Skip to main content

Next-Generation Sequencing for Cancer Biomarker Discovery

  • Chapter
Next Generation Sequencing in Cancer Research, Volume 2

Abstract

Cancer is a genetic disorder that arises from gene mutations as well as changes in transcriptional and epigenetic profiles. These genetic changes can serve as valuable biomarkers for early detection, staging, and detailed molecular characterization of cancer for individualized therapy. Mutations in several known oncogenes (e.g., EGFR, HER2, KRAS) and tumor suppressor genes (e.g., TP53, PTEN, PI3K) are already being used as biomarkers to guide therapy in breast cancer, ovarian cancer, lung cancer, prostate cancer, etc. However, tumor heterogeneity and instability of cancer genomes poses a significant challenge to reliable and reproducible detection of biomarkers. Moreover, cancer is a multigene disorder and comprehensive knowledge of the mutational landscape is extremely important for the most effective therapeutic intervention.

Next-Generation Sequencing (NGS) is a high-throughput genome sequencing technology that enables sequencing of entire genomes or thousands of mutations simultaneously in a cost effective manner and hence can serve as a very powerful tool in biomarker detection and discovery. Many NGS-based studies published in the last few years have identified potential prognostic and predictive molecular signatures. In this chapter, we discuss the impact of NGS on cancer biomarker detection as well as discovery and the resulting paradigm shift in cancer care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maynex R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–8.

    Google Scholar 

  2. Oldenhuis CN, Oosting SF, Gietema JA, de Vries EG. Prognostic versus predictive value of biomarkers in oncology. Eur J Cancer. 2008;44(7):946–53.

    CAS  PubMed  Google Scholar 

  3. Galanis E, Wu W, Sarkaria J, Chang SM, Colman H, Sargent D, Reardon DA. Incorporation of biomarker assessment in novel clinical trial designs: personalizing brain tumor treatments. Curr Oncol Rep. 2011;13(1):42–9.

    PubMed Central  PubMed  Google Scholar 

  4. Atkinson AJ, Colburn WA, DeGruttola VG. Biomarkers and surrogate end points: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Google Scholar 

  5. Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2:566–80.

    CAS  PubMed  Google Scholar 

  6. Bell R, Petticrew M, Luengo S, Sheldon TA. Screening for ovarian cancer: a systematic review. Health Technol Assess. 1998;2(2):1–84.

    Google Scholar 

  7. Suh KS, Park SW, Castro A, Patel H, Blake P, Liang M, Goy A. Ovarian cancer biomarkers for molecular biosensors and translational medicine. Expert Rev Mol Diagn. 2010;10(8):1069–83.

    CAS  PubMed  Google Scholar 

  8. Martignetti JA, Camacho-Vanegas O, Priedigkeit N, Camacho C, Pereira E, Lin L, et al. Personalized ovarian cancer disease surveillance and detection of candidate therapeutic drug target in circulating tumor DNA. Neoplasia. 2014;16(1):97–103.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Chan DW, Bruzek DJ, Oesterling JE, Rock RC, Walsh PC. Prostate-specific antigen as a marker for prostatic cancer: a monoclonal and a polyclonal immunoassay compared. Clin Chem. 1987;33(10):1916–20.

    CAS  PubMed  Google Scholar 

  10. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324(17):1156–61.

    CAS  PubMed  Google Scholar 

  11. Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2:115–52.

    PubMed  Google Scholar 

  12. Prensner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4(127):127.

    Google Scholar 

  13. Goodison S, Rosser CJ, Urquidi V. Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diagn Ther. 2013;17(2):71–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.

    PubMed  Google Scholar 

  15. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342–9.

    CAS  PubMed  Google Scholar 

  16. Jia Y, Ali SM, Saad S, Chan CA, Miller VA, Halmos B. Successful treatment of a patient with Li-Fraumeni syndrome and metastatic lung adenocarcinoma harboring synchronous EGFR L858R and ERBB2 extracellular domain S310F mutations with the pan-HER inhibitor afatinib. Cancer Biol Ther. 2014;15(8):970–4.

    CAS  PubMed  Google Scholar 

  17. O'Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 2011;364(3):205–14.

    PubMed  Google Scholar 

  18. Thomas A, Rajan A, Lopez-Chavez A, Wang Y, Giaccone G. From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann Oncol. 2013;24:577–85.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    CAS  PubMed  Google Scholar 

  20. Gambacorti-Passerini C, Antolini L, Mahon F-X, Guilhot F, Deininger M, Saglio G, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103:553–61.

    CAS  PubMed  Google Scholar 

  21. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26.

    CAS  PubMed  Google Scholar 

  22. Emens LA, Davidson NE. Trastuzumab in breast cancer. Oncology (Williston Park). 2004;18(9):1117–28.

    Google Scholar 

  23. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    CAS  PubMed  Google Scholar 

  24. Heakal Y, Kester M, Savage S. Vemurafenib (PLX4032): an orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma. Ann Pharmacother. 2011;45(11):1399–405.

    CAS  PubMed  Google Scholar 

  25. Desai AN, Jere A. Next generation sequencing for cancer genomics. Next Gen Sequence Cancer Res. 2013;1:55–74.

    Google Scholar 

  26. Mardis ER. Next-generation DNA sequencing methods. Annu Rev Genomics. 2008;9:387–402.

    CAS  Google Scholar 

  27. Nowrousian M. Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryot Cell. 2010;1300–10.

    Google Scholar 

  28. Martínez E, Yoshihara K, Kim H, Mills GM, Treviño V, Verhaak RG. Comparison of gene expression patterns across 12 tumor types identifies a cancer supercluster characterized by TP53 mutations and cell cycle defects. Oncogene. 2014. doi:10.1038/onc.2014.216.

    Google Scholar 

  29. Yin ZQ, Liu JJ, Xu YC, Yu J, Ding GH, Yang F, et al. A 41-gene signature derived from breast cancer stem cells as a predictor of survival. J Exp Clin Cancer Res. 2014;33:49.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Lee U, Frankenberger C, Yun J, Bevilacqua E, Caldas C, Chin SF, et al. A prognostic gene signature for metastasis-free survival of triple negative breast cancer patients. PLoS One. 2013;8(12):e82125.

    PubMed Central  PubMed  Google Scholar 

  31. Bertucci F, Finetti P, Viens P, Birnbaum D. EndoPredict predicts for the response to neoadjuvant chemotherapy in ER-positive, HER2-negative breast cancer. Cancer Lett. 2014;pii:S0304-3835(14)00513-8.

    Google Scholar 

  32. Peng Z, Skoog L, Hellborg H, Jonstam G, Wingmo IL, Hjälm-Eriksson M, et al. An expression signature at diagnosis to estimate prostate cancer patients’ overall survival. Prostate Cancer Prostatic Dis. 2014;17(1):81–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.

    CAS  PubMed  Google Scholar 

  35. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2(1):82–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Makishima H, Jankowska AM, Tiu RV, Szpurka H, Sugimoto Y, Hu Z, et al. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 2010;24(10):1799–804.

    CAS  PubMed  Google Scholar 

  40. Chong HK, Wang T, Lu HM, Seidler S, Lu H, Keiles S, et al. The validation and clinical implementation of BRCAplus: a comprehensive high-risk breast cancer diagnostic assay. PLoS One. 2014;9(5):e97408.

    PubMed Central  PubMed  Google Scholar 

  41. Subbiah V, Westin SN, Wang K, Araujo D, Wang WL, Miller VA, et al. Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein. J Hematol Oncol. 2014;7(1):8.

    PubMed Central  PubMed  Google Scholar 

  42. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31(11):1023–31.

    CAS  PubMed  Google Scholar 

  43. King MC, Marks JH, Mandell JB, New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302(5645):643–6.

    Google Scholar 

  44. James CR, Quinn JE, Mullan PB, Johnston PG, Harkin DP. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist. 2007;12(2):142–50.

    CAS  PubMed  Google Scholar 

  45. Bazan V, Migliavacca M, Zanna I, Tubiolo C, Grassi N, Latteri MA, et al. Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann Oncol. 2002;13(9):1438–46.

    CAS  PubMed  Google Scholar 

  46. Zafarana G, Ishkanian AS, Malloff CA, Locke JA, Sykes J, Thoms J, et al. Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer. 2012;118(16):4053–62.

    CAS  PubMed  Google Scholar 

  47. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

    CAS  PubMed  Google Scholar 

  48. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Google Scholar 

  50. Molloy TJ, Roepman P, Naume B, van't Veer LJ. A prognostic gene expression profile that predicts circulating tumor cell presence in breast cancer patients. PLoS One. 2012;7(2):e32426.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Larsen MJ, Thomassen M, Tan Q, Lænkholm AV, Bak M, Sørensen KP, et al. RNA profiling reveals familial aggregation of molecular subtypes in non-BRCA1/2 breast cancer families. BMC Med Genomics. 2014;7:9.

    PubMed Central  PubMed  Google Scholar 

  52. Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 2004;23(7):1377–91.

    CAS  PubMed  Google Scholar 

  53. Marisa L, de Reyniès A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10(5):e1001453.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.Cancer. Cell. 2010;17(1):98–110.

    CAS  Google Scholar 

  55. http://www.oncotypedx.com/. Accessed 25 Sept 2014

    Google Scholar 

  56. Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, Bakx N, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics. 2006;7:278.

    PubMed Central  PubMed  Google Scholar 

  57. http://www.agendia.com/. Accessed 25 Sept 2014

    Google Scholar 

  58. Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J, et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet. 2001;28:53–7.

    CAS  PubMed  Google Scholar 

  59. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini AA, Cheung CC, et al. Tap73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22:2677–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Tang J, Xiong Y, Zhou HH, Chen XP. DNA methylation and personalized medicine. J Clin Pharm Ther. 2014. doi:10.1111/jcpt.12206.

    Google Scholar 

  61. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463(7279):360–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Tan SX, Hu RC, Liu JJ, Tan YL, Liu WE. Methylation of PRDM2, PRDM5 and PRDM16 genes in lung cancer cells. Int J Clin Exp Pathol. 2014;7(5):2305–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Sonnet M, Claus R, Becker N, Zucknick M, Petersen J, Lipka DB, et al. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia. Genome Med. 2014;6(4):34.

    PubMed Central  PubMed  Google Scholar 

  64. Ogino S, Nishihara R, Lochhead P, Imamura Y, Kuchiba A, Morikawa T, et al. Prospective study of family history and colorectal cancer risk by tumor LINE-1 methylation level. J Natl Cancer Inst. 2013;105(2):130–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C, Sanchez-Cespedes M, et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res. 2001;7(9):2727–30.

    CAS  PubMed  Google Scholar 

  66. Eilers T, Machtens S, Tezval H, Blaue C, Lichtinghagen R, Hagemann J, et al. Prospective diagnostic efficiency of biopsy washing DNA GSTP1 island hypermethylation for detection of adenocarcinoma of the prostate. Prostate. 2007;67(7):757–63.

    CAS  PubMed  Google Scholar 

  67. Catto JW, Azzouzi AR, Rehman I, Feeley KM, Cross SS, Amira N, et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol. 2005;23(13):2903–10.

    CAS  PubMed  Google Scholar 

  68. Jarmalaite S, Jankevicius F, Kurgonaite K, Suziedelis K, Mutanen P, Husgafvel-Pursiainen K. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology. 2008;75(3–4):145–51.

    CAS  PubMed  Google Scholar 

  69. Wasserkort R, Kalmar A, Valcz G, Spisak S, Krispin M, Toth K, et al. Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer. 2013;13:398.

    PubMed Central  PubMed  Google Scholar 

  70. Mah WC, Thurnherr T, Chow PK, Chung AY, Ooi LL, Toh HC, et al. Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis. PLoS One. 2014;9(8):e104158.

    PubMed Central  PubMed  Google Scholar 

  71. Taby R, Issa JP. Cancer epigenetics. Cancer J Clin. 2010;60(6):376–92.

    Google Scholar 

  72. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455:64–71.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    CAS  PubMed  Google Scholar 

  75. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315(5818):1576–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Zhu ED, Li N, Li BS, Li W, Zhang WJ, Mao XH, et al. Mir-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS One. 2014;9(8):e106049.

    PubMed Central  PubMed  Google Scholar 

  77. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Li Y, Hong F, Yu Z. Decreased expression of microRNA-206 in breast cancer and its association with disease characteristics and patient survival. J Int Med Res. 2013;41(3):596–602.

    CAS  PubMed  Google Scholar 

  79. Anfossi S, Giordano A, Gao H, Cohen EN, Tin S, Wu Q, et al. High serum miR-19a levels are associated with inflammatory breast cancer and are predictive of favorable clinical outcome in patients with metastatic HER2+ inflammatory breast cancer. PLoS One. 2014;9(1):e83113.

    PubMed Central  PubMed  Google Scholar 

  80. The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    PubMed Central  Google Scholar 

  81. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    PubMed Central  Google Scholar 

  82. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature. 2012;490(7418):61–70.

    PubMed Central  Google Scholar 

  83. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    PubMed Central  Google Scholar 

  84. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158(4):929–44.

    CAS  PubMed  Google Scholar 

  85. http://clincancerres.aacrjournals.org/content/early/2014/09/16/1078–0432.CCR-14–2123.2.full.pdf. Accessed 25 Sept 2014

    Google Scholar 

  86. Carroll JC, Cremin C, Allanson J, Blaine SM, Dorman H, Gibbons CA, et al. Hereditary breast and ovarian cancers. Can Fam Phys. 2008;54(12):1691–2.

    Google Scholar 

  87. Apostolou P, Fostira F. Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int. 2013;2013:747318.

    PubMed Central  PubMed  Google Scholar 

  88. Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250(4985):1233–8.

    CAS  PubMed  Google Scholar 

  89. Li FP, Fraumeni JF, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA, et al. A cancer family syndrome in twenty four kindred. Cancer Res. 1988;48:5358–62.

    CAS  PubMed  Google Scholar 

  90. Varley JM, McGown G, Thorncroft M, Santibanez-Koref MF, Kelsey AM, Tricker KJ, et al. Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res. 1997;57(15):3245–52.

    CAS  PubMed  Google Scholar 

  91. Pradella LM, Evangelisti C, Ligorio C, Ceccarelli C, Neri I, Zuntini R, et al. A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer. BMC Cancer. 2014;14:70.

    PubMed Central  PubMed  Google Scholar 

  92. Nakanishi C, Yamaguchi T, Iijima T, Saji S, Toi M, Mori T, Miyaki M. Germline mutation of the LKB1/STK11 gene with loss of the normal allele in an aggressive breast cancer of Peutz-Jeghers syndrome. Oncology. 2004;67(5–6):476–9.

    PubMed  Google Scholar 

  93. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15.

    CAS  PubMed  Google Scholar 

  94. Walsh T, King MC. Ten genes for inherited breast cancer. Cancer Cell. 2007;11(2):103–5.

    CAS  PubMed  Google Scholar 

  95. Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, et al. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379–88.

    CAS  PubMed  Google Scholar 

  96. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ozcelik H, Shi X, Chang MC, Tram E, Vlasschaert M, Di Nicola N, et al. Long-range PCR and next-generation sequencing of BRCA1 and BRCA2 in breast cancer. J Mol Diagn. 2012;14(5):467–75.

    CAS  PubMed  Google Scholar 

  98. Feliubadaló L, Lopez-Doriga A, Castellsagué E, del Valle J, Menéndez M, Tornero E, et al. Next-generation sequencing meets genetic diagnostics: development of a comprehensive workflow for the analysis of BRCA1 and BRCA2 genes. Eur J Hum Genet. 2013;21(8):864–70.

    PubMed Central  PubMed  Google Scholar 

  99. Castéra L, Krieger S, Rousselin A, Legros A, Baumann JJ, Bruet O, et al. Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet. 2014. doi:10.1038/ejhg.2014.16.

    PubMed  Google Scholar 

  100. Balko JM, Giltnane JM, Wang K, Schwarz LJ, Young CD, Cook RS, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4(2):232–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S, et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 25 Sept 2014

    Google Scholar 

  103. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194–210.

    CAS  PubMed  Google Scholar 

  104. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e1S–29.

    CAS  PubMed  Google Scholar 

  105. Sellers TA, Weaver TW, Phillips B, Altmann M, Rich SS. Environmental factors can confound identification of a major gene effect: results from a segregation analysis of a simulated population of lung cancer families. Genet Epidemiol. 1998;15(3):251–62.

    CAS  PubMed  Google Scholar 

  106. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150(6):1121–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    PubMed Central  Google Scholar 

  110. http://seer.cancer.gov/statfacts/html/colorect.html. Accessed 19 Sept 2014

    Google Scholar 

  111. Migliore L, Migheli F, Spisni R, Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011;792362.

    Google Scholar 

  112. Han SW, Kim HP, Shin JY, Jeong EG, Lee WC, Lee KH, et al. Targeted sequencing of cancer-related genes in colorectal cancer using next-generation sequencing. PLoS One. 2013;8(5):e64271.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. http://cancergenome.nih.gov/. Accessed 20 Sept 2014

    Google Scholar 

  114. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10):1113–20.

    Google Scholar 

  115. Li R, Gao K, Luo H, Wang X, Shi Y, Dong Q. Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma. J Exp Clin Cancer Res. 2014;33:9.

    PubMed Central  PubMed  Google Scholar 

  116. Kim YW, Koul D, Kim SH, Lucio-Eterovic AK, Freire PR, Yao J, et al. Identification of prognostic gene signatures of glioblastoma: a study based on TCGA data analysis. Neuro Oncol. 2013;15(7):829–39.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Wrangle J, Machida EO, Danilova L, Hulbert A, Franco N, Zhang W, et al. Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin Cancer Res. 2014;20(7):1856–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. https://clinicaltrials.gov/ct2/show/NCT02132884?term=sequencing&recr=Open&cond=cancer&rank=3. Accessed 25 Sept 2014

    Google Scholar 

  120. https://clinicaltrials.gov/ct2/show/NCT01987726?term=NCT01987726&rank=1. Accessed 25 Sept 2014

    Google Scholar 

  121. https://clinicaltrials.gov/ct2/show/NCT01919749?term=sequencing&recr=Open&cond=cancer&rank=2. Accessed 25 Sept 2014

    Google Scholar 

  122. http://www.foundationmedicine.com/pdf/resources/ONE-A-001–20120823%20Billing%20Guidelines_Physicians.pdf. Accessed 23 Sept 2014

    Google Scholar 

  123. http://www.ambrygen.com/brca-beyond. Accessed 23 Sept 2014

    Google Scholar 

  124. https://www.myriad.com/lib/brac/BART-faq.pdf. Accessed 23 Sept 2014

    Google Scholar 

  125. http://FoundationOne™.com/learn.php#2. Accessed 23 Sept 2014

    Google Scholar 

  126. http://www.ambrygen.com/turn-around-times. Accessed 23 Sept 2014

    Google Scholar 

  127. Fu Y, Schroeder T, Zabelina T, Badbaran A, Bacher U, Kobbe G, et al. Postallogeneic monitoring with molecular markers detected by pretransplant next-generation or Sanger sequencing predicts clinical relapse in patients with myelodysplastic/myeloproliferative neoplasms. Eur J Haematol. 2014;92(3):189–94.

    CAS  PubMed  Google Scholar 

  128. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 2012;486(7403):395–9.

    CAS  PubMed  Google Scholar 

  129. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Holbrook JD, Parker JS, Gallagher KT, Halsey WS, Hughes AM, Weigman VJ, et al. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J Transl Med. 2011;9:119.

    PubMed Central  PubMed  Google Scholar 

  132. Yu J, Wu WK, Li X, He J, Li XX, Ng SS, et al. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut. 2014;pii:gutjnl-2013–306620.

    Google Scholar 

  133. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet. 2011;43(5):442–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.

    PubMed Central  CAS  PubMed  Google Scholar 

  135. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukemia genome. Nature. 2008;456(7218):66–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Brohl AS, Solomon DA, Chang W, Wang J, Song Y, Sindiri S, et al. The genomic landscape of the Ewing sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10(7):e1004475.

    PubMed Central  PubMed  Google Scholar 

  138. Pinton G, Manente AG, Angeli G, Mutti L, Moro L. Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma. PLoS One. 2012;7(5):e36856.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Pal SK, Reckamp K, Yu H, Figlin RA. Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs. 2010;19(11):1355–66.

    CAS  PubMed  Google Scholar 

  140. Ross JS, Wang K, Rand JV, Gay L, Presta MJ, Sheehan CE, et al. Next-generation sequencing of adrenocortical carcinoma reveals new routes to targeted therapies. J Clin Pathol. 2014;pii:jclinpath-2014–202514.

    Google Scholar 

  141. Hamilton G, Lukas Klameth U, Ulsperger E, Geissler K. Synergistic anticancer activity of topotecan-cyclin-dependent kinase inhibitor combinations against drug-resistant small cell lung cancer (SCLC) cell lines. J Cancer Ther. 2013;4:47–53.

    Google Scholar 

  142. Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S, et al. Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst. 2011;103(4):334–46.

    CAS  PubMed  Google Scholar 

  143. Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14(9):882–92.

    CAS  PubMed  Google Scholar 

  144. To C, Kim EH, Royce DB, Williams CR, Collins RM, Risingsong R, et al. The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prev Res (Phila). 2014;7(7):698–707.

    CAS  Google Scholar 

  145. Cristofanilli M, Krishnamurthy S, Guerra L, Broglio K, Arun B, Booser DJ, et al. A nonreplicating adenoviral vector that contains the wild-type p53 transgene combined with chemotherapy for primary breast cancer: safety, efficacy, and biologic activity of a novel gene-therapy approach. Cancer. 2006;107(5):935–44.

    CAS  PubMed  Google Scholar 

  146. Fujiwara T, Tanaka N, Kanazawa S, Ohtani S, Saijo Y, Nukiwa T, et al. Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2006;24(11):1689–99.

    CAS  PubMed  Google Scholar 

  147. Dodd RD, Mito JK, Eward WC, Chitalia R, Sachdeva M, Ma Y, et al. NF1 deletion generates multiple subtypes of soft-tissue sarcoma that respond to MEK inhibition. Mol Cancer Ther. 2013;12(9):1906–17.

    CAS  PubMed  Google Scholar 

  148. Klümpen HJ, Queiroz KC, Spek CA, van Noesel CJ, Brink HC, de Leng WW, et al. mTOR inhibitor treatment of pancreatic cancer in a patient With Peutz-Jeghers syndrome. J Clin Oncol. 2011;29(6):e150–3.

    PubMed  Google Scholar 

  149. http://cancer.sanger.ac.uk/cosmic/browse/tissue#sn=breast&ss=all&hn=all&sh=all&in=t&src=tissue&all_data=n. Accessed 29 Sept 2014

    Google Scholar 

  150. http://www.mycancergenome.org/content/other/molecular-medicine/anticancer-agents/. Accessed 29 Sept 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Jere Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Desai, A.N., Jere, A. (2015). Next-Generation Sequencing for Cancer Biomarker Discovery. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-15811-2_7

Download citation

Publish with us

Policies and ethics