Skip to main content

Spectroscopy and Microscopy of Graphene Oxide and Reduced Graphene Oxide

  • Chapter
Graphene Oxide

Abstract

Graphene oxide (GO) is an important material that provides a scalable approach for obtaining chemically derived graphene. Its optical and electrical properties are largely determined by the presence of oxygen-containing functionalities, which decorate its basal plane. This chemical derivatization results in useful properties such as the existence of a band gap as well as emission spanning both the visible and near infrared. Notably, GO’s optical and electrical properties can be altered through reduction, which proceeds through the removal of these oxygen-containing functional groups. However, widely variable behavior has been observed regarding the evolution of GO’s optical response during reduction. These discrepancies arise from the different reduction methods being used and, in part, from the fact that nearly all prior measurements have been ensemble studies. Consequently, detailed mechanistic studies of GO reduction are needed which can transcend the limitations of ensemble averaging.

In this chapter, we show the spectroscopic evolution of GO’s optical properties during photoreduction at the single-sheet level. Laser-induced reduction, in particular, offers a unique and potentially controllable method for producing reduced GO (rGO), a material with properties similar to those of graphene. However, given the complexity of GO’s photoreduction mechanism, microscopic monitoring of the process is essential to understanding and ultimately exploiting this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  Google Scholar 

  3. Hwang EH, Adam S, Das Sarma S (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98:186806-1–186806-4

    Google Scholar 

  4. Wu Z-S, Ren W, Gao L et al (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417

    Article  Google Scholar 

  5. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  6. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  7. Wang X, Ouyang Y, Li X et al (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4

    Google Scholar 

  8. Chae SJ, Gunes F, Kim KK et al (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333

    Article  Google Scholar 

  9. Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207

    Article  Google Scholar 

  10. Zhang Y-L, Guo L, Xia H et al (2014) Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2:10–28

    Article  Google Scholar 

  11. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  12. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  13. Lerf A, He H, Forster M et al (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  Google Scholar 

  14. Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano Today 7:137–152

    Article  Google Scholar 

  15. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  16. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  Google Scholar 

  17. Gilje S, Dubin S, Badakhshan A et al (2010) Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv Mater 22:419–423

    Article  Google Scholar 

  18. Sokolov DA, Shepperd KR, Orlando TM (2010) Formation of graphene features from direct laser-induced reduction of graphite oxide. J Phys Chem Lett 1:2633–2636

    Article  Google Scholar 

  19. Erickson K, Erni R, Lee Z et al (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22:4467–4472

    Article  Google Scholar 

  20. Paredes JI, Villar-Rodil S, Solis-Fernandez P et al (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25:5957–5968

    Article  Google Scholar 

  21. Sokolov DA, Morozov YV, McDonald MP et al (2014) Direct observation of single layer graphene oxide reduction through spatially resolved, single sheet absorption/emission microscopy. Nano Lett 14:3172–3179

    Article  Google Scholar 

  22. Zhou Y, Bao Q, Varghese B et al (2010) Microstructuring of graphene oxide nanosheets using direct laser writing. Adv Mater 22:67–71

    Article  Google Scholar 

  23. Eda G, Lin Y-Y, Mattevi C et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509

    Article  Google Scholar 

  24. Shang J, Ma L, Li J et al (2012) The origin of fluorescence from graphene oxide. Sci Rep 2:792-1–792-8

    Article  Google Scholar 

  25. Andryushina NS, Stroyuk OL, Dudarenko GV et al (2013) Photopolymerization of acrylamide induced by colloidal graphene oxide. J Photochem Photobiol A 256:1–6

    Article  Google Scholar 

  26. Li D, Muller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  Google Scholar 

  27. Chien C-T, Li S-S, Lai W-J et al (2012) Tunable photoluminescence from graphene oxide. Angew Chem Int Ed 51:6662–6666

    Article  Google Scholar 

  28. Exarhos AL, Turk ME, Kikkawa JM (2013) Ultrafast spectral migration of photoluminescence in graphene oxide. Nano Lett 13:344–349

    Article  Google Scholar 

  29. Galande C, Mohite AD, Naumov AV et al (2011) Quasi-molecular fluorescence from graphene oxide. Sci Rep 1:85-1–85-5

    Article  Google Scholar 

  30. Luo Z, Vora PM, Mele EJ et al (2009) Photoluminescence and band gap modulation in graphene oxide. Appl Phys Lett 94:111909-1–111909-3

    Google Scholar 

  31. Loh KP, Bao Q, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–10024

    Article  Google Scholar 

  32. Gokus T, Nair RR, Bonetti A et al (2009) Making graphene luminescent by oxygen plasma treatment. ACS Nano 3:3963–3968

    Article  Google Scholar 

  33. McDonald MP, Eltom A, Vietmeyer F et al (2013) Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics. Nano Lett 13:5777–5784

    Article  Google Scholar 

  34. Cuong TV, Pham VH, Tran QT et al (2010) Photoluminescence and raman studies of graphene thin films prepared by reduction of graphene oxide. Mater Lett 64:399–401

    Article  Google Scholar 

  35. Chen J-L, Yan X-P (2010) A dehydration and stabilizer-free approach to production of stable dispersion of graphene nanosheets. J Mater Chem 20:4328–4332

    Article  Google Scholar 

  36. Hou X-L, Li J-L, Drew SC et al (2013) Tuning radical species in graphene oxide in aqueous solution by photoirradiation. J Phys Chem C 117:6788–6793

    Article  Google Scholar 

  37. Li J-L, Kudin KN, McAllister MJ et al (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101-1–176101-4

    Google Scholar 

  38. Giblin J, Vietmeyer F, McDonald MP et al (2011) Single nanowire extinction spectroscopy. Nano Lett 11:3307–3311

    Article  Google Scholar 

  39. Vietmeyer F, McDonald MP, Kuno M (2012) Single nanowire microscopy and spectroscopy. J Phys Chem C 116:12379–12396

    Article  Google Scholar 

  40. McDonald MP, Vietmeyer F, Kuno M (2012) Direct measurement of single CdSe nanowire extinction polarization anisotropies. J Phys Chem Lett 3:2215–2220

    Article  Google Scholar 

  41. Vietmeyer F, Tchelidze T, Tsou V et al (2012) Electric field-induced emission enhancement and modulation in individual CdSe nanowires. ACS Nano 6:9133–9140

    Article  Google Scholar 

  42. McDonald MP, Vietmeyer F, Aleksiuk D et al (2013) Supercontinuum spatial modulation spectroscopy: detection and noise limitations. Rev Sci Instrum 84:113104-1–113104-7

    Article  Google Scholar 

  43. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  44. Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  45. Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563

    Article  Google Scholar 

  46. Shulga YM, Martynenko VM, Muradyan VE et al (2010) Gaseous products of thermo- and photo-reduction of graphite oxide. Chem Phys Lett 498:287–291

    Article  Google Scholar 

  47. Eda G, Fanchini G, Chhowalla M (2008) Large area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  Google Scholar 

  48. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    Article  Google Scholar 

  49. Matsumoto Y, Koinuma M, Ida S et al (2011) Photoreaction of graphene oxide nanosheets in water. J Phys Chem C 115:19280–19286

    Article  Google Scholar 

  50. Guo H, Peng M, Zhu Z et al (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5:9040–9048

    Article  Google Scholar 

  51. Abdelsayed V, Moussa S, Hassan HM et al (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809

    Article  Google Scholar 

  52. Sokolov DA, Rouleau CM, Geohegan DB et al (2013) Excimer laser reduction and patterning of graphite oxide. Carbon 53:81–89

    Article  Google Scholar 

  53. Huang L, Liu Y, Ji L-C et al (2011) Pulsed laser assisted reduction of graphene oxide. Carbon 49:2431–2436

    Article  Google Scholar 

  54. Trusovas R, Ratautas K, Raciukaitis G et al (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon 52:574–582

    Article  Google Scholar 

  55. Zhang Y, Guo L, Wei S et al (2010) Direct imprinting of microcircuits of graphene oxides film by femtosecond laser reduction. Nano Today 5:15–20

    Article  Google Scholar 

  56. Wang D, Carlson MT, Richardson HH et al (2011) Absorption cross section and interfacial thermal conductance from an individual optically excited single-walled carbon nanotube. ACS Nano 5:7391–7396

    Article  Google Scholar 

  57. Jeong H-K, Lee YP, Jin MH et al (2009) Thermal stability of graphite oxide. Chem Phys Lett 470:255–258

    Article  Google Scholar 

  58. Plotnikov VG, Smirnov VA, Alfimov MV et al (2011) The graphite oxide photoreduction mechanism. High Energy Chem 45:411–415

    Article  Google Scholar 

  59. Lahaye RJWE, Jeong HK, Park CY et al (2009) Density functional theory of graphite oxide for different oxidation levels. Phys Rev B 79:125435-1–125435-8

    Article  Google Scholar 

  60. Smirnov VA, Shul’ga YM, Denisov NN et al (2012) Photoreduction of graphite oxide at different temperatures. Nanotechnol Russia 7:156–163

    Article  Google Scholar 

  61. Ghaderi N, Paressi M (2010) First-principle study of hydroxyl functional groups on pristine, defected graphene, and graphene epoxide. J Phys Chem C 114:21625–21630

    Article  Google Scholar 

  62. Sorescu DC, Jordan KD (2001) Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J Phys Chem B 105:11227–11232

    Article  Google Scholar 

Download references

Acknowledgements

MK thanks the ACS PRF (Type ND 51675) and the Army Research Office (W911NF-12-1-0578) for financial support. JHH thanks CONICET for the international cooperation funds [D979 (25-03-2013)], FONCyT for research grant P.BID2012 PICT-2041, and University of Buenos Aires for grants UBACYT 2015-2017 20020130100643BA and UBACYT 01-w971.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Kuno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McDonald, M.P., Morozov, Y., Hodak, J.H., Kuno, M. (2015). Spectroscopy and Microscopy of Graphene Oxide and Reduced Graphene Oxide. In: Gao, W. (eds) Graphene Oxide. Springer, Cham. https://doi.org/10.1007/978-3-319-15500-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15500-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15499-2

  • Online ISBN: 978-3-319-15500-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics