Skip to main content

Tree Gum: Gum Kondagogu

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Tree gums are obtained as the natural exudates of different tree species and exhibit unique properties with a wide variety of applications. Commercially, gums have a separate niche in the world market as a commodity of international trade. These biopolymers are abundant, come from renewable sources, are relatively inexpensive and nontoxic, and are amenable to both chemical and biochemical modifications that find widespread and extensive food and nonfood applications. Most gums are heterogeneous polysaccharides with complicated structures and extremely high molecular masses. Major tree exudate gums include gum arabic, gum tragacanth, gum karaya, ghatti, and gum kondagogu. Exudate gums possess a unique combination of functionalities and properties that can never be matched by any other alternative synthetic polymers, which makes their complete substitution impossible. Importantly, these biopolymers are eco-friendly as they are biodeteriorable. Gum kondagogu is a naturally occurring nontoxic polysaccharide derived as an exudate from the bark of Cochlospermum gossypium (Bixaceae family), a native tree of India. To exploit its potential commercial applications, its morphological, structural, physicochemical, compositional, solution, conformational, rheological, emulsifying, and metal-biosorption properties have been elucidated. Gum kondagogu is an acidic gum with high content of uronic acid and the major functional groups identified in the gum are hydroxyl, acetyl, carbonyl, and carboxylic groups. The primary structure of this biopolymer contains sugars, such as arabinose, rhamnose, glucose, galactose, mannose, glucuronic acid, and galacturonic acid. Based on the spectroscopic categorization, the probable structural feature consigned to gum kondagogu is (1 → 2) β-d-Gal p, (1 → 6) β-d-Gal p, (1 → 4) β-d-Glc p A, 4-0-Me-α-d-Glc p A, (1 → 2) α-l-Rha, and (1 → 4) α-d-Gal p A.

The outcome of the experimental studies carried out with gum kondagogu has established its efficacy as a proficient biopolymer for (i) bioremediation of toxic metals, (ii) green synthesis of metal nanoparticles and magnetic iron oxide nanoparticles (MNP), (iii) mercury biosensor, and (iv) nanosilver-based antibacterial agent for medical applications. Additionally, appropriate chemical modification of the functional groups present in gum kondagogu may lead to the development of novel technologies for applications in pharmaceutical and food and biotechnology industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

Da:

Dalton

EDAX:

Energy-dispersive X-ray analysis

FTIR:

Fourier transform infrared spectroscopy

GCC:

Girijan Co-operative Corporation

GK:

Gum kondagogu

h:

Hour

ICP-MS:

Inductively coupled plasma-mass spectrometry

kg:

Kilogram

M+ :

Metal ion

mg g−1 :

Milligram per gram

MNP:

Magnetic nanoparticles

MW:

Molecular weight

nm:

Nanometer

NMR:

Nuclear magnetic resonance spectroscopy

NPs:

Nanoparticles

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

UV:

Ultraviolet

XRD:

X-ray diffraction

μL:

Microliter

References

  • Anderson DMW, Stoddart JF (1966) Studies on uronic acid materials. Carbohydr Res 2:104

    Article  CAS  Google Scholar 

  • Anderson DMW, McNab CGA, Anderson CG, Braown PM, Pringuer MA (1982) Gum exudates from genus Sterculia (Gum karaya). Int Tree Crops J 2:147

    Article  Google Scholar 

  • Basile A, Sorbo SG, Aprile G, Conte B, Cobianchi RC (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and epiphytic lichen. Environ Pollut 151:401

    Article  CAS  Google Scholar 

  • Bernhoft RA (2012) Mercury toxicity and treatment: A review of the literature. J Environ Public Health. doi:10.1155/2012/460508, Article ID 460508, 10 pp

    Google Scholar 

  • Budavari S (1989) Monographs 6021 and 7879 Ed. Merck Index, 11th edn. Merck, Whitehouse Station, p 212

    Google Scholar 

  • Chauhan N, Gupta S, Singh N, Singh S, Islam SS, Sood KN, Pasricha R (2011) Aligned nano gold assisted one step sensing and removal of heavy metal ions. J Colloid Interface Sci 363:42

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Veglio F (2002) pH related equilibria models for biosorption in single metal systems. Chem Eng Sci 57:307

    Article  CAS  Google Scholar 

  • FAO (1995) Gums, resins and latexes of plant origin. (Non-wood forest products 6). Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • FAO (1999) Gum Arabic (Food and nutrition paper 52, addendum 7). Food and Agriculture Organization (FAO), Rome

    Google Scholar 

  • Gamage F, Shahidi (2007) Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem 104:989

    Article  CAS  Google Scholar 

  • Hall SR (2009) Biotemplating-complex structures from natural materials. World Scientific, 5 Toh Tuck Link, p 63

    Book  Google Scholar 

  • Hamaguchi K, Kawasaki H, Arakawa R (2010) Photochemical synthesis of glycine-stablised gold nanoparticles and its heavy-metal-induced aggregation behaviour. Colloids Surf A 367:167

    Article  CAS  Google Scholar 

  • Hu JS, Zhong LS, Song WG, Wan L (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. J Adv Mater 20:2977

    Article  CAS  Google Scholar 

  • Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury (II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215

    Article  Google Scholar 

  • Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Ang Chem Int Ed 46:6824

    Article  CAS  Google Scholar 

  • Imeson A (1992) Exudate gums. In: Imeson A (ed) Thickening and gelling agents for food. Chapman and Hall, London, p 66

    Chapter  Google Scholar 

  • Janaki B, Sashidhar RB (1998) Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): A potential food additive. Food Chem 61:231

    Article  CAS  Google Scholar 

  • Janaki B, Sashidhar RB (2000) Sub-chronic (90-day) toxicity study in rats fed gum kondagogu (Cochlospermum gossypium). Food Chem Toxicol 38:523

    Article  CAS  Google Scholar 

  • Kaur L, Singh J, Singh H (2009) Characterization of gum ghatti (Anogeissus latifolia): A structural and rheological approach. J Food Sci 74:E328

    Article  CAS  Google Scholar 

  • Kim KH, Nguyen HT, Shon ZH (2011) In: Jerome ON (ed) Encyclopedia of environmental health. Elsevier, Burlington, p 690

    Chapter  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalama J (2010) Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670

    Article  CAS  Google Scholar 

  • Lee JS, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:1212

    Google Scholar 

  • Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver (I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82:6830

    Article  CAS  Google Scholar 

  • Malkoc EJ (2006) Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis. J Hazard Mater 137:899

    Article  CAS  Google Scholar 

  • Mocak J, Jurasek P, Phillips GO, Varga S, Casedei E, Chikemai BN (1998) The classification of natural gums. X. Chemometric characterization of exudate gums that conform to the revised specification of the gum arabic for food use, and the identification of adulterants. Food Hydrocoll 12:141

    Article  CAS  Google Scholar 

  • Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with alpha-lactosyl-omega-mercapto-poly (ethylene glycol). J Am Chem Soc 123:8226

    Article  CAS  Google Scholar 

  • Phillips GO, Williams PA (2001) Tree exudates gums: natural and versatile food additives and ingredients. Food Ingredients Anal Int 23:26

    Google Scholar 

  • Radwan SH, Azzazy HME (2009) Gold nanoparticles for molecular diagnostics. Expert Rev Mol Diagn 9:511

    Article  CAS  Google Scholar 

  • Rao CNR, Kulkarni GN, Thomas PJ, Edwards PP (2000) Metal nanoparticles and their assemblies. Chem Soc Rev 29:27

    Article  CAS  Google Scholar 

  • Rao CNR, Kulkarni GN, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8:28

    Article  CAS  Google Scholar 

  • Rastogi L, Sashidhar RB, Karunasagar D, Arunachalam J (2014) Gum kondagogu reduced/ stabilized silver nanoparticles as direct colorimetric sensor for the sensitive detection of Hg2+ in aqueous system. Talanta 118:111

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely ‘green’ synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940

    Article  CAS  Google Scholar 

  • Roberts MA, Zhong HJ, Prodolliet J, Gooddall DM (1998) Separation of high molecular-mass carrageenan polysaccharide by capillary electrophoresis with laser induced fluorescence detection. J Chromatogr A 817:353

    Article  CAS  Google Scholar 

  • Saeed A, Akhtar MW, Iqbal M (2005a) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45:25

    Article  CAS  Google Scholar 

  • Saeed A, Iqbal M, Akhtar MW (2005b) Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117:65

    Article  CAS  Google Scholar 

  • Sandeep Kumar V, Venkatesh AG, Mitsakakis K, Czilwik G, Roth G, von Stetten F, Zengerle R (2012) Nanotechnology-Based Biosensors and Diagnostics: Technology push versus industrial/healthcare requirements. BioNanoSci 2:115. doi:10.1007/s12668-012-0047-4

    Article  Google Scholar 

  • Saravanan P, Vinod VTP, Sreedhar B, Sashidhar RB (2012) Gum kondagogu modified magnetic nano-adsorbent: An efficient protocol for removal of various toxic metal ions. Mater Sci Eng C 32:581

    Article  CAS  Google Scholar 

  • Sheng Z, Han J, Zhang J, Zhao H, Jiang L (2011) Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance. Colloids Surf B 87:289

    Article  CAS  Google Scholar 

  • Shipway N, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1:18

    CAS  Google Scholar 

  • Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335

    Article  CAS  Google Scholar 

  • Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A (2007) 15N-15N J-coupling across HgII: Direct observation of HgII-mediated T-T base pairs in a DNA duplex. J Am Chem Soc 129:244

    Article  CAS  Google Scholar 

  • Verbeken D, Dierchx S, Dewettinck K (2003) Exudates gums: Occurrence, production, and applications. Appl Microbiol Biotechnol 63:10

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB (2009) Solution and conformational properties of gum kondagogu (Cochlospermum gossypium) – A natural product with immense potential as a food additive. Food Chem 116:686

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB (2010) Surface morphology, chemical and structural assignment of gum kondagogu (Cochlospermum gossypium DC): An exudate tree gum of India. Indian J Natur Prod Resour 1:181

    CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB (2011) Bioremediation of industrial toxic metals with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate biopolymer. Indian J Biotechnol 10:113

    CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Suresh KI, Rama Rao B, Vijaya Saradhi UVR, Prabkar Rao T (2008a) Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocoll 22:899

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sarma VUM, Vijaya Saradhi UVR (2008b) Compositional analysis and rheological properties of Gum kondagogu (Cochlospermum gossypium): A tree gum from India. J Agric Food Chem 56:2199

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sreedhar B, Rama Rao B, Nageswara Rao T, Johny TA (2009) Interaction of Pb2+ and Cd2+ with gum kondagogu (Cochlospermum gossypium): A natural carbohydrate polymer with biosorbent properties. Carbohydr Polym 78:894

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sarma VUM, Satyanarayana Raju S (2010a) Comparative amino acid and fatty acid compositions of edible gum kondagogu (Cochlospermum gossypium) and karaya (Sterculia urens). Food Chem 123:57

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sukumar AA (2010b) Competitive adsorption of toxic heavy metal contaminants by gum kondagogu (Cochlospermum gossypium): A natural hydrocolloid. Colloids Surf B 75:490

    Article  CAS  Google Scholar 

  • Vinod VTP, Sashidhar RB, Sreedhar B (2010c) Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. J Hazard Mater 178:851

    Article  CAS  Google Scholar 

  • Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B 62:136

    Article  CAS  Google Scholar 

  • Xue X, Wang F, Liu X (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244

    Article  CAS  Google Scholar 

  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG (2007) Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114

    Article  CAS  Google Scholar 

  • Yi KC, Horvolgyi Z, Fendler JH (1994) Chemical formation of silver particulate films under monolayers. J Phys Chem 98:3872

    Article  CAS  Google Scholar 

  • Yin P, Yu Q, Jin B, Ling Z (1999) Biosorption removal of cadmium from aqueous solution by using pre-treated fungal biomass cultured from starch waste water. Water Res 33:1960

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their applications in water treatment. Adv Mater 18:2426

    Article  CAS  Google Scholar 

  • Zhou D, Zhang Z, Zhou J, Guo S (2004) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Prof. Sashidhar Rao B wishes to acknowledge the contribution of his doctoral students, Janaki B, Vinod VTP, Ms. Aruna Jyoti K, and Ms. Lori Rastogi, in accepting to work on this novel biopolymer and contribute immensely to the contemporary scientific literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rao Beedu Sashidhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Sashidhar, R.B., Raju, D., Karuna, R. (2015). Tree Gum: Gum Kondagogu. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_32

Download citation

Publish with us

Policies and ethics