Skip to main content

Colloidal Gels Formed by Dilute Aqueous Dispersions of Surfactant and Fatty Alcohol

  • Chapter
  • First Online:
Colloid Process Engineering

Abstract

Mixtures of surfactants, fatty alcohol as cosurfactant, and water often form gels, even at high dilution. We have investigated highly dilute samples of the system sodium dodecyl sulfate/cetyl alcohol/water (SDS/CA/D2O) at varying SDS/CA ratio. Gel-like samples are obtained only at low SDS/CA ratios. The phase structure and the dynamics of the molecules have been determined by a combination of proton and carbon-13 NMR spectroscopy, cryo-transmission electron microscopy, very-small-angle neutron and x-ray scattering, differential scanning calorimetry, rheology, and pulsed gradient spin echo NMR diffusometry. The gel-like character is found to be caused by jammed uni- and multilamellar vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad TS, Johnson ES, Bureiko A, Olsson U (2011) Colloidal structure and physical properties of gel networks containing anionic surfactant and fatty alcohol mixture. J Dispersion Sci Technol 32:807–815

    Article  Google Scholar 

  2. Abrahamsson S, Larsson G, von Sydow E (1980) The crystal structure of the monoclinic form of n-hexadecanol. Acta Cryst 13:770–774

    Article  Google Scholar 

  3. Åslund I, Medronho B, Topgaard D, Söderman O, Schmidt C (2011) Homogeneous length scale of shear-induced multilamellar vesicles studied by diffusion NMR. J Magn Reson 209:291–299

    Article  Google Scholar 

  4. Andrew ER (1950) Moleculer motion in certain solid hydrocarbons. J Chem Phys 18:607–618

    Article  Google Scholar 

  5. Berr SS (1987) Solvent isotope effects on alkyltrimethylammonium bromide micelles as a function of alkyl chain length. J Phys Chem 91:4760–4765

    Article  Google Scholar 

  6. Berret J-F (2004) Rheology of wormlike micelles: equilibrium properties and shear-banding transitions. In: Weiss RG, Terech P (eds), Molecular gels. Materials with self-assembled fibrillar networks. pp. 667-720

    Google Scholar 

  7. Blackburn JC, Kilpatrick PK (1992) Using deuterium NMR lineshapes to analyze lyotropic liquid crystalline phase transitions. Langmuir 8:1679–1687

    Article  Google Scholar 

  8. Callaghan PT (1999) Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Prog Phys 62:599–670

    Article  Google Scholar 

  9. Chapman D (1956) Infra-red spectroscopy applied to studies of polymorphism. Spectrochim Acta 11:609–617

    Article  Google Scholar 

  10. Chevalier Y, Zemb T (1990) Structure of micelles and microemulsions. Rep Prog Phys 53:279–371

    Article  Google Scholar 

  11. Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  Google Scholar 

  12. Eccleston GM (1990) Multiple-phase oil-in-water emulsions. J Soc Cosmet Chem 41:1–22

    Google Scholar 

  13. Ferreira TM, Bernin D, Topgaard D (2013) NMR studies of nonionic surfactants. Annu Rep NMR Spectrosc 79:73–127

    Article  Google Scholar 

  14. Goetz RJ, El-Aasser MS (1990) Dilute phase behavior of cetyl alcohol, sodium lauryl sulfate, and water. Langmuir 6:132–136

    Article  Google Scholar 

  15. Goetz RJ, Khan A, El-Aasser MS (1990) FT PGSE NMR investigations of the supramolecular structure of a dilute gel phase. J Colloid Interface Sci 137:395–407

    Article  Google Scholar 

  16. Grewe F, Polzer F, Goerigk G, Topgaard D, Schmidt C Structure of dilute aqueous surfactant/cosurfactant emulsions (in preparation)

    Google Scholar 

  17. Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15:R655–R697

    Article  Google Scholar 

  18. Gradzielski M (2011) The rheology of vesicle and disk systems—relations between macroscopic behaviour and microstructure. Curr Opin Colloid Interface Sci 16:13–17

    Article  Google Scholar 

  19. Grewe F (2013) Structures of aqueous surfactant systems: a study of binary micellar solutions and ternary surfactant/fatty alcohol/water emulsions. Doctoral thesis, Universität Paderborn

    Google Scholar 

  20. Grabowski DA, Schmidt C (1994) Simultaneous measurement of shear viscosity and director orientation of a side-chain liquid-crystalline polymer by rheo-NMR. Macromolecules 27:2632

    Article  Google Scholar 

  21. Hunter GL, Weeks ER (2012) The physics of the colloidal glass transition. Rep Prog Phys 75:066501

    Article  Google Scholar 

  22. Ishikawa S, Ando I (1992) Structural studies of dimyristoylphosphatidylcholine and distearoylphosphatidylcholine in the crystalline and liquid-crystalline states by variable-temperature solid-state high-resolution 13C NMR spectroscopy. J Mol Struct 271:57–73

    Article  Google Scholar 

  23. Israelachivili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans II 72:1525–1568

    Google Scholar 

  24. Kube M, Erler J, Peuker U, Schmidt C Thermal decomposition of ricinolic-acid-stabilized zinc oxide nanoparticles studied by FTIR and NMR spectroscopy (in preparation)

    Google Scholar 

  25. Kratzat K, Schmidt C, Finkelmann H (1994) A doubly branched nonionic oligooxyethylene V-amphiphile: effect of molecular geometry on liquid-crystalline phase behavior, 3. J Colloid Interface Sci 163:190–198

    Article  Google Scholar 

  26. Lawrence ASC, Al-Mamun MA, McDonald MP (1967) Investigation of lipid-water system. Part 2. Effect of water on the polymorphism of long chain alcohols and acids. J Chem Soc Faraday Trans I 63:2789–2795

    Google Scholar 

  27. Laughlin RG (1994) The aqueous phase behavior of surfactants. Academic Press, London

    Google Scholar 

  28. Long P, Hao J (2010) A gel state from densely packed multilamellar vesicles in the crystalline state. Soft Matter 6:4350–4356

    Article  Google Scholar 

  29. Lukaschek M, Müller S, Hasenhindl A, Grabowski DA, Schmidt C (1996) Lamellar lyomesophases under shear as studied by deuterium nuclear magnetic resonance. Colloid Polym Sci 274:1–7

    Article  Google Scholar 

  30. Müller S, Börschig C, Gronski W, Schmidt C, Roux D (1999) Shear-induced states of orientation of the lamellar phase of C12E4/water. Langmuir 15:7558–7564

    Article  Google Scholar 

  31. Medronho B, Brown J, Miguel MG, Schmidt C, Olsson U, Galvosas P (2011) Planar lamellae and onions: a spatially resolved rheo-NMR approach to the shear-induced structural transformations in a surfactant model system. Soft Matter 7:4938–4947

    Article  Google Scholar 

  32. McKelvey CA, Kaler EW (2002) Characterization of nanostructured hollow polymer spheres with small-angle neutron scattering (SANS). J Colloid Interface Sci 245:68–74

    Article  Google Scholar 

  33. Métivaud V, Lefèvre A, Ventolà L, Négrier P, Moreno E, Calvet T, Mondieig D, Cuevas-Diarte MA (2005) Hexadecane (C16H34) + 1-hexadecanol (C16H33OH) binary system: crystal structures of the components and experimental phase diagram. Application to thermal protection of liquids. Chem Mater 17:3302–3310

    Google Scholar 

  34. Mosselmann C, Mourik J, Dekker H (1974) Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism. J Chem Thermodynamics 6:477–487

    Google Scholar 

  35. Meyer JD, Reid EE (1933) Isomorphism and alternation in the melting points of the normal alcohols, acetates, bromides, acids and ethylesters from C10 to C19. J Am Chem Soc 55:1574–1584

    Article  Google Scholar 

  36. Medronho B, Shafaei S, Szopko R, Miguel MG, Olsson U, Schmidt C (2008) Shear-induced transitions between a planar lamellar phase and multilamellar vesicles: continuous versus discontinuous transformation. Langmuir 24:6480–6486

    Article  Google Scholar 

  37. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  Google Scholar 

  38. Schipunov E (2014) Untersuchung strukturierter Tensidsysteme. Doctoral thesis, Universität Paderborn, 2013 (Der Andere Verlag)

    Google Scholar 

  39. Schaefer J, Stejskal EO (1975) Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J Am Chem Soc 98:1031–1032

    Article  Google Scholar 

  40. Söderman O, Stilbs P (1994) NMR studies of complex surfactant systems. Prog Nucl Magn Reson Spectr 26:445

    Article  Google Scholar 

  41. Tiddy GJT (1980) Surfactant-water liquid crystal phases. Phys Rep 57:1–46

    Article  Google Scholar 

  42. Weingärtner H (1982) Self diffusion in liquid water—a reassessment. Zeitschr Phys Chem 132:129–140

    Google Scholar 

Download references

Acknowledgments

We thank Vitaliy Pipich, Martin Schneider and Günter Goerigk for help with the neutron scattering experiments performed with the JCNS (Jülich Centre of Neutron Science) instrument KWS-3 at the FRM II research reactor in Garching/Munich, Frank Polzer for the cryo-TEM experiments, Daniel Topgaard and Stefanie Eriksson for help with the pulsed field gradient diffusometry performed at Lund University, Hans Egold and Karin Stolte for the high resolution proton NMR measurements, and the students Johannes Brinkmann, Svenja Marl, Dagmar Moritz, Matthias Hoffmann, Malte-Ole Schneemann, Alexei Schwarz, Nikolai Sitte, Viktor Warkentin, Daniel Wiegmann, and Martin Wiesing for their support. This project was funded by Deutsche Forschungsgemeinschaft, priority program SPP 1273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grewe, F., Ortmeyer, J., Haase, R., Schmidt, C. (2015). Colloidal Gels Formed by Dilute Aqueous Dispersions of Surfactant and Fatty Alcohol. In: Kind, M., Peukert, W., Rehage, H., Schuchmann, H. (eds) Colloid Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-15129-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15129-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15128-1

  • Online ISBN: 978-3-319-15129-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics