Skip to main content

The Promises and Perils of Medical Nanotechnology

  • Chapter
  • First Online:
Using Medicine in Science Fiction

Part of the book series: Science and Fiction ((SCIFICT))

  • 1192 Accesses

Abstract

Nanotechnology involves manipulating matter at the scale of atoms and molecules. More specifically it deals with materials and devices with sizes in the range of 1–100 nanometers (nm, 1 nanometer = 1 × 10−9 m), as well as processes operating at that level.) Many molecules within the human body fall within that range of sizes. For example, proteins have dimensions between 1 to 20 nm, the width of a DNA helix is about 2.5 nm, and even ribosomes, the protein-constructing organelles within cells, have diameters of about 2–4 nm. Indeed, our bodies are living models of “natural” nanotechnology in action.

To see a world in a grain of sand…

William Blake

“Auguries of Innocence”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The novelization of this film was created by an author with some prior experience writing science fiction, one “Isaac Asimov.”

  2. 2.

    Although they look nothing like the one shown in the movie, modern medicine does sometimes employ lasers as part of a catheter system to help destroy plaque and blood clots in blocked arteries. Effective “thrombolytic” medications are also available for this purpose. Unfortunately miniaturized submarines are not yet part of standard medical practice.

  3. 3.

    Analog Science Fiction and Fact July/August 2012.

  4. 4.

    However, unlike the Borg I was not practicing medicine without a license when I did it.

  5. 5.

    Drexler has given an updated assessment of the potentials of nanotechnology in a more recent book, Radical Abundance. How a Revolution in Nanotechnology Will Change Civilization (2013).

  6. 6.

    This capability would make them, at least in one sense of the term, what have been called “von Neumann machines.”

  7. 7.

    Another “health benefit” of gold nanoparticles might also be as an effective defense against attacks by Cybermen, as suggested by the Doctor Who serials “Revenge of the Cybermen” (1975) and “Earthshock” (1982).

  8. 8.

    See Chap. 12 for more details about gene therapy.

  9. 9.

    Chapter 14 will describe the current status of such interfaces.

References

  1. Ranganathan R, Madanmohan S, Kesavan A, Baskar G, Krishnamoorthy YR, Santosham R, et al. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed. 2012;7:1043–60.

    CAS  Google Scholar 

  2. Kim B, Rutka J, Chan WC. Nanomedicine. N Engl J Med. 2010;363(25):2434–43.

    Article  CAS  PubMed  Google Scholar 

  3. Wong KK, Liu XL. Nanomedicine: a primer for surgeons. Pediatr Surg Int. 2012;28(10):943–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Feynman R. There’s plenty of room at the bottom. Eng Sci. 1960;23:22–36.

    Google Scholar 

  5. Drexler KE. Molecular engineering: an approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci. 1981;78(9):5275–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Drexler KE. Engines of creation. The coming era of nanotechnology. New York: Anchor Books; 1986.

    Google Scholar 

  7. Drexler KE. Nanosystems. Molecular machinery, manufacturing, and computation. New York: Wiley; 1992.

    Google Scholar 

  8. Hall JS. Nanofuture. What’s next for nanotechnology. Amherst: Prometheus Books; 2005.

    Google Scholar 

  9. Jain K. The handbook of nanomedicine. New York: Humana Press; 2008.

    Google Scholar 

  10. Kleinsmith L, Kish V. Energy and enzymes. Principles of cell and molecular biology, (Chapter 2). New York: HarperCollins; 1995.

    Google Scholar 

  11. Nanotechnology. Research and perspectives. Cambridge: The MIT Press; 1992.

    Google Scholar 

  12. Prospects in Nanotechnology. Toward Molecular Manufacturing. New York: Wiley; 1995.

    Google Scholar 

  13. Freitas R. Nanomedicine. Basic capabilities. Austin: Landes Bioscience; 1999.

    Google Scholar 

  14. Leduc P, Wong M, Ferreira P, Groff R, Haslinger K, Koonce M, et al. Towards an in vivo biologically inspired nanofactory. Nat Nanotechnol. 2007;2(January):3–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chou LY, Zagorovsky K, Chan WC. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat Nanotechnol. 2014;9(2):148–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Toumey C. Nanobots today. Nat Nanotechnol. 2013;8(7):475–6.

    Article  CAS  PubMed  Google Scholar 

  17. McCall MJ. Environmental, health and safety issues: nanoparticles in the real world. Nat Nanotechnol. 2011;6(10):613–4.

    Article  CAS  PubMed  Google Scholar 

  18. Soppimath K, Betageri G. Nanostructures for cancer diagnostics and therapy. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 409–37.

    Google Scholar 

  19. Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine. 2013;9(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  20. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yu X, Valmikinathan C, Rogers A, Wang J. Nanotechnology and drug delivery. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 93–113.

    Google Scholar 

  23. Guan J, He H, Yu B, Lee L. Polymeric nanoparticles and nanopore membranes for controlled drug and gene delivery.In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 115–37.

    Google Scholar 

  24. Wang LS, Chuang MC, Ho JA. Nanotheranostics–a review of recent publications. Int J Nanomedicine. 2012;7:4679–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Tong R, Kohane D. Shedding light on nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(6):638–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol. 2009;4(10):669–73.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliv Rev. 2012;64(13):1363–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Madani SY, Shabani F, Dwek MV, Seifalian AM. Conjugation of quantum dots on carbon nanotubes for medical diagnosis and treatment. Int J Nanomedicine. 2013;8:941–50.

    PubMed Central  PubMed  Google Scholar 

  29. Thakor A, Gambhir S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63:395–418.

    Article  PubMed  Google Scholar 

  30. Waite C, Roth C. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit Rev Biomed Eng. 2012;40(1):21–41.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo S, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Research Letters. 2013;8(102):1–9.

    Google Scholar 

  32. Miller SM, Wang AZ. Nanomedicine in chemoradiation. Ther Deliv. 2013;4(2):239–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. A roadmap for graphene. Nature. 2012;490(7419):192–200.

    Article  CAS  PubMed  Google Scholar 

  34. Peplow M. The quest for supercarbon. Nature. 2013;503:327–9.

    Article  CAS  PubMed  Google Scholar 

  35. Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat Nanotechnol. 2013;8(10):763–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu Y, Wang H. Nanotechnology tackles tumours. Nat Nanotechnol. 2007;2(January):20–1.

    Article  CAS  PubMed  Google Scholar 

  37. Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627–33.

    Article  CAS  PubMed  Google Scholar 

  38. Moon HK, Lee SH, Choi HC. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano. 2009;3(11):3707–13.

    Article  CAS  PubMed  Google Scholar 

  39. Grebowski J, Kazmierska P, Krokosz A. Fullerenols as a new therapeutic approach in nanomedicine. Biomed Res Int. 2013;2013:751913.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Da Silva A, Santos R, Xisto D, Alonso S, Morales M, Rocco P. Nanoparticle-based therapy for respiratory diseases. Ann Braz Acad Sci. 2013;85:137–46.

    Article  Google Scholar 

  41. Parboosing R, Maguire GE, Govender P, Kruger HG. Nanotechnology and the treatment of HIV infection. Viruses. 2012;4(4):488–520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Johnson D. Nanomotors could churn inside of cancer cells to mush. 2014. http://spectrum.ieee.org/nanoclast/biomedical/devices/nanomotors-could-churn-inside-of-cancer-cells-to-mush. Accessed 15 April 2015.

  43. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. Acoustic propulsion of nanorod motors inside living cells. Angew Chem Int Ed. 2014;53:3201-4.

    Google Scholar 

  44. Silva G. Shorting neurons with nanotubes. Nat Nanotechnol. 2009;4(February):82–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Hartgerink J. New material stops bleeding in a hurry. Nat Nanotechnol. 2006;1(December):166–7.

    Article  CAS  Google Scholar 

  46. Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Sheridan R, et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci U S A. 2011;108(3):1034–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ruan L, Zhang H, Luo H, Liu J, Tang F, Shi YK, et al. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc Natl Acad Sci U S A. 2009;106(13):5105–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Higgins P, Dawson J, Walters M. Nanomedicine: nanotubes reduce stroke damage. Nat Nanotechnol. 2011;6(2):83–4.

    Article  CAS  PubMed  Google Scholar 

  49. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. Nanowired three-dimensional cardiac patches. Nat Nanotechnol. 2011;6(11):720–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol. 2011;6(1):13–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Jaconi ME. Nanomedicine: gold nanowires to mend a heart. Nat Nanotechnol. 2011;6(11):692–3.

    Article  CAS  PubMed  Google Scholar 

  52. Hosseinkhani H, He W-J, Chiang C-H, Hong P-D, Yu D-S, Domb AJ, et al. Biodegradable nanoparticles for gene therapy technology. J Nanopart Res. 2013;15(7):1794.

    Article  Google Scholar 

  53. Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery. Nat Nanotechnol. 2009;4(9):598–606.

    Article  CAS  PubMed  Google Scholar 

  54. Plank C. Nanomedicine: silence the target. Nat Nanotechnol. 2009;4(9):544–5.

    Article  CAS  PubMed  Google Scholar 

  55. Morrison D, Dokmeci M, Demirci U, Khademhosseini A. Clinical applications of micro- and nanoscale biosensors. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Wiley; 2008:439–60.

    Google Scholar 

  56. Dawson K, Salvati A, Lynch I. Nanoparticles reconstruct lipids. Nat Nanotechnol. 2009;4(February):84–5.

    Article  CAS  PubMed  Google Scholar 

  57. Kleinsmith L, Kish V. Chapter 1. Prologue: cells and their molecules. Principles of cell and molecular biology, 2nd edn. New York: HarperCollins; 1995.

    Google Scholar 

  58. DNA Microarray Technology. 2011. http://www.genome.gov/pfv.cfm?pageID=10000533. Accessed 15 April 2015.

  59. Hashimoto M, Tong R, Kohane DS. Microdevices for nanomedicine. Mol Pharm. 2013;10(6):2127–44.

    Article  CAS  PubMed  Google Scholar 

  60. Behra R, Krug H. Nanoparticles at large. Nat Nanotechnol. 2008;3(May):253–4.

    Article  CAS  PubMed  Google Scholar 

  61. Lee Y, Cho M. Application of nanotechnology into life science: benefit or risk. In: Gonsalves K, Halberstadt C, Laurencin C, Nair L, editors. Biomedical nanostructures. Hoboken: Wiley; 2008. pp. 491–501.

    Google Scholar 

  62. Minchin R. Sizing up targets with nanoparticles. Nat Nanotechnol. 2008;3(January):12–3.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao Y, Xing G, Chai Z. Are carbon nanotubes safe? Nat Nanotechnol. 2008;3(April):191–2.

    Article  CAS  PubMed  Google Scholar 

  64. Elder A. How do nanotubes suppress T cells? Nat Nanotechnol. 2009;4(July):409–10.

    Article  CAS  PubMed  Google Scholar 

  65. Kanwar JR, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. Int J Nanomedicine. 2012;7:3259–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4(7):411–4.

    Article  CAS  PubMed  Google Scholar 

  67. Bhabra G, Sood A, Fisher B, Cartwright L, Saunders M, Evans WH, et al. Nanoparticles can cause DNA damage across a cellular barrier. Nat Nanotechnol. 2009;4(12):876–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Stratmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stratmann, H. (2016). The Promises and Perils of Medical Nanotechnology. In: Using Medicine in Science Fiction. Science and Fiction. Springer, Cham. https://doi.org/10.1007/978-3-319-16015-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16015-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16014-6

  • Online ISBN: 978-3-319-16015-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics