vaisanen ML, Nelson MN, Wexler HM (2000) Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 15(7):429–435

    CAS  PubMed  Google Scholar 

  • Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105(22):7797–7802. doi:10.1073/pnas.0800928105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schain RJ, Freedman DX (1961) Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 58:315–320

    CAS  PubMed  Google Scholar 

  • Schmitz C, van Kooten IA, Hof PR, van Engeland H, Patterson PH, Steinbusch HW (2005) Autism: neuropathology, alterations of the GABAergic system, and animal models. Int Rev Neurobiol 71:1–26

    CAS  PubMed  Google Scholar 

  • Shenoy S, Arnold S, Chatila T (2000) Response to steroid therapy in autism secondary to autoimmune lymphoproliferative syndrome. J Pediatr 136(5):682–687. doi:S0022-3476(00)48959-6 [pii] 10.1067/mpd.2000.105355

    CAS  PubMed  Google Scholar 

  • Shintani F, Kanba S, Nakaki T, Nibuya M, Kinoshita N, Suzuki E, Yagi G, Kato R, Asai M (1993) Interleukin-1 beta augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J Neurosci 13(8):3574–3581

    CAS  PubMed  Google Scholar 

  • Singh VK (1996) Plasma increase of interleukin-12 and interferon-gamma. Pathological significance in autism. J Neuroimmunol 66(1–2):143–145

    CAS  PubMed  Google Scholar 

  • Singh VK, Jensen RL (2003) Elevated levels of measles antibodies in children with autism. Pediatr Neurol 28(4):292–294. doi:S0887899402006276 [pii]

    PubMed  Google Scholar 

  • Siniscalco D, Antonucci N (2013) Involvement of dietary bioactive proteins and peptides in autism spectrum disorders. Curr Protein Pept Sci 14(8):674–679

    CAS  PubMed  Google Scholar 

  • Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, de Magistris L, Rossi F, Fasano A, Maione S, Antonucci N (2012) The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord 42(7):1403–1410. doi:10.1007/s10803-011-1373-z

    PubMed  Google Scholar 

  • Snijders TM, Milivojevic B, Kemner C (2013) Atypical excitation-inhibition balance in autism captured by the gamma response to contextual modulation. Neuroimage Clin 3:65–72. doi:10.1016/j.nicl.2013.06.015

    PubMed Central  PubMed  Google Scholar 

  • Sousa I, Clark TG, Holt R, Pagnamenta AT, Mulder EJ, Minderaa RB, Bailey AJ, Battaglia A, Klauck SM, Poustka F, Monaco AP (2010) Polymorphisms in leucine-rich repeat genes are associated with autism spectrum disorder susceptibility in populations of European ancestry. Mol Autism 1(1):7. doi:2040-2392-1-7 [pii] 10.1186/2040-2392-1-7

    PubMed Central  PubMed  Google Scholar 

  • Stubbs EG (1978) Autistic symptoms in a child with congenital cytomegalovirus infection. J Autism Child Schizophr 8(1):37–43

    CAS  PubMed  Google Scholar 

  • Stubbs EG, Ash E, Williams CP (1984) Autism and congenital cytomegalovirus. J Autism Dev Disord 14(2):183–189

    CAS  PubMed  Google Scholar 

  • Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204(8):1775–1785. doi:jem.20070602 [pii] 10.1084/jem.20070602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S, Matsumoto K, Tsuchiya KJ, Iwata Y, Nakamura K, Tsujii M, Sugiyama T, Mori N (2011) Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One 6(5):e20470. doi:10.1371/journal.pone.0020470 PONE-D-11-06135 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A, Davies SE, Wakefield AJ, Thomson MA, Walker-Smith JA, Murch SH (2002) Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 7(4):375–382, 334. doi:10.1038/sj.mp.4001077

    CAS  PubMed  Google Scholar 

  • Torres AR, Sweeten TL, Cutler A, Bedke BJ, Fillmore M, Stubbs EG, Odell D (2006) The association and linkage of the HLA-A2 class I allele with autism. Hum Immunol 67(4–5):346–351. doi:S0198-8859(06)00042-5 [pii] 10.1016/j.humimm.2006.01.001

    CAS  PubMed  Google Scholar 

  • Ueda A, Zhou L, Stein PL (2012) Fyn promotes Th17 differentiation by regulating the kinetics of RORgammat and Foxp3 expression. J Immunol 188(11):5247–5256. doi:jimmunol.1102241 [pii] 10.4049/jimmunol.1102241

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Doorninck JH, van Der Wees J, Karis A, Goedknegt E, Engel JD, Coesmans M, Rutteman M, Grosveld F, De Zeeuw CI (1999) GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 19(12):RC12

    PubMed  Google Scholar 

  • van Gent T, Heijnen CJ, Treffers PD (1997) Autism and the immune system. J Child Psychol Psychiatry 38(3):337–349

    PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57(1):67–81

    CAS  PubMed  Google Scholar 

  • Vojdani A, Pangborn JB, Vojdani E, Cooper EL (2003) Infections, toxic chemicals and dietary peptides binding to lymphocyte receptors and tissue enzymes are major instigators of autoimmunity in autism. Int J Immunopathol Pharmacol 16(3):189–199

    CAS  PubMed  Google Scholar 

  • Wakefield AJ, Anthony A, Murch SH, Thomson M, Montgomery SM, Davies S, O’Leary JJ, Berelowitz M, Walker-Smith JA (2000) Enterocolitis in children with developmental disorders. Am J Gastroenterol 95(9):2285–2295. doi:S0002-9270(00)02041-4 [pii] 10.1111/j.1572-0241.2000.03248.x

    CAS  PubMed  Google Scholar 

  • Wallach D, Kang TB, Rajput A, Kim JC, Bogdanov K, Yang SH, Kovalenko A (2010) Anti-inflammatory functions of the “apoptotic” caspases. Ann N Y Acad Sci 1209:17–22. doi:10.1111/j.1749-6632.2010.05742.x

    CAS  PubMed  Google Scholar 

  • Warren RP, Margaretten NC, Pace NC, Foster A (1986) Immune abnormalities in patients with autism. J Autism Dev Disord 16(2):189–197

    CAS  PubMed  Google Scholar 

  • Warren RP, Yonk J, Burger RW, Odell D, Warren WL (1995) DR-positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 31(2):53–57

    CAS  PubMed  Google Scholar 

  • Wong HH, Smith RG (2006) Patterns of complementary and alternative medical therapy use in children diagnosed with autism spectrum disorders. J Autism Dev Disord 36(7):901–909. doi:10.1007/s10803-006-0131-0

    PubMed  Google Scholar 

  • Yamashita Y, Fujimoto C, Nakajima E, Isagai T, Matsuishi T (2003) Possible association between congenital cytomegalovirus infection and autistic disorder. J Autism Dev Disord 33(4):455–459

    PubMed  Google Scholar 

  • Yurchenko E, Shio MT, Huang TC, Da Silva Martins M, Szyf M, Levings MK, Olivier M, Piccirillo CA (2012) Inflammation-driven reprogramming of CD4+ Foxp3 + regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS ONE 7(4):e35572. doi:10.1371/journal.pone.0035572 PONE-D-11-25382 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Autism Biomarkers Project of CIREN (M.A.R-A.), Havana University (M.C.I.J.), a CONICET Grant PIP 2012, a University of Buenos Aires Grant UBACyT GEF2013-2015, and an ANPCyT Grant PICT2010 (A.M.D.). A.M.D. is a member of the Research Career at the National Council of Scientific and Technological Research (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de los Angeles Robinson-Agramonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Depino, A., Robinson-Agramonte, M. (2015). Understanding on Neuroimmunology in Autism Spectrum Disorder. In: Robinson-Agramonte, M. (eds) Translational Approaches to Autism Spectrum Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-16321-5_9

Download citation

Publish with us

Policies and ethics